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ABSTRACT9

We use physics informed neural networks (PINNs) to solve the radiative transfer equation and10

calculate a synthetic spectrum for a Type Ia supernova (SN Ia) SN 2011fe. The calculation is based11

on local thermodynamic equilibrium (LTE) and 9 elements are included. Physical processes included12

are approximate radiative equilibrium, bound-bound transitions, and the Doppler effect. A PINN13

based gamma-ray scattering approximation is used for radioactive decay energy deposition. Note the14

physics ingredients are intended to implement a self-consistent SN Ia atmosphere to test PINN radiative15

transfer (including gamma-ray radiative transfer). The realism of the SN Ia atmosphere modeling is16

limited. The PINN synthetic spectrum is compared to an observed spectrum, a synthetic spectrum17

calculated by the Monte Carlo radiative transfer program TARDIS, and the formal solution of the18

radiative transfer equation. Qualitative agreement is achieved. The lack of quantitative agreement with19

the formal solution (which is the only test quantitative test of PINN radiative transfer) probably shows20

that we have not found an adequate way to apply PINN in supernova atmospheres. We discuss the21

challenges and potential of PINN radiative transfer. In fact, PINN offers the prospect of simultaneous22

solution of the atmosphere problem for both radiation field and thermal state throughout spacetime.23

We have made only modest steps to realizing that prospect with our calculations which required many24

approximations in order to be feasible at this point. Consequently, this paper is mostly of use just as25

supplementary material for future work.26

Keywords: supernovae: general, galaxies: star formation27

1. INTRODUCTION28

Type Ia supernovae (SNe Ia) have been used as stan-29

dard candles in cosmological studies (Riess et al. 2021)30

owing to empirical relations between the light curve31

properties and the maximum absolute magnitude (e.g.,32

the Phillips relation (Phillips 1993) and Arnett rule (Ar-33

nett 1982)). However, the explosion mechanism of SNe34

Ia is still unclear, primarily due to the computational35

complexity of the physical processes, particularly nucle-36

osynthesis and hydrodynamics needed in the supernova37

explosion simulation (Gronow et al. 2021).38
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In SNe Ia, hydrodynamic and nucleosynthesis pro-39

cesses are only significant in the first ∼100 seconds.40

Thereafter the supernova ejecta expands homologously41

and the observed optical spectra and light curves are42

generated by radiative transfer and the thermal state43

of the ejecta. Therefore, simulating the radiative trans-44

fer process is necessary to estimate the density profile45

and element abundances of the supernova ejecta so as46

to put constraints on the SNe Ia explosion mechanism.47

Several well known simulation programs have been de-48

veloped for the calculation of synthetic spectra for ex-49

plosion model supernova ejecta structure. SYNOW50

(Parrent et al. 2010; Thomas et al. 2011) uses the51

Sobolev method for radiative transfer calculation (e.g.,52

Rybicki & Hummer 1978) and has been used for spec-53
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tral line identification. PHOENIX (Hauschildt & Baron54

2006) and CMFGEN (Hillier & Miller 1998) are more55

advanced simulation programs and are able to cal-56

culate non-local-thermodynamic-equilibrium (NLTE),57

time-dependent radiative transfer using the comoving58

frame equation of radiative transfer (e.g., Mihalas 1978,59

p. 490ff). Note the PHOENIX code has a 3-dimensional60

version PHOENIX/3D (Hauschildt & Baron 2006). Pro-61

grams using the Monte Carlo method have also been de-62

veloped for spectral simulation (e.g., SEDONA (Kasen63

et al. 2006), ARTIS (Kromer & Sim 2009)) and have64

been used for spectral polarization calculations (e.g.,65

Kasen et al. 2006; Bulla et al. 2015; Livneh & Katz66

2022). In particular, TARDIS (Kerzendorf & Sim 2014)67

is a one-dimensional radiative transfer program using68

the Monte Carlo method (of radiative transfer) in which69

several crude approximations for NLTE effects have been70

implemented. The research reported in this paper uses71

the spectra from TARDIS for comparison.72

Although the aforementioned supernova spectrum73

simulation programs can provide results with different74

levels of approximation within reasonable amounts of75

computation time, the inverse problem, which estimates76

the supernova ejecta structure from an observed spec-77

trum, still requires significant computational resources.78

In our previous study (Chen et al. 2020), a solution of79

the inverse problem is obtained by training a data-driven80

neural network on a simulated spectra data set, which81

contains 100,000 supernova spectra of different ejecta82

structure and costs ∼1,000,000 CPU-hours of compu-83

tation time for spectral simulation and neural network84

training. Similarly, Kerzendorf et al. (2021) uses a data-85

driven neural network to accelerate the calculation of the86

forward modeling problem, and suggest the neural net-87

work could combine with the nested sampling algorithm88

(Buchner 2016) to solve the inverse problem.89

Physics Informed Neural Networks (PINNs) have90

emerged recently as a powerful addition to traditional91

numerical partial differential equation (PDE) solvers92

(Raissi et al. 2019; Karniadakis et al. 2021). The PINN93

approach is based on constraining the output of a deep94

neural network to satisfy a physical model specified by95

a PDE. Using neural networks as universal function ap-96

proximators to solve PDEs had been proposed already97

in the 1990’s (Dissanayake & Phan-Thien 1994; Lagaris98

et al. 1998). PINN capabilities at solving PDEs have99

been enhanced in many different ways since then by uti-100

lizing the expressive powers of deep neural networks,101

which are made possible by the recent advances in GPU-102

computing and training algorithms (Abadi et al. 2016),103

as well as computational advances in automatic differen-104

tiation methods (Baydin et al. 2017). A significant ad-105

vantage of PINNs over traditional time-stepping PDE106

solvers is that PINNs are mesh-less and can solve in107

space and time simultaneously. Combined with the re-108

gression capability of deep neural networks, PINNs are109

also suitable for PDE-related inverse problems.110

Note that in Mishra & Molinaro (2021), PINNs were111

applied to solve several simple monochromatic and poly-112

chromatic radiative transfer problems.113

In this paper, we employ PINNs to solve the radiative114

transfer equation (e.g., Hubeny & Mihalas 2014) in or-115

der to calculate an optical spectrum of SN Ia SN 2011fe116

at 12.35 days after explosion. The overall calculation117

is a self-consistent atmosphere solution of both radia-118

tive transfer and thermal state solution in order to test119

PINNs in the context of a qualitatively realistic self-120

consistent atmosphere solution. However, there is lim-121

ited quantitative realism in many of the ingredients as122

we detail primarily in § 2. We are not doing a state-of-123

the-art SN Ia atmosphere modeling.124

The paper is structured as follows. Section 2 intro-125

duces the theoretical background, including the optical126

radiative transfer equation, the atomic physics calcu-127

lation method, and the approximate gamma-ray radia-128

tive transfer calculation method. Section 3 describes129

the PINN structure used in this research and the re-130

sults from the PINN calculation. A summary and a dis-131

cussion of the future challenges for PINN-based radia-132

tive transfer calculations are given in § 4. Appendix A133

presents the formal solution of the radiative transfer134

equation. The code used in this research is available135

on https://github.com/GeronimoChen/RTPI.136

2. THE RADIATIVE TRANSFER EQUATION137

In spherical symmetric coordinates, the time-138

independent radiative transfer equation in the rest frame139

(i.e., the frame defined by the center of mass of the140

spherically symmetric system) is141

cos(φ)
∂I

∂r
− sin(φ)

∂I

∂φ

1

r
− jem

(ν
ν̄

)−2

+ kabs

(ν
ν̄

)
I = 0 ,

(1)142

where I is specific intensity (here a function of spatial143

coordinate, viewing direction, and frequency), r is ra-144

dius, φ is the angle between the viewing direction and145

the radius vector (i.e., the viewing angle), kabs is the co-146

moving frame opacity (not the rest frame opacity), jem is147

the comoving frame emissivity (not the rest frame emis-148

sivity), and
(
ν
ν̄

)
is the ratio of comoving frame frequency149

to rest frame frequency, which is given by150

ν

ν̄
= γ[1− cos(φ)β] , (2)151

where γ = (1−β2)−0.5 is the Lorentz factor and β = v/c152

is the velocity of the material divided by the speed of153
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light (Castor e.g., 1972, eq. (1–3); see also Mihalas 1978,154

p. 31,33,495–496). The formal solution of the radiative155

transfer equation is presented in Appendix A.156

Note we have dropped the time dependence term be-157

cause we model only the atmosphere of a SN Ia above158

an inner core that provides inner boundary condition for159

the atmosphere. Time dependence in SN Ia atmospheres160

has generally been found to be relatively unimportant161

near and even prior to maximum light (e.g., Kasen et al.162

2006, § 3.5) and can be neglected for our exploratory163

calculations.164

Because SN Ia ejecta is expanding homologously by165

about the first 10 seconds after the explosion of the rela-166

tively small progenitor white dwarf (e.g., Röpke & Hille-167

brandt 2005), the radial velocity at all observable epochs168

is proportional to the radius at a given time and satis-169

fies the relation r = vtexp = cβtexp, where texp is the170

time since the explosion. Therefore, we use the radial171

velocity to represent the radial coordinate in the figures172

and elsewhere as needed.173

Note because of homologous expansion, surfaces of174

constant velocity βφ = cos(φ)β in the direction to a175

distant observer obey176

βφ=cos(φ)β = cos(φ)
r

ctexp
= cos(φ)

z

cos(φ)ctexp

=
z

ctexp
, (3)177

where z is a constant length along beam paths to a dis-178

tant observer. Because z is a constant, the surfaces of179

constant velocity βφ in the direction to a distant ob-180

server are planes perpendicular to those beam paths.181

The plane for z = 0 passes through the center of mass182

of the SN Ia ejecta.183

In the following subsections, we will introduce the dif-184

ferent physical processes that contribute to the opacity185

kabs and emissivity jem.186

2.1. Thermal State, LTE, and Temperature Profile187

For the calculation of the thermal state of our SN Ia188

atmosphere model, we assume local thermodynamic189

equilibrium (LTE) which means that all matter occu-190

pation numbers are determined by their thermodynamic191

equilibrium values calculated from a single temperature.192

Imposing conservation of energy including both radia-193

tion field and gamma-ray energy deposition (calculated194

as described in §§ 2.4 and 3.1), the LTE temperature T is195

calculated from the quasi steady state first law of ther-196

modynamics equation with time derivatives of energy197

density and adiabatic cooling omitted as being negligi-198

ble which is suitable for supernova atmospheres (e.g.,199

Kasen et al. 2006, § 2.4). This equation written for our200

model is the radiative equilibrium equation (modified201

for gamma-ray energy deposition)202 ∫ ∞

0

κνBν(T ) dν =

∫ ∞

0

κνJν dν + Eγ , (4)203

where ν is the comoving frequency, T is the LTE tem-204

perature to be solved for, κν is the comoving absorption205

opacity (implicitly evaluated at T ),206

Bν(T ) =
2hν3

c2
1

ehν/(kBT ) − 1
(5)207

is the Planck law (with kB being the Boltzmann con-208

stant),209

Jν =
1

4π

∫
Ω

I dΩ (6)210

is the comoving mean specific intensity (with the fre-211

quency dependence of I implicit which is the convention212

we adopt in this paper), and Eγ is the (rate of) gamma-213

ray energy deposition per unit solid angle (e.g., Mihalas214

1978, p. 172: see also Kasen et al. 2006, § 2.4). Note215

Eγ =
Eγ

4π
, (7)216

where Eγ is the (rate of) gamma-ray energy deposition217

specified in § 2.4.218

Using219

B(T ) =
σSBT

4

π
, (8)220

the Planck law integrated over all frequency (with σSB221

being the Stefan-Boltzmann constant), we can rewrite222

Equation (4) in a form clearly implying there is a tem-223

perature to be solved for:224

T =

[
πJ

σSB
Rop +

πEγ
σSBκP(T )

]1/4
, (9)225

where J is the mean intensity integrated over all fre-226

quency, κP(T ) is the Planck mean opacity (see definition227

in the equation just below), and228

Rop =
κJ

κP(T )
=

∫∞
0

κνJν dν/J∫∞
0

κνBν(T ) dν/B(T )
(10)229

is the opacity ratio, where κJ is the absorption mean230

opacity (e.g., Mihalas 1978, p. 60) and κP(T ) is the231

aforementioned Planck mean opacity (e.g., Mihalas232

1978, p. 59). Note that the opacity ratio is indepen-233

dent of the scales of Jν , Bν , and κν . The independence234

of the scale of Jν in the definition of the opacity ra-235

tio is just because J (loosely speaking the total driving236

radiation field) has been made to appear explicitly in237

Equation (9). The independence of the scale of Bν just238

follows from the definition of the Planck mean opacity239

and that of κν from the definition of the opacity ratio.240
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Note when Eγ = 0, the LTE radiative equilibrium tem-241

perature itself is independent of the scale of κν as seen242

from both Equations (4) and (9). This independence243

can be understood by seeing that when Eγ = 0, the LTE244

radiative equilibrium temperature is independent of the245

scales of energy inflow and outflow to matter and these246

scales are the only things controlled by the scale of κν .247

The independence of the scales of Jν , Bν , and κν in248

the opacity ratio Rop suggests that the opacity ratio can249

be of order 1 though it can also be very different from250

1 if the shapes of Jν and Bν are very different which251

certainly happens in some atmosphere conditions. We252

show below that there are two limits where Rop does253

equal 1 exactly.254

Equation (9) is, of course, still an implicit equation for255

LTE temperarure T . However, it will probably succeed256

as an iteration formula in most cases. However also,257

given that the opacity ratio Rop can be of order 1 and258

1 is the natural choice in the absence of guiding infor-259

mation, we can set it to be 1 for two characteristic LTE260

temperatures derived from Equation (9). These are ex-261

plicit solutions relative to the local thermal state, but262

depend on the radiation field, and so are implicit relative263

to the overall atmosphere. The first characteristic LTE264

temperature, which we call the Planck law temperature265

(PLT), is266

TPLT =

(
πJ

σSB

)1/4

, (11)267

where Eγ appearing in Equation (9) is set to zero. The268

second characteristic LTE temperature, which we call269

the Planck law temperature augmented (PLTA), is270

TPLTA=

[
πJ

σSB
+

πEγ
σSBκP(TPLT)

]1/4
=

[
T 4
PLT +

πEγ
σSBκP(TPLT)

]1/4
, (12)271

where Eγ appearing in Equation (9) is not set to zero.272

There are two special cases where PLT is an exact ex-273

plicit solution for the LTE temperature equation (i.e.,274

Equation (9)) with Eγ = 0. The two cases, of course,275

have Rop = 1 exactly. The first case is in the opti-276

cally thick limit where photons travel negligibly short277

distances compared to distances over which the ther-278

mal state changes. This case is usually at great opti-279

cal depth in an atmosphere. Given the optically thick280

limit, Jν = Bν(T ), where T is the local temperature. It281

now follows from Equation (10) that Rop = 1 exactly.282

The second case is where the absorption opacity is grey283

(i.e., frequency independent, but not necessarily inde-284

pendent of any other variable). It again follows from285

Equation (10) that Rop = 1 exactly. The first case will286

actually be approached closely in realistic atmospheres287

in optically thick conditions and the second may be a288

good approximation in some cases.289

As well as the two exact cases of PLT, there can be290

other cases not close to the two exact cases where PLT291

holds approximately provided that fortuitously the fac-292

tors in Equation (10) multiply to 1. However, obviously293

there are realistic cases where PLT will be wrong by294

an order of magnitude or more. Extremely wrong, but295

unrealistic, cases are where the absorption opacity is a296

Dirac delta function. Given this opacity, it is clear that297

for extreme choices of Jν and Bν , the opacity ratio will298

have the range Rop ∈ [0,∞].299

An important fact about PLT is that it does conserve300

energy locally even if it gives a very wrong tempera-301

ture. In Lambda iteration using the radiative transfer302

equation, local energy conservation is not sufficient to303

guarantee convergence and in fact in optically thick at-304

mospheres generally fails in practice (e.g., Mihalas 1978,305

p. 147–150). However in Monte Carlo radiative transfer306

with indestructible photon packets and local energy con-307

servation, the Lambda iteration converges robustly since308

the use of indestructible photon packets insures global309

conservation of energy (Lucy 1999; Kasen et al. 2006).310

Thus, PLT could be useful in determining a first or early311

iteration LTE temperature profile in a Lambda iteration312

since it avoids doing the integrations of Equation (4).313

To conclude about PLT, despite the fact that PLT can314

be extremely wrong, it is still a reasonable choice for a315

characteristic LTE temperature for exploratory, exam-316

ple, or first or early Lambda iteration calculations given317

that it is exactly correct in two limits, may be fortu-318

itously correct in other cases, conserves energy locally,319

and setting Rop = 1 is, as aforesaid, the natural choice320

in the absence of guiding information. We can then con-321

clude PLTA is therefore also a reasonable characteristic322

LTE temperature when Eγ is only 1st order correction323

to the PLT temperature (i.e., to the LTE thermal state).324

Note PLTA does not conserve energy locally exactly, but325

only to 1st order in small Eγ .326

An important point to make about PLT/PLTA is that327

if there are significant NLTE effects in an atmosphere,328

PLT/PLTA is, a priori, as good a characteristic temper-329

ature as the one obtained by solving Equation (4) (or,330

equivalently, Equation (9)) exactly since it is after all331

just an LTE equation and NLTE effects could make it332

as poor an approximate as PLT/PLTA.333

For our pioneering PINN radiative transfer calcula-334

tions, we do not need high realism in the thermal state335

solution (which for LTE is essentially solving for the336

temperature profile) and in particular do not need ex-337

act energy conservation. (Note we do not have radia-338
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tive equilibrium in the exact sense of the expression be-339

cause of the contribution of Eγ though that contribution340

turned out to be small in our calculations.) Therefore,341

we adopted the PLT formula to treat the radiation field342

contribution to temperature, but do a Lambda iteration343

for the LTE temperature (see procedure description be-344

low) and we made a simplifying approximation for the345

Planck mean opacity κP(T ): we take it to be equal to346

the electron scattering opacity347

ke = σTNe , (13)348

where σT is the Thomson scattering cross section and349

Ne is free electron number density. Because Ne depends350

on the local LTE temperature, our equation for the lo-351

cal LTE temperature will be implicit relative to the local352

thermal state unlike Equations (11) and (12) for, respec-353

tively, PLT and PLTA.354

Finally, the implicit LTE temperature formula355

adopted for our calculations (derived from Equation (9)356

and the assumptions given in the last paragraph) is357

TLTE=

(
πJ

σSB
+

πEγ
σSBσTNe

)1/4

=

(
T 4
PLT +

πEγ
σSBσTNe

)1/4

, (14)358

where the implicit TLTE is hidden in the calculation of359

the electron density Ne.360

It is, of course, formally wrong to use a scattering361

opacity as an absorption opacity. However, the us-362

age is a calculational placeholder for a better treat-363

ment using a good Planck mean opacity from tables or364

a good approximate formula. Also, the electron scat-365

tering opacity is, in effect, just used as weighting for366

the gamma-ray energy deposition which our calculations367

show to be a relatively small contribution to tempera-368

ture. Of course, the electron scattering opacity could be369

an overestimate/underestimate, and so could underesti-370

mate/overestimate in our calculations the effect of the371

gamma-ray energy deposition. Note that we also solve372

the gamma-ray radiative transfer with PINN to show373

that that can be done (see § 3.1).374

The actual solution procedure for the temperature375

profile using the implicit LTE temperature equation376

(i.e., Equation (14)) is, as aforesaid, by the Lambda377

iteration (e.g., Mihalas 1978, p. 147–150). We assume378

an initial temperature profile from which we calculate379

the electron densities Ne and the bound-bound opaci-380

ties (i.e., bb or line opacities) which are the only opac-381

ities we include in the radiative transfer (see 2.2): the382

electron scattering opacity is used only to solve for tem-383

perature from Equation (14). The bound-bound opac-384

ities are treated as pure absorption opacities: i.e., no385

line scattering is included and the lines emit thermally386

(see 2.2). Using the bound-bound opacities and emis-387

sion from the inner boundary, we calculate J from the388

radiative transfer and then use Equation (14) to calcu-389

late a new temperature profile from which new electron390

densities Ne and new bound-bound opacities are calcu-391

lated. We then calculate the radiative transfer again,392

and so on until the temperature profile converges. The393

Lambda iteration successfully converges in our calcula-394

tions since the atmosphere is overall optically thin with395

just the bound-bound opacities included (e.g., Mihalas396

1978, p. 147–150).397

To speed up the Lambda iteration, we avoid the inte-398

grations for J by using a temperature (neural) network399

as described in § 3.3.400

2.2. Bound-Bound Transitions401

The bound-bound opacity and emissivity are calcu-402

lated using the local thermodynamic equilibrium (LTE)403

approximation. The spontaneous emissivity is404

jbb =
h

4π
AulνulNi,j,uϕ(ν) , (15)405

where Aul is the Einstein A coefficient for the bound-406

bound transition from the u-th level to the l-th level,407

Ni,j,u is the number density, i, j, u are the indices of408

element, ionization, and energy level, respectively, νul409

is the spectral line frequency, and ϕ(ν) is the line410

shape profile which satisfies the normalization condition411 ∫∞
0

ϕ(ν) dν = 1 (e.g., Mihalas 1978, p. 78). The bound-412

bound opacity corrected for stimulated emission is413

kbb =
h

4π
(Ni,j,lBlu −Ni,j,uBul)νulϕ(ν) , (16)414

where Bul and Blu are the Einstein B coefficients for415

the absorption and stimulated emission processes (e.g.,416

Mihalas 1978, p. 78–79). All the Einstein coefficients417

are downloaded from NIST spectral database.418

The realistic line profile ϕ(ν) is usually the Voigt func-419

tion which accounts for both natural line broadening and420

temperature Doppler broadening (e.g., Mihalas 1978,421

p. 279–281). These broadening effects are much smaller422

than the Doppler effect from the supernova ejecta ve-423

locity (typically ∼ 10000 km/s), and so we replace the424

usual realistic line profile with an artificial unrealistic425

one without significant error as long as it likewise has426

insignificant broadening. We choose a simple rectan-427

gular function with a 4 pixel width as the line shape428

profile in order to reduce the computation time. When429

the frequency grid is between 1014.4 Hz (12000 Å) and430

1015 Hz (3000 Å) with 2048 sampling points uniformly431

sampled in the logarithmic space, the velocity resolution432

is 202 km/s and spectral line width is 808 km/s (which433
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is much smaller ∼ 10000 km/s). Note that the temper-434

ature Doppler broadening velocity in supernova ejecta435

(which typically have temperatures of order 104 K) is436

of order 10 km/s (e.g., Mihalas 1978, p. 279), and so437

we have introduced artificial line broadening large com-438

pared to temperature Doppler broadening, but still neg-439

ligible for our calculations.440

2.3. Level Populations441

The level populations are calculated in LTE using442

Saha ionization equation and the Boltzmann equation.443

The relevant equations for solving for ionization state444

and electron density are as follows. First, the ratio be-445

tween the two level populations (i.e., the Saha ionization446

equation in one version) is447

Ni,j,k

Ni,j+1,0
= Ne

1

2

(
h2

2πmekB

) 3
2 gi,j,k
gi,j+1,0

T− 3
2 e

χi,j+1,0−χi,j,k
kBT ,

(17)448

where Ne is the electron number density, gi,j,k is the449

degeneracy factor, χi,j,k is the level energy, i, j, k are as450

before the indices of element (which is the atomic num-451

ber), ionization, and level, respectively, and 0 labels the452

ground state level (e.g., Mihalas 1978, p. 113). Second,453

the supernova ejecta plasma is assumed to be neutral,454

and so the electron number density satisfies455

Ne =
∑
i

∑
j

j
∑
k

Ni,j,k . (18)456

Third, the element abundances Ni in supernova ejecta457

models satisfy458

Ni =
∑
j

∑
k

Ni,j,k . (19)459

We adopt a similar algorithm as is in the TARDIS code460

to solve the Ni,j,k for the above equation group (i.e.,461

Eqs. (17), (18), (19)). In the first step, we assume462

all the atoms are singly ionized and calculate an Ne,0.463

In the second step, the level population Ni,j,k,0 is cal-464

culated from Equation (17) and Equation (19) using465

the assumed Ne,0. In the third step, a newer electron466

density Ne,new is calculated from Equation (18) using467

the level population in the second step. In the fourth468

step, we calculate the mean of two electron densities:469

Ne,1 = (Ne,0 + Ne,new)/2, then go back to the second470

step and replace Ne,0 with Ne,1. We repeat the above471

4 steps until there is a convergence of ionization state472

and electron density. In our calculations, the number473

of iterations is set to 30, which guarantees a convergent474

and sufficiently accurate solution in all of our tests.475

2.4. Gamma-Ray Energy Deposition476

Gamma-ray photons in SNe Ia are mainly generated477

from the decay chain 56Ni → 56Co → 56Fe and the pho-478

ton energy is deposited as thermal energy via Compton479

scattering and photoelectric absorption processes. The480

pair-production process is negligible for our system (e.g.,481

Kasen et al. 2006). The physical details of our gamma-482

ray treatment (discussed below) are taken from the ap-483

pendix of Kasen et al. (2006). The Compton scattering484

opacity is485

kC = σTK(x)
∑
i

iNi , (20)486

where i is the atomic number as above, σT is the487

Thomson cross section for Thomson scattering (e.g.,488

Mihalas 1978, p. 106), x is gamma-ray photon energy489

x = hν/(mec
2), and K(x) is the Klein-Nishina correc-490

tion to the Thomson cross section for Compton scatter-491

ing:492

K(x) =
3

4

{
1 + x

x3

[
2x(1 + x)

1 + 2x
− ln(1 + 2x)

]
+

ln(1 + 2x)

2x
− 1 + 3x

(1 + 2x)2

}
. (21)493

Note the summation is over all the bound and free elec-494

trons because the gamma-ray energies are much larger495

than the photoionization energies, and so all the elec-496

trons contribute to the Compton scattering effect.497

The photoelectric opacity is498

kp = σTα
4
(
8
√
2
)
x−7/2

∑
i

i5Ni , (22)499

where α is the fine-structure constant.500

The emissivity in the Compton scattering process is501

usually determined from the differential cross section502

dσ/dΩ in most of the Monte Carlo based radiative trans-503

fer programs (e.g., Kasen et al. 2006). The formula for504

dσ/dΩ is505

dσ

dΩ
=

3σT

16π
f(x,Θ)2[f(x,Θ)+f(x,Θ)−1−sin2 Θ] , (23)506

where Θ is the angle between the incoming and outgoing507

gamma-ray photon and f(x,Θ) is the energy ratio be-508



PINN RT 7

tween incoming and outgoing gamma-ray photon which509

is given by510

f(x,Θ) =
Eout

Ein
=

1

1 + x(1− cosΘ)
. (24)511

The average energy lost in an interaction is512

F (x) = 1− 1

4π

∫
Ω

f(x,Θ) dΩ . (25)513

We use Equation (25) to calculate a sequence of 7 dis-514

crete gamma-ray photon energy bins which correspond515

to 0, 1, 2, . . . 6 times scattered photons. We use m as516

the general label for the 7 discrete energy bins which517

are specified in § 3.1. We then use PINN to model the518

number of photons over these discrete energy bins as519

a function of spatial coordinate r and viewing angle φ.520

The (m+1)-th emissivity is calculated from the integral521

of the absorbed photon energy in the m-th gamma-ray522

photon energy bin and averaged over solid angle and is523

written as524

jC,m+1 =
1

4π

∫
Ω

kC,mIm dΩ , (26)525

where m is the index of gamma energy bin.526

The time independent gamma-ray radiative transfer527

equation in the static atmosphere approximation we528

adopt for gamma-ray transfer is529

cos(φ)
∂Im
∂r

−sin(φ)
∂Im
∂φ

1

r
+(kC+kp)Im−jC,m−jr = 0 ,

(27)530

where jr is the gamma-ray source in the supernova atmo-531

sphere. The detailed calculation procedure for gamma-532

ray transfer is discussed in § 3.1. We assume the energy533

lost in gamma-ray Compton scattering and photoelectric534

absorption processes are deposited as thermal energy lo-535

cally and, as aforesaid, neglect the gamma-ray photon536

pair-production process. Therefore the gamma-ray en-537

ergy deposition is538

Eγ =
∑
m

hνm

∫
Ω

[(kC,m + kp)Im − jC,m] dΩ , (28)539

where the summation is over all the allowed gamma-540

ray energy bins and we count jC,m as a negative energy541

deposition. The energy deposition per unit solid angle542

Eγ = Eγ/(4π) is used in Equation (14) to calculate the543

plasma temperature.544

3. THE PHYSICS INFORMED NEURAL545

NETWORK546

The concept of solving partial differential equations547

(PDEs) using neural networks has a long history. The548

idea is commonly credited to Lagaris et al. (1998) though549

there is related work dating back to the late 1980s (see550

Viana & Subramaniyan (2021) for a historical review).551

Recently, Raissi et al. (2019) proposed Physics Informed552

Neural Network (PINN), a modern deep neural network553

approach to solve forward and inverse PDE-constrained554

problems. PINN uses a deep neural network to approxi-555

mate a function over physical space and introduces con-556

straints such as PDEs and boundary conditions directly557

in the loss function to train the parameters in the neu-558

ral network. The neural network is called “physics in-559

formed” because the parameters and boundary condi-560

tions are mostly related to physical quantities and the561

PDE is usually a physical law.562

In the present work, a PINN is used to approximate563

the specific intensity represented at given frequency564

points by vector Iν = f(r, φ;w), where w represents565

the trainable parameters in the neural network. To566

train the neural network, three sets of data points are567

sampled in the physical space (r, φ): 1) the collocation568

points, where the PDE is enforced, are randomly sam-569

pled in the physical space from uniform distributions570

ri,p ∈ U(rmin, rmax) and φi,p ∈ U(0, π); 2) the inner571

boundary points where rj,l = rmin and φj,l ∈ U(0, π/2);572

3) the outer boundary points where rk,u = rmax, φk,u ∈573

U(π/2, π). The PDE collocation points are used in the574

left-hand side of Equation (1) and Equation (27) to cal-575

culate the residuals Ri,p, which are used in the loss576

function. The inner and outer boundary points are di-577

rectly used to calculate the predicted specific intensities:578

Ik,u = f(rmax, φk,u, w), Ij,l = f(rmin, φj,l, w) which are579

then used to calculate the residuals with respect to the580

pre-defined boundary conditions Rj,l and Rk,u. The loss581

function is582

L = wp

∑
i,ν

R2
i,p + wl

∑
j,ν

R2
j,l + wu

∑
k,ν

R2
k,u , (29)583

where wp, wl, wu are weight parameters, which should584

be specified before training and the summation is over585

the data points labeled i and the sampled frequency586

points labeled ν (i.e., spectral sampling pixels). The gra-587

dient of the loss function over the trainable parameters588

∂L
∂w is calculated by reverse-mode automatic differenti-589

ation using the chain rule. Knowing the gradient, the590

trainable parameters can be adjusted with small steps591

in order to reduce the loss function. In practice, acceler-592

ated gradient-based algorithms (i.e., RMSprop (Hinton593

2012), Adam (Kingma & Ba 2014)) are used to increase594

the training efficiency and avoid local minima of the loss595

function. When the neural network setup is appropriate596

for the problem, the loss function will be close to zero597
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after several iterations and the neural network solution598

will be close to the true specific intensity solution.599

PINN training is implemented in pytorch (Paszke600

et al. 2019). Section 3.1 specifies our solution proce-601

dure for the gamma-ray radiative transfer in SN Ia at-602

mospheres. Section 3.2 gives the structure of the optical603

network, which is the major neural network for solving604

the optical radiative transfer problem and reports ex-605

ample synthetic spectra.606

The spectra obtained from PINN are compared to607

those from the Monte Carlo radiative transfer code608

TARDIS using the same ejecta structure and the spec-609

tra from the formal solution calculated by the procedure610

specified in Appendix A. Section 3.3 introduces an ap-611

proach to accelerate the calculation of plasma tempera-612

ture using Equation (14). Section 3.4 discusses the com-613

putation time and the training schedule of the PINN.614

Our synthetic spectra are compared to the observed615

spectrum of SN 2011fe at 12.35 days after explosion.616

This observed spectrum (Pereira et al. 2013) was ob-617

tained by Double Spectrograph (DBSP) mounted on618

Palomar 200-inch (P200) Telescope. The observed spec-619

trum was also used to derive the supernova ejecta struc-620

ture via the method discussed in Chen et al. (2020). The621

derived supernova ejecta density obeys622

ρ = 3.87852× 10−14 × 0.689
v−12500 km/s

1000 km/s g/cm3 , (30)623

where v is the radial velocity in the ejecta. Figure 1624

shows the derived density and element abundance of the625

SN Ia ejecta structure. We use only 9 elements, which626

are C, O, Mg, Si, S, Ca, Fe, Co, Ni, in this calculation627

for simplicity, and the highest ionization for these ele-628

ments is limited to 3. Also in Figure 1, we compare our629

density profile with the density profile of model DDT-630

N100 (Röpke et al. 2012), which is also a SN Ia ejecta631

model used to fit SN 2011fe spectra. Both the calcula-632

tions with TARDIS and PINN set the inner and outer633

boundary to be at, respectively, the velocity coordinates634

10151.4 km/s and 35675.3 km/s.635

3.1. The Gamma-Ray Network636

The gamma-ray network calculates the gamma-ray637

specific intensity Iγ(r, φ) in the supernova atmosphere638

using Equation (27) as the PDE. As a simplification,639

we assume the gamma-ray photon energies from the640

56Ni → 56Co → 56Fe decay chain are all 1 MeV to641

form the jr term in Equation (27) and the input gamma-642

ray photon from the boundaries are also 1 MeV. We643

neglect the kinetic energy and gamma-ray energy of644

the positron released in the 56Co decay. As discussed645

above in 2.4, we limit the allowed gamma-ray photon646

energies to 7 discrete energy bins in the gamma-ray647

Figure 1. Upper Panel: The model SN 2011fe density pro-
file at 12.35 days after explosion used in the TARDIS and
PINN calculations (blue line) and for comparison the density
profile of model DDT-N100 (Röpke et al. 2012) (orange line).
Lower Panel: The model SN 2011fe element mass fractions
at 12.35 days after explosion used in the TARDIS and PINN
calculations.

network as a simplification. The 7 energy bins are648

[1,0.407,0.243,0.171,0.131,0.106,0.088] MeV. Similar to649

the optical network, the gamma-ray network is trained650

on PDE collocation points and outer boundary points651

and inner boundary points. The outer boundary con-652

dition is no photons entering the SN Ia atmosphere653

(Iγ(r = rmax, φ ∈ [π/2, π]) = 0). The inner bound-654

ary condition is photons entering the supernova at-655

mosphere from the inner boundary are in the high-656

est energy bin (Iγ=1MeV(r = rmin, φ ∈ [0, π/2]) = I0,657

Iγ<1MeV(r = rmin, φ ∈ [0, π/2]) = 0). Two values of I0658

are used as specified below.659

The best treatment of gamma-ray radiative transfer660

would be to use the time-dependent radiative transfer661
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equation and set the inner boundary to be the super-662

nova center. However, this treatment requires an ex-663

tra input dimension on the neural network, which could664

considerably increase the training time. Moreover, the665

source term jr and the intensity Iγ would change sev-666

eral orders of magnitude throughout the whole super-667

nova structure and the neural network does not give668

good performance over multiple orders of magnitude.669

Therefore, the gamma-ray radiative transfer calculation670

is limited to supernova upper atmosphere and the effect671

of the gamma-rays from the supernova center is approx-672

imated with the inner boundary condition.673

We calculate two PINN models with different bound-674

ary conditions. In the first model, the inflow gamma-675

ray intensity is zero for both the inner and outer676

boundaries. In the second model, the inflow gamma-677

ray intensity from the inner boundary (i.e., I0) is678

1016 cm−2s−1sr−1 with all gamma-ray energies set to679

1MeV and no inflow of gamma-rays from the outer680

boundary. The neural network is a 10-layered fully-681

connected neural network, the number of neurons is682

[2, 128, 128, 128, 128, 128, 128, 128, 256, 256, 7], and the683

activation function is the hyperbolic tangent (i.e., tanh)684

for all the layers except the input and the output lay-685

ers. The input and output layers use a linear activation686

function.687

Note the original loss function in Equation (29) is688

not written with residuals in physically consistent units689

which makes assigning weights difficult. Therefore, we690

write the residuals in terms of natural units as follows:691

Ri,p,new =
Ri,p

Mean(kC + kp)Imax
, (31)692

693

Rj,l,new =
Rj,l

Imax
, (32)694

695

Rk,u,new =
Rk,u

Imax
, (33)696

where Imax is the maximum gamma-ray intensity and697

Mean(kC + kp) is the mean opacity over all the PDE698

collocation points and all the gamma-ray energy bins.699

We set Imax using the equation700

Imax = Il +

∫ rmax

rmin

jr dr , (34)701

where Il is the inner boundary inflow intensity at 1702

MeV, the Il value is zero for the first model and703

1016 cm−2s−1sr−1 for the second model, and the integral704

is over the source term in the supernova atmosphere. In705

the loss function Equation (29), Ri,p, Rj,l, Rk,u are re-706

placed by Ri,p,new, Rj,l,new, Rk,u,new, respectively. Us-707

ing this modification of the loss function, the order of708

Figure 2. The gamma-ray specific intensity as a function of
gamma-ray photon energy at representative velocity points
and viewing angles in the two supernova ejecta models used
to investigate gamma-ray radiative transfer in the ejecta.
The vertical axis unit is shown at the left side of each panel.
The upper panels show the results from the first model and
the lower panels show the results from the second model.
The left panels show the results at viewing angle φ = 0 and
the right panels show the results at viewing angle φ = π.

magnitude of the three residual terms will not change709

drastically with the change of supernova ejecta model or710

the boundary conditions. Thus, the modification helps711

to balance the importance of PDE and boundary con-712

ditions when training the PINN. We found the PINN713

results are stable when the weight parameters in Equa-714

tion (29) are wp = 1, wl = 3000, wu = 3000, respec-715

tively.716

Figure 2 shows the results of the two models for717

gamma-ray radiative transfer. Note that both models718

obey the inner and outer boundary conditions accu-719

rately. In the first model, we note that the intensity720

at the viewing angle φ = 0 and 1MeV energy bin in-721

creases with the increase of radial velocity due to the722

56Ni and 56Co in the supernova atmosphere shown in723

the lower panel of Figure 1. In the second model, we724

note the intensity is much larger than that of the first725

model, which means the input energy from the inner726

boundary dominates over the radioactive energy in the727

supernova atmosphere. We note that there is relatively728

little scattering of gamma-ray photons to energy bins be-729

low 1Mev in all cases. The most such scattering occurs730

for the second model at the viewing angle φ = π. This is731

to be expected since inward moving gamma-ray photons732

will be mostly scattered gamma-ray photons when the733

gamma-ray intensity is dominated by a central source.734
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Figure 3. The gamma-ray energy Eγ calculated from the
two supernova ejecta models used to investigate gamma-ray
radiative transfer in the ejecta. The model names are labeled
in legend.

Figure 3 shows the gamma-ray energy deposition Eγ735

as a function of radial velocity for the two models. Note736

the gamma-ray radiative transfer equation (Eq. (27))737

is linear since the gamma-ray sources and opacities are738

fixed inside the atmosphere. Therefore, the general739

gamma-ray intensity (or energy deposition) for our su-740

pernova ejecta structure with a general inner boundary741

condition can be written as a linear combination of our742

two PINN-calculated gamma-ray intensity solutions (or743

energy deposition solutions). To be explicit for the gen-744

eral gamma-ray energy deposition, one has745

Eγ(Il, r)=Eγ(Il,1, r) +
Il − Il,1
Il,2 − Il,1

[Eγ(Il,2, r)− Eγ(Il,1, r)]

=Eγ(Il,1, r) +
Il
Il,2

[Eγ(Il,2, r)− Eγ(Il,1, r)] ,(35)746

where Il,1 = 0 is the inner boundary condition of the747

first model, Il,2 = 1016 cm−2s−1sr−1 is the inner bound-748

ary condition of the second model, and Il is the tar-749

get inner boundary condition. Using this relation, the750

gamma-ray energy deposition for our supernova ejecta751

structure with different inner boundary conditions can752

be generated without extra PINN calculations.753

3.2. The Optical Network754

The optical neural network calculates the optical spe-755

cific intensity Ir,φ using Equation (1) as PDE. The out-756

put of the PINN is the specific intensity sampled in a757

frequency grid between 1014.4 Hz (11, 935 Å) and 1015 Hz758

(3000 Å) with 2048 pixels uniformly sampled in the log-759

arithmic space. The frequency upper limit is set as760

1015 Hz for two simplification reasons. First, several761

strong Fe-group element spectral lines, which could lead762

to order-of-magnitude problems in the training of PINN,763

lie above this frequency. Second, bound-free opacity764

is more significant above this frequency, and we have765

not included bound-free opacity as a simplification. In766

fact, the specific intensity is suppressed by the high-767

opacity spectral lines and the bound-free opacity above768

1015 Hz. Therefore, removing the specific intensity cal-769

culation above this frequency will probably not lead to770

significant error in a direct sense. However, the thermal771

state of the ejecta can only be crudely approximated772

without the high frequency region, bound-free opacity,773

and NLTE effects.774

Considering the output of the neural network is a vec-775

tor with the length of 2048, while other PINN applica-776

tions have typically one or a few dimensions as output777

(e.g., Mishra & Molinaro 2021), we prepared a large 14-778

layered neural network structure (hereafter N14). The779

number of neurons in each layer is, respectively, [2, 256,780

256, 256, 256, 256, 512, 512, 512, 512, 512, 2048, 2048,781

2048, 2048] and the activation function is the hyperbolic782

tangent (i.e., tanh) for all the layers except the input783

and the output layers: the input and output layers use784

a linear activation function. We also prepared a smaller785

6-layered neural network (hereafter N6) for comparison:786

the number of neurons in each layer is [2, 512, 2048,787

2048, 2048, 2048].788

The outer boundary condition is that no radiation flow789

into the material (I(rmax, φ ∈ [π/2, π]) = 0) and the790

inner boundary condition is that the input radiation flow791

is an isotropic blackbody spectrum with a pre-defined792

boundary temperature TBo:793

Irmin,φ∈[0,π/2] =
2hν3

c2
(
e

hν
kBTBo − 1

) . (36)794

We found the synthetic spectra are close to the observed795

spectra when TBo = 11500K, and thus we adopted this796

value for all our calculations. As a simplification, we797

used Irmin
as a rest frame specific intensity though. For-798

mally it should be a comoving frame specific intensity.799

The distinction between the two quantities is small.800

Similar to the gamma-ray network, residuals in the801

loss function Equation (29) are written in terms of nat-802

ural units as follows:803

Ri,p,new =
Ri,p

ImaxMean(ke + kbb)
, (37)804

805

Rj,l,new =
Rj,l

Imax
, (38)806

807

Rk,u,new =
Rk,u

Imax
, (39)808

where Imax is the maximum pixel value of the inner809

boundary condition Equation (36) and the mean is over810
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all the frequency pixels and PDE collocation points. The811

weight parameters used in Equation (29) are wp = 1,812

wl = 3000, and wu = 3000. These are the same as for813

the gamma-ray radiative transfer calculation and were814

found comparably good for the optical spectrum calcu-815

lations.816

For our example synthetic spectrum calculation, we817

use the gamma-ray energy Eγ calculated in § 3.1 and818

assume the gamma-ray intensity inner boundary condi-819

tion is I0 = 1016 cm−2s−1sr−1 and the plasma tempera-820

ture is calculated using the temperature network, which821

is described in § 3.3.822

Figure 4 shows the specific intensities as functions of823

rest frame wavelength sampled at representative radial824

velocities and viewing angles calculated by the N14 neu-825

ral network (i.e., the N14 PINN) and the formal solu-826

tion (see Appendix A). Note that at the inner boundary827

(v = 10151.4 km/s, φ < π/2) and the outer bound-828

ary (v = 35675.3 km/s, φ > π/2), the PINN solu-829

tions satisfy the boundary condition virtually exactly830

as should be the case. Also note that there were no831

specific intensity values less than zero as should be the832

case. Blueshifted absorption lines can be observed in833

the φ = 0 spectra and emission lines of varying shift can834

be seen in the spectra with φ > 0.835

To explicate the absorption and emission specific in-836

tensity features formed inside the SN Ia model ejecta837

and illustrated in Figure 4, note the following equa-838

tion for comoving frame wavelength λ derived from the839

Doppler shift formula Equation (2):840

λ =
λ̄

γ[1− cos(φ)β]
, (40)841

where λ̄ is the rest frame wavelength. Now consider842

a line wavelength (i.e., bound-bound transition wave-843

length) in the comoving frame λline which is, of course,844

the laboratory line wavelength. Next consider a beam of845

rest frame wavelength λ̄ (which is invariant, of course, as846

the beam propagates) that starts from the inner bound-847

ary at a point A and reaches a point B in the atmosphere848

where we evaluate the rest frame specific intensity at849

that wavelength λ̄. Note that a beam starting from the850

inner boundary always has cos(φ)β > 0, and thus always851

redshifts in the comoving frame provided γ stays suffi-852

ciently close to 1 which it always does for supernovae,853

except in extreme cases which we will not consider. If854

λ̄ is blueward of λline, but not too blueward, the beam855

will redshift such that its comoving frame wavelength856

λ = λline at point C that is in between point A and857

point B. There will be absorption from the beam by858

the line at point C. There will also be emission into the859

beam by the line at point C, but in supernovae in the860

photospheric phase (when the overall ejecta is optically861

thick enough to give rise to a photosphere which in our862

modeling is the inner boundary), the absorption usually863

dominates and the beam specific intensity at rest frame864

wavelength λ̄ is diminished passing through point C.865

Since there is a continuous rest frame wavelength range866

of emission from the inner boundary, there will be a867

continuous rest frame wavelength range of line absorp-868

tion which happens a continuous range of spatial points869

along a single beam path. The foregoing explicates the870

absorption features seen in Figure 4 for the beams with871

φ = 0 and velocity greater than the inner boundary ve-872

locity: all these beams are radial, in fact. For beams873

at the inner boundary velocity with φ ≤ π/2 (shown in874

the top panels of Figure 4), the specific intensity is just875

the inner boundary condition specific intensity and all876

the curves for these beams overlap. For beam paths not877

starting on the inner boundary, there is net emission into878

the beam and this explains the emission features seen in879

Figure 4 for beam paths with φ ̸= 0 and not starting on880

the inner boundary.881

Continuing the explication of beams in the SNe Ia882

model ejecta, the points C for a single rest frame wave-883

length λ̄ for beams heading toward a distant observer884

are on planes perpendicular to the direction to the dis-885

tant observer and this true for all of supernovae, in fact.886

These planes have constant velocity in the direction to887

the distant and were discussed in § 2. On the planes888

there is usually net absorption from all beams heading889

toward the distant observer. The upshot is there is a890

broad blueshifted absorption in the spectrum of the su-891

pernova as seen by the distant observer. The absorption892

cuts into the continuum level and the emission feature893

(which we describe in the next paragraph).894

What of beams heading toward the distant observer895

that do not start on the inner boundary, but rather from896

line emission at comoving frame wavelength λline? Given897

spherically symmetric geometry, the emission tends to898

be strongest from the plane in the atmosphere perpen-899

dicular to beams to the distant observer that passes900

through the center of mass of the supernova: we will901

call this plane the central plane. The beams that start902

on the central plane have λ̄ = λline since the cen-903

tral plane has zero velocity in the direction of the dis-904

tant observer in the rest frame. Beams from (paral-905

lel) planes closer/farther relative to the central plane906

are blueshifted/redshifted in rest frame wavelength from907

λline (since they have higher/lower velocity in the direc-908

tion toward the distant observer) and are usually weaker909

in intensity the more they are blueshifted/redshifted910

since they come from lower-density-on-average planes.911

The upshot is the emission from the planes toward the912
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Figure 4. The rest frame specific intensity as a function of rest frame wavelength λ̄ at representative radial velocities and
viewing angles. Note specific intensity is in the wavelength representation rather then in the frequency representation which
we use in the text. The rest frame is the frame defined by the center of mass of the spherically symmetric SN Ia ejecta. The
rest frame is the same for all following figures. The left panels show specific intensities from PINN calculations using the N14
neural network structure and the right panels show the corresponding specific intensities from the formal solution of the PDE.
The coordinates and viewing angles are shown in legends. In the upper panels, the specific intensity curves for φ ≤ π/2 are
just the inner boundary specific intensity, and so all overlap and give a net green color. In the middle right panels, the specific
intensity curves for φ ≥ π/2 are all nearly zero, and so overlap and give a net purple color. In the lower left panel (lower right
panel), the specific intensity curves for φ ≥ π/2 (φ ≥ π/4) are all nearly zero, and so overlap and give a net purple color.

observer tends to give a broad emission feature in rest913

frame wavelength centered on λline and superimposed on914

the spectrum continuum level. However, the blueshifted915

absorption in beams that start on the inner boundary916

cuts into the continuum level and the absorption feature917

(as we described in the last paragraph) and the result is918

a P-Cygni line: a broad observed spectrum line in rest919

frame wavelength consisting of a blueshifted aborption920
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and an asymmetric emission roughly centered on a line921

wavelength.922

A detailed explication of P-Cygni line formation in923

supernovae is given by Jeffery & Branch (1990, p. 173–924

194).925

Having finished our explication of the formation of926

the features in Figure 4, we now discuss the difference927

between the PINN spectra and formal solution spec-928

tra. When comparing them, we notice significant dif-929

ferences at coordinates (v = 22913.3 km/s, φ ≥ π/2)930

and (v = 35675.3 km/s, φ = π/4). The PINN spectrum931

emission lines are much larger than the formal solution932

emission lines (which in fact are close to zero). The933

same discrepancy also occurs when the PINN spectra934

are calculated by the N6 neural network structure.935

To investigate the cause of the discrepancies between936

the PINN and formal solution specific intensity spec-937

tra, we have plotted in Figure 5 several example rest938

frame opacity and emissivity terms at different coordi-939

nates as functions of rest frame wavelength. We note940

that the opacity and emissivity due to the bound-bound941

transitions (which are seen as sharp spikes) can be942

up to ∼ 1000 times the corresponding electron scat-943

tering terms for v = 12207.4 km/s and up to ∼ 10944

times the corresponding electron scattering terms for945

v = 23211.5 km/s. We surmise the discrepancy be-946

tween the PINN solution and the formal solution for the947

specific intensity spectra is due to the large order-of-948

magnitude variation in the opacity and emissivity terms949

in the PDE loss function that goes beyond the dynamic950

range of neural networks.951

Using the specific intensity calculated by PINN or the952

formal solution, a synthetic spectrum that can be com-953

pared to observations is calculated by the integral954

Spec(ν) =

∫ π/2

0

dφ 2πr2maxI(rmax, φ, ν)sin(φ)cos(φ)

(41)955

(e.g., Mihalas 1978, p. 11–12). In the wavelength rep-956

resentation (not the frequency representation), Figure 6957

shows two PINN synthetic spectra from the N14 and958

N6 neural network structures, the corresponding for-959

mal solution synthetic spectrum, the TARDIS synthetic960

spectrum (fitted to the observations using the method961

of Chen et al. (2020)), and the observed spectrum for962

SN 2011fe at 12.35 days after explosion. Because the963

method in Chen et al. (2020) is specifically designed for964

TARDIS, as well as the supernova ejecta structure used965

in this paper, the TARDIS synthetic spectrum fits ob-966

served spectrum with reasonable accuracy. However, the967

PINN and formal solution spectra (which are obtained968

without the optimized fitting of Chen et al. (2020)) do969

not fit to the same level of accuracy and cannot be ex-970

pected to do so.971

The test of the PINN synthetic spectrum calculation is972

the comparison to the formula solution synthetic spec-973

trum calculation which is based on exactly the same974

atmosphere structure and thermal state and is calcu-975

lated with guaranteed numerical accuracy. First, we976

note the PINN spectra and the formal solution spectrum977

are qualitatively alike. In particular, they both exhibit978

typical P-Cygni lines as are also seen in the observed979

and TARDIS spectra. P-Cygni lines are characteristic980

of supernova atmospheres and expanding atmospheres981

in general and, as explicated above, have a broad emis-982

sion feature centered around the laboratory line wave-983

length and a blueshifted absorption feature. Note line984

blending can distort P-Cygni line behavior to unrecog-985

nizablity.986

Second, in the spectra in Figure 6, P-Cygni lines are987

recognizable for several conspicuous spectral lines: Ca988

K&H 3934 Å, 3968, Å, Si II 6355 Å, S II 5468 Å (mul-989

tiplet average), S II 5640 Å (rough average of several990

lines); Ca II 8498 Å, 8542 Å, 8662 Å. Qualitatively, the991

agreement between the PINN spectra and the formal so-992

lution spectrum for these lines is moderate. Overall, the993

PINN spectra show stronger emission features. This is994

to be expected given that the PINN line emission specific995

intensities in Figure 4 were generally too strong in the996

PINN case. The PINN spectra also show noise which is997

to be expected for PINN calculations. We note that nei-998

ther the PINN sprectra nor the formal solution spectrum999

produce the “W” shaped S II feature around 5500 Å seen1000

in the observed spectrum. The TARDIS spectrum does1001

produce this shape qualitatively and this is probably1002

attributable to TARDIS’s better thermal state calcula-1003

tion compared to ours. TARDIS uses a dilute-blackbody1004

approximation in the temperature calculation and the1005

macroatom approximation in the source function calcu-1006

lation. Our thermal state calculation is simpler and is1007

described in §§ 2 and 3.3.1008

3.3. The Temperature Network1009

The plasma temperature calculated directly from1010

Equation (14) requires numerical integration. However,1011

it is known from previous simulations (e.g., Chen et al.1012

2020), that the temperature profile in supernovae above1013

the photosphere is a smooth function of radial veloc-1014

ity. Therefore, we use a simple neural network to in-1015

terpolate the temperature profile during the PINN cal-1016

culation in order to curtail the computational time in1017

numerical integration. The neural network is a simple1018

fully-connected neural network, the number of neurons1019

per layer is [1,64,64,64,1], and the activation function1020
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Figure 5. Left panel is the rest frame opacity k at various velocity coordinates. Right panel is the rest frame emissivity j at
various velocity coordinates. The wavelength is rest frame wavelength λ̄.

is the SELU function (Klambauer et al. 2017). During1021

the training of the optical network, the radius values of1022

the PDE collocation points are input into the temper-1023

ature neural network, then the predicted temperature1024

values are used to calculate the electron density Ne, the1025

level populations and the opacity and emissivity used1026

in Equation (1). During the training of the tempera-1027

ture network, we randomly sample 200 radius values,1028

then use the following loss function to train the neural1029

network:1030

LT =
∑
n

[
4σSBσTNeT (rn)

4 − Eγ(rn)−

σTNe

∫ νmax

νmin

dν

∫
Ω

dΩ I(rn, φ)
]2

,

(42)1031

where n labels the random sample, rn is the radius from1032

the random sample, T (rn) is the neural network pre-1033

dicted temperature, and the integral is calculated using1034

trapezoid integration over the 2048 frequency pixels and1035

Monte Carlo integration with 200 sampling points over1036

the viewing angle φ. The loss function forces an ap-1037

proximate solution of Equation (14) throughout the at-1038

mosphere. Note in the above equation we used I(rn, φ)1039

which is a rest frame specific intensity. Properly, we1040

should use a comoving frame specific intensity. However,1041

the distinction between the two quantities is small.1042

Figure 7 shows the neural network predicted temper-1043

ature and the temperature calculated from the integra-1044

tion of the specific intensity I. There is reasonably good1045

agreement between the two temperature curves as seen1046

in the lower panel. At most radial velocities, the temper-1047

ature difference is smaller than 50K. However, the tem-1048

perature difference near the inner boundary is ∼ 500K1049

and near the outer boundary is ∼ 250K. Although other1050

methods (i.e., linear interpolation, cubic spline) may be1051

as good as, or even better than, the neural network in1052

approximating the temperature profile as a function of1053

radius T (r) from 200 sampling points, the neural net-1054

work will be a better interpolation function in higher1055

dimensional problems (e.g., the 3D radiative transfer1056

problem). So we will continue to use the neural net-1057

work as the temperature interpolation function for the1058

upgrades in the future.1059

We need reiterate that our atmosphere calculation1060

relies on many approximations, and many results, in-1061

cluding the temperature profile in Figure 7, have low1062

quantitative reliability. However, the temperature pro-1063

file is roughly consistent with expectations from de-1064

tailed NLTE calculations insofar as we can tell. One1065

of the few papers to publish temperature profiles from1066

detailed NLTE calculations for supernovae is DerKacy1067

et al. (2020). Their Figure 11 shows temperature pro-1068

files for SN 2011fe for a similar ejecta model to the1069

one we use, but with an outer boundary at about1070

25,000 km/s. Recall in our ejecta model the inner and1071

outer boundaries are at, respectively, the velocity co-1072

ordinates 10151.4 km/s and 35675.3 km/s. The profiles1073

of DerKacy et al. (2020) are overall about 2000K lower1074

than ours, but they are modeling SN 2011fe for an epoch1075

10 days later than our spectrum when an overall decline1076

in temperatures in the outer layers of order 2000K is1077

to be expected. Also the overall density of their ejecta1078

model is a factor of ∼ 6 lower than that of our ejecta1079

model because of ejecta expansion in the interval be-1080

tween the two epochs. The higher density for the epoch1081

for our model usually means NLTE effects will be lower1082

for our epoch. The temperature profiles of DerKacy1083

et al. (2020) are for a range of model luminosities. The1084

lower luminosities give a monotonic decline with veloc-1085

ity and the higher ones give a rise in temperature above1086

20,000 km/s. The reasons for the rises are not explic-1087

itly discussed by DerKacy et al. (2020). However, we1088

conclude from their results that NLTE effects in and of1089
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Figure 6. In the wavelength representation, the spectrum of SN 2011fe at 12.35 days after explosion (black line), the TARDIS
synthetic spectrum (blue line), the PINN spectra from N14 and N6 neural network structures (red line and green line), and the
formal solution spectrum (orange line). The intensity is in arbitrary units and rest frame wavelength λ̄ is on a logarithmic scale.
The PINN spectra and formal solution spectrum are moved upward by 3 units (as indicated in the legend) for clarity. Several
spectral lines are marked with magenta dashed lines.

themselves do not lead to rising temperature in the outer1090

layers of SNe Ia. Combinations of effects may lead to1091

rises or not as the case may be.1092

3.4. The Training Procedure1093

When training the gamma-ray neural network, we use1094

the Adam algorithm (Kingma & Ba 2014) to update1095

the trainable parameters. In each epoch of training, the1096

neural network reads a small batch of data with 20001097

PDE collocation points, 2000 outer boundary points,1098

and 2000 inner boundary points to update the train-1099

able parameters. An epoch has 200 batches and there1100

are 140 epochs. During the training, the learning rate1101

changes from 1×10−4 to 1×10−6. The first few epochs1102

have larger learning rates to efficiently train the neu-1103

ral network to an approximate solution, and then the1104

smaller learning rates in the following epochs increase1105

the training precision. The total training time is about1106

36 minutes using one Nvidia-A100 GPU card.1107

The optical neural network with the N14 structure is1108

much more sophisticated and requires more computation1109

time: 62 hours in total (see below). The computation1110

time of different sub-steps of the training on a Nvidia-1111

A100 GPU card are as follows:1112

• Calculating the kabs and jem values of 1500 PDE1113

collocation points on 2048 frequency sampling pix-1114

els takes 965ms.1115

• Updating the optical neural network with the1116

Adam algorithm using 1500 PDE collocation1117

points, 1500 outer boundary points, and 1500 in-1118

ner boundary points takes 71ms.1119

• Calculating the integral in Equation (14) over 2001120

sampling points takes 863ms.1121

• Updating the temperature with the Adam algo-1122

rithm using 200 sampling points (see § 3.3) takes1123

4.5ms.1124

Note the calculation of the kabs and jem values and the1125

integral in Equation (14) take much longer times than1126
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Figure 7. Upper panel: The predicted temperature from
the temperature neural network (orange dashed line) and
the temperature integrated from the specific intensity using
Equation (14) as functions of radial velocity. Lower panel:
The difference between two temperatures.

the other two computation processes. In order to accel-1127

erate the training, we make two modifications. First, we1128

repeat the updating of optical neural network 20 times1129

on the same batch of data points. Second, because the1130

temperature neural network is much simpler than the1131

optical neural network, we set the learning rate to be 101132

times of that of the optical neural network.1133

As aforesaid for the optical network, the training1134

batch size is 1500 for the PDE collocation points and1135

for each of the inner and outer boundary points. An1136

epoch has 400 batches and the total training procedure1137

has 136 epochs. Similar to the gamma-ray neural net-1138

work, the learning rate of the optical neural network1139

changes from 1 × 10−4 to 1 × 10−6 during the training1140

epochs. The total training time of the N14 neural net-1141

work is 62 hours using one Nvidia-A100 GPU. The total1142

training time of the N6 neural network is 60 hours using1143

one Nvidia-A100 GPU, which means a simplified neural1144

network structure did not significantly reduce the large1145

amount of training time in the present work.1146

4. CONCLUSION1147

We used PINNs to calculate an optical spectrum of1148

SN Ia SNe SN 2011fe at 12.35 days after explosion.1149

The specific intensity throughout the supernova atmo-1150

sphere is roughly solved and the synthetic spectrum1151

is in qualitative agreement with the observed spec-1152

trum and the formal solution spectrum, noting espe-1153

cially that the spectrum line profiles caused by sev-1154

eral important atomic transitions (e.g., Si II 6355 Å;1155

Ca II 8498 Å, 8542 Å, 8662 Å) are qualitatively repro-1156

duced.1157

However, there are several challenges to the further ex-1158

ploration of the supernova explosion mechanism via the1159

PINN-based method. First, the PINN-based method is1160

inefficient at integration. The only integral calculation1161

in the current PINN setup is Equation (14) for temper-1162

ature which requires a significant amount of the compu-1163

tation time.1164

Second, apart from the integration calculations, PINN1165

calculation is slow. Despite the temperature neural net-1166

work, the refined training strategy, and other tricks we1167

have introduced, which have already accelerated the1168

training procedure significantly, the computation cost1169

of a full simulation is about several GPU-days In con-1170

trast, TARDIS typically uses several CPU hours to run1171

a simulation.1172

Third, the PINN spectrum is not quantitatively ac-1173

curate as shown by comparison to the formal solution1174

spectrum. We surmise that this is due to large order-1175

of-magnitude variations in emissivity jem and opacity1176

kabs (see § 3.2). Using XPINN (Hu et al. 2021), which1177

can separate the parameter space into different subdo-1178

mains and connect the neural networks in different sub-1179

domains with extra boundary conditions, may alleviate1180

this order-of-magnitude variation problem. However, we1181

did not attempt this method in this paper because it1182

can drastically increase the computational resources re-1183

quired.1184

To summarize, using PINN in the forward model-1185

ing problem of supernova radiative transfer calculation1186

faces multiple challenges in computational efficiency,1187

and therefore in applying it to a large grid of super-1188

nova ejecta models. The challenges to PINN radiative1189

transfer equally apply to the construction of a PINN in-1190

verse problem solver which encodes the supernova ejecta1191

structure parameters into the input of the PINN and fits1192

observed spectra. If the challenges are not overcome,1193

an inverse problem solver will be too computationally1194

demanding for use. The high dimensionality of the pa-1195

rameter space for an inverse problem solver adds to the1196

challenges.1197

Clearly, innovative upgrades are necessary to signif-1198

icantly accelerate the PINN training process and ra-1199

diative transfer calculation for either forward or in-1200

verse modeling. Those upgrades may include combining1201

PINN with other methods: e.g., Monte Carlo or tradi-1202

tional numerical PDE methods.1203
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Figure 8. An illustration of the geometry of the atmosphere and the beam path used in our presentation of the formal solution.

APPENDIX1308

A. THE FORMAL SOLUTION OF THE RADIATIVE TRANSFER EQUATION1309

In this appendix, we present the analytical formal solution of the specific intensity I at a given coordinate r and1310

a viewing angle φ for the radiative transfer equation (Eq. (1)) written in terms of beam path coordinate x, where x1311

increases in the direction of radiation flow (i.e., the beam path direction). For our presentation, Figure 8 illustrates1312

the geometry of the atmosphere and the beam path for the case that the beam path intersects the outer boundary of1313

the atmosphere. Note the viewing angle φ is the angle between outward radial direction and the beam path: we leave1314

it unsubscripted for point B and subscripted by x and x′ for the corresponding points shown in Figure 8. In terms, of1315

x, the radiative transfer equation (neglecting time dependence) is1316

∂I

∂x
− jem

(ν
ν̄

)−2

+ kabs

(ν
ν̄

)
I = 0 , (A1)1317

where the frequency dependence is implicit for I, jem, and kabs (Castor e.g., 1972, eq. (1–3); see also Mihalas 1978,1318

p. 31,33,495–496) and, as in § 2, ν̄ is rest frame frequency and ν is comoving frame frequency. As a simplification, we1319

define the opacity and emissivity in rest frame as K = kabs
(
ν
ν̄

)
and J = jem

(
ν
ν̄

)−2
, and note that they both depend on1320

the viewing angle φ via the ν/ν̄ factor as seen from Equation (2) in § 2. The formal solution follows straightforwardly1321

using the integrating factor e
∫ x
A

K(rx′ ,φx′ ) dx′
:1322

I(ν, r, φ) = IBC e−
∫ B
A

K(rx,φx) dx +

∫ B

A

J(rx, φx)e
−

∫ B
x

K(rx′ ,φx′ ) dx′
dx , (A2)1323

where IBC is the boundary condition value. If point A is on the inner boundary, then IBC is the inner boundary1324

condition, which is Equation (36) as in the main text. If point A is on the outer boundary, then IBC is the outer1325

boundary condition, which is zero. The formal solution is calculated by numerical integration.1326
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Figure 9. The specific intensity formal solution given in color format for our SN Ia atmosphere with specific intensity as a
function of velocity coordinate and viewing angle φ for a single representative frequency with kabs and jem set to constant values.
The specific intensity increases as color varies from purple to yellow.

Note for a given r, the φ parameter space is divided into two regions: one where point A is on the inner boundary1327

and one where it is on the outer boundary. The dividing line φdiv is given by1328

φdiv = arcsin
(rmin

r

)
(A3)1329

which always satisfies 0 ≤ φdiv ≤ π/2. The specific intensity is discontinuous across the dividing line since the1330

boundary condition IBC changes discontinuously across the dividing line. Therefore, we use two neural networks, one1331

for each region.1332

Figure 9 shows an example of the formal solution. The discontinuity at the dividing line can clearly be seen as the1333

curve separating the yellow color (which characterizes beams starting on the inner boundary) and the green and bluer1334

colors (which characterize beams starting on the outer boundary).1335
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