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ABSTRACT

We present a heuristic two-dark-energy-components model for cosmic scale

factor evolution. The first dark energy component is just the standard cos-

mological constant equivalent with pressure PΛ = wΛρΛc2, where Λ stands for

cosmological constant and the equation of state parameter is constant wΛ = −1.

We will call the first dark energy the Λ dark energy and, for brevity, the model

itself the ΛΓ model where Γ is the symbol adopted for the second dark energy.

The Γ dark energy component has pressure PΓ = wΓρΓc2 with wΓ = −1/2. The

motivation for the ΛΓ model is that the DESI DR2 results (Lodha et al. 2025;

Abdul Karim et al. 2025) suggest that the dark energy density has been decreas-

ing from cosmological redshift z = 0.45 (i.e., lookback . 4.5 Gyr or cosmic time

& 9 Gyr assuming Λ-CDM evolution: see, e.g., Lodha et al. 2025, Fig. 2) and

the ΛΓ model can give that effect. The ΛΓ model also gives (exact) analytic

solutions for cosmic scale factor a(t) and its inverse t(a) which solutions give the

ΛΓ model physical elegance and makes it easy to test and use as a standard of

comparison: these factors constitute a secondary motivation for introducing the

ΛΓ model. However, we have no physical motivation for the Γ dark energy with

wΓ = −1/2. (Incidentally, the ΛΓ model solutions are special cases of what we

call the V models solutions which are analytic solutions that include analogues

to the non-analytic standard solutions of the Friedmann equation reviewed by

Bondi (1961, esp. p. 80–86). We present the V models solutions in catalogue

form. Noteworthily, there is a V model solution with negative Λ dark energy

that permits a sinusoidal cosmic scale factor evolution that never goes to zero:

a kind of evolution not noted by Bondi (1961)). Using universe age (time from

a Big Bang to cosmic present) as a metric, we study the overall behavior of the

ΛΓ model with the variation of its parameters. A crude test of the ΛΓ model with

the Om(z) diagnostic shows that ΛΓ model may be crudely adequate to the fit

the new observations with a cosmic present density parameters of order 0.53 for Λ
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dark energy, 0.18 for Γ dark energy, and 0.29 for matter. Given that ΛΓ model is

just a heuristic model with no physical reason for its equation of state parameter

wΓ = −1/2, any expectation that even a good fit of it to observations will be

meaningful is very modest.

Unified Astronomy Thesaurus concepts: Cosmology (343); Accelerating universe

(12); Cosmological constant (334); Cosmological evolution (336); Cosmological

models (337); Cosmological parameters (339); Dark energy (351); Density pa-

rameter (372); Einstein universe (452); Expanding universe (502); Friedmann

universe (551); Lambda density (898); Lemâıtre universe (914); Matter density

(1014);

1. Introduction

Section 2 introduces ΛΓ model and § 3 presents the analytic solutions for it and the more

general V model. In § 4, we use the universe age (time from a Big Bang to cosmic present τ0

in scaled time (see § 2)) as a metric to test the overall behavior of the ΛΓ model solutions as

their parameters are varied. We make a preliminary test of the ΛΓ model using the Om(z)

diagnostic and data from (Lodha et al. 2025, Fig. 9) in § 5 and also present some ancillary

formulae there. For future reference, we specialize the deceleration parameter diagnostic for

the ΛΓ model and present some ancillary formulae in § 6. A discussion is given in § 7.

2. The ΛΓ Model

First, to be general, we assume ρp ∝ x−p (where power p ≥ 0) and then obtain

ρ̇p

ρp
= −p

ẋ

x
, (1)

where x is cosmic scale factor and the time derivative is with respect to scaled cosmic

time τ = H0t with H0 being the Hubble constant and t being unscaled cosmic time. We

equate ρ̇p/ρp to the usual fluid equation of cosmology (e.g., Liddle 2015, p. 26) with pressure

Pp parameterized by equation of state Pp = wpρpc
2 (with wp being the equation of state

parameter for power p) to obtain

−p
ẋ

x
=

ρ̇p

ρp
= −3

ẋ

x

(

1 +
Pp

ρpc2

)

= −3
ẋ

x
(1 + wp) (2)
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which we solve to obtain

p = 3 (1 + wp) , wp =

(

1

3

)

p − 1 , and p − 2 = 1 + 3wp , (3)

where the last expression is used in § 6. For Γ dark energy component density and as

aforesaid in the abstract,

wΓ = −1

2
, and thus pΓ =

3

2
and pΓ − 2 = 1 + 3wΓ = −1

2
. (4)

As well as the Γ dark energy, as aforesaid in the abstract, there is the also the Λ dark

energy (i.e., the ordinary constant dark energy or cosmological constant) and matter. The

brief radiation-dominated era (i.e., before cosmic time ∼ 50 kyr (e.g., Hergt & Scott 2024,

p. 6). of the observable universe is not being considered. Thus, the ΛΓ model has three

density components: Λ dark energy, Γ dark energy, and matter.

The motivation for the heuristic ΛΓ model is that the DESI DR2 results (Lodha et al.

2025; Abdul Karim et al. 2025) suggest that the dark energy density has been decreasing from

cosmological redshift z = 0.45 (i.e., lookback . 4.5 Gyr or cosmic time & 9 Gyr assuming

Λ-CDM evolution: see, e.g., Lodha et al. 2025, Fig. 2) and the ΛΓ model can give that

effect. The ΛΓ model also gives (exact) analytic solutions for cosmic scale factor a(t) and

its inverse t(a) which solutions give the ΛΓ model physical elegance and makes it easy to

test and use as a standard of comparison: these factors constitute a secondary motivation

for introducing the ΛΓ model. However, we have no physical motivation for Γ dark energy

with equation of state parameter wΓ = −1/2 (or equivalently pΓ = 3/2). Nevertheless, it

is possible that ΛΓ model could fit the cosmic scale factor evolution to some degree after

the brief radiation-dominated era of the observable universe: i.e., after cosmic time ∼ 50 kyr

(e.g., Hergt & Scott 2024, p. 6). In which case, the ΛΓ model might become physically

interesting.

3. The Friedmann Equation Solutions for ΛΓ Model and the More General V

Model

Analytic three density component solutions to the Friedmann equation are available if

the components have (inverse) power dependencies on cosmic scale factor with powers p, q

and r, where q = p/2, r = 0, and ancillary constant V = 1/(p − q) = 2/p (which implies

pV = 2). We will call the model with these dependences the V model to give it a name.

We derive the general V model solutions below. For further discussion of the V model, see

Jeffery (2026, App. B).
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The ΛΓ model is special case of the V model with p = 3 for matter, q = 3/2 for Γ dark

energy component, r = 0 for Λ dark energy component, and V = 2/3. Another special case

of the V model of interest has p = 4, q = 2, V = 1/2. This is the radiation-curvature-Λ

universe which is an analogue (when the q density parameter component is negative) to the

Lemâıtre universe (a matter-positive curvature-Λ universe) which has no analytic solution

(e.g., Bondi 1961, p. 82,84–85,120–122,165,168–170,175–176).

Now the density parameters for the Friedmann equation are usually symbolized using

Greek capital letter Ω. However, multiple Ω’s are difficult to distinguish and they are not

consistent with the symbols used in standard tables of integral (which we have made use of).

Therefore, here we use c for the cosmic present matter density parameter, b for the cosmic

present Γ dark energy density parameter, and a for the Λ dark energy density parameter

(which is constant), and so a is mostly not used for the cosmic scale factor in this paper.

(We use x for cosmic scale factor as already noted in § 2.) We will call a, b, and c collectively

the model parameters and, respectively, just the a, b, and c parameters though adding the

descriptive terms Λ parameter, Γ parameter, and matter parameter when needed for greater

clarity. The values of model parameters are model parameter weights. Note we consider

cases where a and b are positive, negative, or zero, but c ≥ 0 always since matter always has

positive mass.

The Friedmann equation for the V model in terms of cosmic scale factor x and scaled

cosmic time τ (see § 2) is
ẋ

x
= ±

√
a + bx−q + cx−p . (5)

Equation (5) actually has a fair number of special case solutions. However, for the ΛΓ model,

we restrict solutions to those that start from a Big Bang (i.e., x(τ = 0) = 0), that strictly

increase with time thereafter, and have b > 0 (except we let what we call below the Γ1

solution have b ≥ 0). Thus, we restrict what we call ΛΓ model solutions to those that at

least minimally match the observable universe. There are 4 of these solutions which we call

the Γi solutions (more explicitly Γi(τ) solutions) with index i running 1 to 4. We also find 5

solutions not conforming to our requirements for the ΛΓ model solutions: we call these the

Γi− solutions (more explicitly the Γi−(τ) solutions). The first 4 of the Γi− solutions are the

same functions as like-numbered Γi solutions, but with different choices of model parameters

and/or initial conditions. The inverse solutions (which are obtained first) are called the Γ−1
i

and Γ−1
i− solutions (more explicitly the Γ−1

i (x) and Γ−1
i− (x) solutions).

For the Γi solutions, we choose x = 1 at cosmic present time τ0 (which is the universe

age defined in § 1) to yield the scaled Hubble constant 1 (and unscaled Hubble constant H0).
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By this choice, the model parameters obey the constraint

a + b + c = 1 . (6)

The fiducial round-number Λ-CDM model parameter weights are c = 0.3 and a = 0.7 (e.g.,

Wikipedia: Lambda-CDM model: Parameters), and so b = 0. If we moved some model

parameter weight from a to b, we would clearly increase the overall effect of dark energy and

cause more rapid growth from the the Big Bang, and so decrease the universe age τ0. On the

other hand, if we moved some model weight from c to b, we would weaken the initial growth

in the matter dominated era, but would strengthen the later dark-energy dominated era,

and so a priori it is not certain how τ0 would change. In either case, if b > 0, the total dark

energy would be decreasing as the universe age τ0 is approached which is the effect found

in the DESI DR2 results (Lodha et al. 2025; Abdul Karim et al. 2025) and, as aforesaid,

matching this effect is main the motivation for introducing the ΛΓ model.

We do not impose the a + b + c = 1 constraint on the Γi− solutions, unless otherwise

noted, and so the model parameters a, b, and c are independent for those solutions, unless

otherwise noted.

We now define y = x1/V implying x = yV and dx/x = V dy/y. Using these expression,

the Friedmann equation transformed for direct solution for τ as a function of x and also as

function of y is

dτ = ± dx

x
√

a + bx−q + cx−p
= ± V dy

y
√

a + by−pV/2 + cy−pV
= ± V dy

√

ay2 + by + c
, (7)

where recall pV = 2 and we omit the negative case for the Γi solutions, but not for all the Γi−

solutions. In order for the τ(x) and x(τ) solutions (which we derive just below) to apply to

the V model as well the ΛΓ model, we leave V general in all our formulae for these solutions.

For τ(x) solutions using a standard table of integrals (Wikipedia: List of integrals of

irrational functions: Integrals involving R =
√

ax2 + bx + c ) and aided by Google AI, we
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obtain

τ =


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



V√
a

ln

∣

∣

∣

∣

∣

2ay + b + 2
√

a
√

ay2 + by + c

b + 2
√

ac

∣

∣

∣

∣

∣

Conditions: a > 0,

τ(y = x1/V = 0) = 0.

Solution Γ−1
123(x): b ≥ 0,

equivalent to all of Γ−1
1 (x), Γ−1

2 (x),

and Γ−1
3 (x).

Valid for solutions that increase

monotonically from y = x1/V = 0.

V√
a

ln

∣

∣

∣

∣

2a + b + 2
√

a

b + 2
√

ac

∣

∣

∣

∣

= τ0 Extra Conditions: y = x1/V = 0 and

a + b + c = 1 is explicitly applied.

V√
a

ln

∣

∣

∣

∣

1 − c + a + 2
√

a

1 − c − a + 2
√

ac

∣

∣

∣

∣

= τ0 Extra Condition: b = 1 − (a + c)

is explicitly applied.

(8)

τ =


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






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
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
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
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
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

V√
a
arsinh

(

2ay + b√
4ac − b2

)

− τzero x Conditions: a > 0, b2 − 4ac < 0,

zero time τzero x chosen

to give τ(y = x1/V = 0) = 0

so that x(τ = 0) = 0.

Solution Γ−1
1 (x): b ≥ 0.

Solution Γ−1
1−(x): b < 0.

τzero x =
V√
a
arsinh

(

b√
4ac − b2

)

Zero time τzero x.

(9)

τ =












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


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




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
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



± V√
a

ln |2ay + b| + C Conditions: a > 0, b2 − 4ac = 0.

Solution Γ−1
2 (x): upper case only, b > 0,

C chosen to give Γ2(τ = 0) = 0.

Solution Γ−1
2−(x): No constraint on b

and C chosen to make Γ2−(τ)

heuristically interesting.

(10)
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a
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∣

∣

∣

∣

2ay + b√
b2 − 4ac

∣

∣

∣

∣

)

Conditions: a > 0, b2 − 4ac > 0,

upper/lower case time

increasing/decreasing with y.

Solution Γ−1
3 (x): b > 0, upper case,

zero time τzero x exists,

and τ ≥ τzero x.

Solution Γ−1
3−(x) is for all other

physical cases.

τzero x =
V√
a
arcosh

(
∣

∣

∣

∣

b√
b2 − 4ac

∣

∣

∣

∣

≥ 1

)

For y = x1/V = 0.

Condition: The zero time τzero x

is chosen to give x(±τzero x) = 0.

Note τzero x does not exist

if the arcosh function

argument < 1

(e.g., when b = 0 and c < 0).

In this case, there is no x = 0 line

intersection and the y and

x solutions that open upward

are physical and those that

open downward are not.

Note for τzero x = 0, one needs c = 0.

Note if τzero x exists and b > 0,

then the y solution needs to

go negative (or at least to zero)

to reach the point where

the arcosh function has

argument 1 which gives τ = 0.

Note the cosh function solutions

for y and x are necessarily even

about τ = 0.

The upshot is that τ = 0 is the

minimum value time for the y

and x solutions, and therefore

they have positive coefficients

and open upward.

By a corresponding argument,

if τzero x exists and b < 0,

the y and x solutions

have negative coefficients

and open downward.

(11)
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(

2

b

)

√

by + c + constant General solution.

Conditions: a = 0, b 6= 0.

V

(

2

b

)

(

√

by + c −
√

c
)

Solution Γ−1
4 (x): b > 0,

τ(y = x1/V = 0) = 0 chosen.

V

(

y√
c

)

Solution Γ−1
4 (x): b = 0, c = 1.

±V

(

2

b

)

√

by + c Solution Γ−1
4−(x): b < 0,

τ(y = c/|b|) = 0,

τzero x = V (2/|b|)√c

gives x(±τzero x) = 0.

V

(

2

b

)

(√
b + c −

√
c
)

Solution Γ−1
4 (x): b > 0.

Extra Conditions: y = x1/V = 1.

V

[

2(1 −√
c )

1 − c

]

= V

(

2

1 +
√

c

)

Extra Condition:

b + c = 1 applied.

= V

(

2

1 +
√

1 − b

)

= V

(

2

b

)

(

1 −
√

1 − b
)

(12)
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± V
√

|a|

)

arcsin

(

2ay + b√
b2 − 4ac

)

Conditions: a < 0, b2 − 4ac > 0,

|2ay + b| <
√

b2 − 4ac .

Solution Γ−1
5−(x).

No Γ−1
5 (x) nor Γ5(τ) exists.

(13)

The inverses of the cosmic time solutions τ(x) give the cosmic scale factor solutions x(τ)
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where only the region where x(τ)1/V > 0 are physical. The scale factor solutions are:
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
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Conditions: a > 0, b2 − 4ac < 0,

c > 0.

Solution Γ1(τ): b ≥ 0.

Solution Γ1−(τ): b < 0.

The Λ-CDM model

for b = 0.

An analogue to the Lemâıtre

universe for b < 0.

τzero x =
V√
a
arsinh
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b√
4ac − b2
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Zero time τzero x is chosen

to give x(τ = 0) = 0.

(14)

x =



























































































































































































(

−b + ∆y0e
±
√

a V −1τ
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Conditions: a > 0, b2 − 4ac = 0.

Extra Conditions: τ ≥ 0, −b + ∆y0 ≥ 0

for a physical solution at τ = 0.

Solution Γ2(τ): upper case only, b > 0 and ∆y0 = b

implying x(τ = 0) = 0.

Solution Γ2−(τ): b > 0, ∆y0 > b giving

increasing/decreasing exponential solutions

with the decreasing exponential solution

going to zero.

Solution Γ2−(τ): b = 0, ∆y0 > 0 giving

increasing/decreasing exponential solutions.

An expanding/contracting de Sitter universe.

Solution Γ2−(τ): b < 0, ∆y0 = 0 giving

an analogue to the (static) Einstein universe.

Solution Γ2−(τ): b < 0, ∆y0 > 0 giving

increasing/decreasing exponential solutions.

An analogue to the Lemâıtre-Eddington universe:

Solution Γ2−(τ): b < 0, ∆y0 < 0 giving

increasing/decreasing exponential solutions.

The negative coefficient ∆y0 causes

the increasing exponential solution goes to zero.

An analogue to the Lemâıtre-Eddington universe.

(15)
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x =


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
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
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
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


















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




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


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



















{−b ±
√

b2 − 4ac cosh[
√

a V −1τ ]

2a

}V

Conditions: a > 0, b2 − 4ac > 0.

Solution Γ3(τ): upper case,

τzero x exists, b > 0,

and τ ≥ τzero x.

Solution Γ3−(τ): upper case,

τzero x exists, b > 0,

τ ≤ −τzero x.

Solution Γ3−(τ): upper case,

τzero x does not exist

and the solution is

physical for all time.

Solution Γ3−(τ): lower case,

τzero x exists, b < 0,

and the solution is physical for

τ ∈ [−τzero x, τzero x].

No physical solution: lower case,

τzero x does not exist.

τzero x =
V√
a
arcosh

(
∣

∣

∣

∣

b√
b2 − 4ac

∣

∣

∣

∣

≥ 1

)

Chosen to give x(τ = τzero x) = 0.

(16)

x =
















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
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


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
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






















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









































{

[(b/2)V −1τ +
√

c ]2 − c

b

}V

Solution Γ4(τ): a = 0, b > 0, c > 0.

Note x grows strictly for τ ≥ 0.

(
√

c V −1τ)
V

Solution Γ4(τ): a = 0, b = 0, c = 1.

It is the single (inverse) power law density

component solution.

For p = 3 and V = 2/3,

it is the Einstein-de Sitter universe.
{

c − [(b/2)V −1τ ]2

|b|

}V

Solution Γ4−(τ): a = 0, b < 0, c > 0.

Note x1/V is a parabola with maximum

c/|b| at τ = 0 and x(±τzero x) = 0,

where τzero x = V (2/|b|)√c.

Note substituting for τ with τ̃ − τzero x

gives the formula for Γ4(τ̃),

but now for b < 0.

(17)
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x =


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


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
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
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
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




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
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


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












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
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



















{

b ±
√

b2 − 4ac sin[
√

|a|V −1τ ]

2|a|

}V

Conditions: a < 0, b2 − 4ac ≥ 0.

Γ5−(x) solution: no Γ5(x) exists since

the Γ5−(x) solution in all cases has

cannot grow to infinity.
{

b +
√

b2 − 4ac cos[
√

|a|V −1τ ]

2|a|

}V

Choosing a convenient phase.

For b > 0,
√

b2 − 4ac ≤ b,

(implying c ≥ 0) there is

a sinusoidal solution

for all time that goes to zero

at its minimum, except that

for c > 0, x > 0 always.

For b > 0 and b2 − 4ac = 0, there

is the constant solution b/(2|a|).
For b < 0,

√
b2 − 4ac ≤ |b|

(implying c ≤ 0),

there is no physical solution

(i.e., x1/V ≤ 0 always).

τzero x = ± V
√

|a|
arccos

( −b√
b2 − 4ac

)

All other cases, there are only finite

time period solutions with x = 0

at the two endpoints

which for the cosine version can be

chosen to be at times τzero x.

(18)

The index i ≤ 3 of the Γi solutions increases with increasing discriminant b2 − 4ac. The

Γ4 solution has discriminant b2, and so its discriminant may be larger or smaller than that

of Γ3 solution. Given that Λ-CDM model is such a good fit to the observable universe, we

expect any viable b2 − 4ac value to be small and a > 0 (ruling out the Γ4 solution), and

so the Γ1 solution (Equation (14)) is probably the only Γi solution of any viability. In fact,

the Γ1 solution is the solution we find in a crude fit to observations (see § 5). However, we

are also interest in the the overall behavior of the ΛΓ model as its parameters are varied,

and thus on its flexibility to accommodate observations and not just on the ability of any

particular Γi solution to do so. We study the overall behavior as a function of the model

parameters (i.e., a, b, and c) in § 4.

We should note that the V model solutions (as partially noted above in Equations (14),
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(15), (16), (17), and (18)) include analogues to the non-analytic standard solutions of the

Friedmann equation reviewed by Bondi (1961, esp. p. 80–86). Of course, simple 1-density

component solutions with parameters a = b = 0 and c 6= 0 and p ≥ 0 follow as special

cases of the V model solutions, including the Einstein-de Sitter universe with p = 3 (e.g.,

Bondi 1961, p. 82,166). The analogue solutions permit an analytic understanding of the

corresponding non-analytic solutions.

We can remark on some of the noteworthy V solutions. First, the Γ1 solution (Equa-

tion (14)) with b = 0 is just the matter-Λ universe solution used for the Λ-CDM model (e.g.,

Jeffery 2026, § 12.1.1). With b < 0, this solution (i.e., the Γ1− solution) is an analogue

solution to the non-analytic Lemâıtre universe solution (a positive-curvature-matter-Λ uni-

verse solution) where the analogue to the constant b < 0 is the positive curvature density

parameter at some fiducial time (e.g., Bondi 1961, p. 82,84–85,120–122,165,168–170,175–

176). Since the Lemâıtre universe has (quasi-static) Einstein universe phase. The analogue

solution makes it clear how an Einstein universe phase arises: the length of the analogue

Einstein universe phase increases as
√

4ac − b2 decreases, and so one can create a universe

model of any universe age just as for the Lemâıtre universe.

Second, the parameters of the Γ2− solution (Equation (15)) can be chosen to give an

analogue Lemâıtre-Eddington universe (e.g., Bondi 1961, p. 84–85,117–121,159), an analogue

to the (static) Einstein universe (e.g., Bondi 1961, p. 84,98–99,117–121,158–159,171), and

the actual de Sitter universe with both exponentially expanding and contracting cases (e.g.,

Bondi 1961, p. 98–99,105,146–147,154,159,166). From the Γ2− solution, we can see explicitly

why the analogue Einstein universe is unstable to global perturbations ∆y0. Such global

perturbations could put the universe model on either converging or diverging branches from

the analogue Einstein universe. Thus, general global perturbations will always lead to diver-

gence and the analogue Einstein universe is unstable just as is the actual Einstein universe.

Of course, uniform global perturbations are not realistic. Dealing with more realistic local

perturbations would take more hypotheses to explore.

Third, the Γ5− solution (Equation (18)) is remarkable since it permits an oscillating

universe with x > 0 always (i.e., true oscillating Friedmann-equation universe model without

extra hypotheses). That the Friedmann equation has oscillating solutions has probably been

long known, but Bondi (1961) in his review of early cosmological models does not mention

them. What he refers to as oscillating models (his Class V universe models) have Friedmann

equation solutions that go into the unphysical negative x value range (Bondi 1961, p. 81–

86,122). He does hypothesize that such universe models are cyclic: i.e., the positive range of

the solution repeats itself after each solution zero (Bondi 1961, p. 82,86) Note the ocscillating

Γ5− solution is not limited to the case of the V model with V = 2/3. A radiation-negative-
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curvature-negative-Λ universe (i.e., one with a < 0, b > 0, and c > 0) can also have an

ocscillating Γ5− solution just with V = 1/2.

4. The Universe Age τ0

Although the ΛΓ model solutions (i.e., the Γi solutions: Equations (14), (15) (16), and

(17)) are elegant analytic solutions, it is not obvious how general variations of parameters a,

b, and c will affect their overall behavior. For example, in the Γ1 solution (Equation (14)),

the b parameter (i.e., the Γ parameter) occurs four times (twice implicitly in τzero x), and so

the effect of varying b on the Γ1 solution is clearly not obvious.

What is needed is a single metric of overall solution behavior for the Γi solutions. The

universe age (defined in § 1: i.e., time from a Big Bang to cosmic present τ0) seems a good

choice: the faster overall growth of the solution, the smaller τ0. Now with the V = 2/3

explicitly for numerical evaluation, the Γ−1
123(x = 1) solution (Equation (8) which gives the

universe age appropriate for all of the Γ1(τ), Γ2(τ), and Γ3(τ) solutions: i.e., Equations (14),

(15), and (16)) is

τ0 =
2

3

1√
a

ln

[

1 − c + a + 2
√

a

1 − c − a + 2
√

ac

]

(19)

and the Γ−1
4 (x = 1) solution (Equation (12) which has a = 0 and b ≥ 0) is

τ0 =



















2

3

(

2

1 +
√

1 − b

)

=
2

3

(

2

b

)

(

1 −
√

1 − b
)

in terms of b.

2

3

(

2

1 +
√

c

)

in terms of c.

(20)

Unfortunately, Equation (19) is still too complex to just visualize the behavior of τ0 as

function of a and c. So we will consider a range of special case behaviors. Case 1 has b = 0,
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and so c = 1 − a. Case 1 is, in fact, the Λ-CDM model universe age case. The formula is

τ0 =








































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
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







































































2

3

1√
a

ln

(

1 +
√

a√
1 − a

)

in general: a well

known formula

(e.g., Liddle 2015, p. 63).

2

3
= 0.6666 . . . for a = 0: the Einstein-

de Sitter universe age.

2

3

( ∞
∑

k=0

ak

2k + 1

)

=
2

3

(

1 +
a

3
+

a2

5
+

a3

7
+ . . .

)

for a ∈ (0, 1).

0.964099381639 . . . for a = 0.7, c = 0.3:

the fiducial Λ-CDM

model parameter weights

giving the fiducial

Λ-CDM model

universe age.

∞ for a = 1: the infinite-age

de Sitter universe age.

(21)

In fact, the Λ-CDM model universe age strictly increases with a (e.g., Liddle 2015, p. 63),

and so increasing matter parameter c increases the overall growth rate of the solution (i.e.,

decreases the Λ-CDM model universe age).

Case 2 has c = 0, and so b = 1 − a. In Case 2, the Γ dark energy is the analogue to

matter in the Λ-CDM model. The formula is:

τ0 =



































































2

3

1√
a

ln

(

1 + a + 2
√

a

1 − a

)

in general. In fact, the Case 2 τ0 formula

=
4

3

1√
a

ln

(

1 +
√

a√
1 − a

)

is exactly 2 times the Case 1 τ0 formula.

4

3
= 1.3333 . . . for a = 0: the pure Γ dark energy universe age.

1.9281987632789 . . . for a = 0.7, b = 0.3: the analogue to the

fiducial Λ-CDM model universe age.

∞ for a = 1: the infinite-age de Sitter universe age.

(22)

Comparing Equations (21) and (22), we see that Γ dark energy gives a slower rate of growth

than matter (i.e., gives larger universe age for comparable cases). In fact, all the Case 2
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universe ages are exactly 2 times those of the corresponding Case 1 universe ages since, as

noted above, the Case 2 is τ0 formula is exactly 2 times the Case 1 τ0 formula.

Case 3 has a = 0, and so b = 1 − c. In Case 3, the Γ dark energy is the analogue to Λ

dark energy in the Λ-CDM model. Because a = 0, the Γ−1
123(x = 1) solution (Equation (19))

is inappropriate, and so instead, making use Equation (20), we find

τ0 =


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


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
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
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


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


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
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
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
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
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






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


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


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
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



















2

3

(

2

1 +
√

1 − b

)

=
2

3

(

2

b

)

(

1 −
√

1 − b
)

general in terms of b.

2

3

(

2

1 +
√

c

)

general in terms of c.

2

3
= 0.6666 . . . for b = 0, c = 1: the

Einstein-de Sitter

universe age.

2

3

[ ∞
∑

k=0

(2k − 1)!!

2k(k + 1)!
bk

]

=
2

3

(

1 +
b

4
+

b2

8
+ . . .

)

for b ∈ [0, 1].

0.861480842847 . . . for b = 0.7, c = 0.3:

the analogue to the

fiducial Λ-CDM model.

4

3

∞
∑

k=0

(−1)kck/2 for c < 1.

=
(

1 − c1/2 + c − c3/2 + c2 − . . .
)

4

3
= 1.3333 . . . for b = 1, c = 0:

the pure Γ universe age.

(23)

Comparing Equations (21) and (23), we see that Γ dark energy gives faster growth than Λ

dark energy (i.e., gives smaller universe age for comparable cases).

Case 4 has a = c, and so b = 1 − 2a. Case 4 is a constrained, and thus simplified,

version of the ΛΓ model useful for a general, but simplified, understanding of its behavior.
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The formula is

τ0 =
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
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


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


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
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





































































2

3

1√
a

ln
(

1 + 2
√

a
)

in general.

2

3

√
2 ln

(

1 +
√

2
)

= 0.83096698685 . . . for a = c = 1/2, b = 0: a very

non-fiducial Λ-CDM

universe age.

2

3

√
3 ln

(

1 +
2√
3

)

= 0.886407892004 . . . for a = b = c = 1/3:

an equal-parameter-weight

ΓΛ model universe age.

0.964070206453 . . . for a = c = 0.182, b = 0.636:

this universe age is equal to

5 digits to

the fiducial Λ-CDM

model universe age.

4

3

[ ∞
∑

k=0

(−1)k (2
√

a )
k

k + 1

]

for 2
√

a = 2
√

c ≤ 1.

=
4

3

[

1 − (2
√

a)

2
+

(2
√

a )
2

3
+ . . .

]

4

3
= 1.3333 . . . for a = c = 0 and b = 1:

the pure Γ dark energy

ΓΛ model universe age.

(24)

Cases 1–3 show that increasing the c parameter (i.e., the matter parameter) increases the

rate of solution growth relative growth given by the pure a parameter (i.e., the Λ parameter)

and increasing the b parameter (i.e., the Γ parameter) does the same, but to a lesser degree.

Thus, increasing the b parameter can be compensated for by decreasing the c parameter.

But this is just an aspect of the fact that the ΛΓ model cosmic scale factor solution is more

flexible than the Λ-CDM model cosmic scale factor solution since it has two free model

parameters (any two of a, b, and c) instead of just one like the Λ-CDM model cosmic scale

factor solution (either of a or c). However, the ΛΓ model is not at all extremely flexible, and

so it can be falsified.

Case 4 shows that a constrained, and so simplified, ΛΓ model can match the fiducial Λ-

CDM model universe age which is very probably correct to within a few percent given that Λ-

CDM model gives an extremely good fit to cosmic evolution in many respects. However, this
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matching is done with an implausibly large b parameter weight (b = 0.636) and implausibly

small a and c parameter weights (a = c = 0.182) given the aforesaid overall goodness of the

Λ-CDM model. However, it is likely that varying both a and c independently will give a

range of relatively small b values that will make the ΛΓ model give a good fit to the fiducial

Λ-CDM model universe age. But finding that range in itself is not an interesting project. In

§ 5, we undertake a more interesting project of trying to match the fiducial Λ-CDM model

universe age and give a very limited fit to the DESI DR2 results (Lodha et al. 2025; Abdul

Karim et al. 2025).

5. The Om(z) Diagnostic

The Om(z) diagnostic (Sahni et al. 2008) is essentially a way of rewriting the derivative

of the cosmics scale factor x(τ) = 1/(1+z) (where z is cosmic redshift) in a way to emphasize

features not otherwise obvious in direct presentations of x(τ) and its derivative. To slightly

generalize from (Sahni et al. 2008) (but with a limitation to density components that evolve

as inverse powers of the cosmic scale factor), we write the scaled Friedmann equation thusly

h2 =

(

ẋ

x

)2

=
N
∑

n=0

an(1 + z)pn , (25)

where the an are cosmic present density parameters,
∑N

n=0 an = 1 (which give cosmic present

h = 1), p0 = 0, and pn≥1 > 0 are general powers that increase in size with index n implying

pN is the largest power. Using Equation (25), the Om(z) diagnostic becomes

Om(z) =


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











h2(z) − 1

(1 + z)pN − 1
=

[

∑N
n=0 an(1 + z)pn

]

− 1

(1 + z)pN − 1
general formula.

∑N
n=1 anpn + (1/2)

[

∑N
n=1 anpn(pn − 1)

]

z

pN + (1/2)[pN(pN − 1)]z
1st order

in small z formula.
∑N

n=1 anpn

pN
for z = 0.

aN for z → ∞.

(26)
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We now specialize the general formula in Equation (26) for the case of the V model, where

a = a0, b = a1, and c = a2, and p0 = 0, p1 = q = p/2, and p2 = p:

Om(z) =


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
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



a + b(1 + z)q + c(1 + z)p − 1

(1 + z)p − 1
the V model general formula.

bq + cp + (1/2)[bq(q − 1) + cp(p − 1)]z

p + (1/2)p(p − 1)z
the V model 1st order formula.

bq + cp

p
=

(

1

2

)

b + c for z = 0.

c for z → ∞ = 0.

(27)

We now specialize the general formula in Equation (27) for the case of the ΛΓ model (i.e.,

the V model with p = 3, q = 3/2, and V = 2/3):

Om(z) =
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a + b(1 + z)3/2 + c(1 + z)3 − 1

(1 + z)3 − 1
the ΛΓ model formula

= c +
b[(1 + z)3/2 − 1]

3z[1 + z + (1/3)z2]

c +
(b/2)

[1 + z + (1/3)z2]

[

1 +
z

4
− z2

24
the ΛΓ model

+

∞
∑

k=3

(−1)k−1(2k − 3)!!

2k(k + 1)!
zk

]

series expansion.

Absolutely convergent

for z ∈ [−1, 1].

c +
(b/2)

[1 + z + (1/3)z2]

[

1 +
z

4
the ΛΓ model series

−z2

24
+

z3

64
+ . . .

]

expansion truncated

to 3rd order.

c +
b

2
for z = 0.

c for z → ∞.

(28)

In determining Equation (28), we made use of the somewhat difficult to find general expan-

sion formula for (1 + z)n/2 where n is an odd integer (i.e., n = ±1,±3,±5 . . .), and so we

give it here for general reference:

(1 + z)n/2 = 1 +

∞
∑

k=1

(−1)max[0,k−(n+1)/2] (2k − n − 2)!!

2kk!(−n − 2)!!

n!!

(n − 2ℓ)!!
zk , (29)



– 19 –

where (integer ≤ 0)!! = 1 in all cases. For n > 0, the series is absolutely convergent for

z ∈ [−1, 1] and for n < 0, for z ∈ (−1, 1). For z = 1, there is conditional convergence for

n = −1, but not for n ≤ −3.

Lodha et al. (2025) applied Om(z) diagnostic to several cosmological models fitted to

various data combinations and to curves generated by Gaussian process regressions (i.e.,

a non-parametric way of generating curves) applied to various data combinations. Insofar

as their models or Gaussian process regressions and data combinations are accurate, their

Om(z) curves are a true measure of the evolution of cosmic scale factor emphasizing as

aforesaid features not otherwise obvious.

As a preliminary test of the ΛΓ model, we have done a crude fit to the Om(z) diagnostic

curve of Lodha et al. (2025) (shown in their Figure 9) generated using a Gaussian process

regression based on the DESI+CMB+Union3 data combination. The fit is crude since we

just measured the Gaussian process regression Om(z) curve off of the Figure 9 of Lodha et

al. (2025). The criteria for the fit were that the z = 0 and z = 3 endpoints of Lodha et al.

(2025) (Om(z = 0) ≈ 0.45 and Om(z = 3) ≈ 0.315) should fit within 2 standard deviations

(respectively, ∼ 0.07 and ∼ 0.01), the matter parameter c ≥ 0.29 (since Abdul Karim et al.

(2025, Fig. 16) strongly disfavor a lower value) and the universe age t ≥ 13.5 Gyr (since the

oldest globular clusters suggest 13.5 Gyr is a lower limit on the age of the universe in round

numbers (e.g., Valcin et al. 2025)).

For the Hubble constant value needed to convert scaled cosmic time τ into unscaled

cosmic time t, we used H0 = 68.01 (km/s)/Mpc from Abdul Karim et al. (2025, Table V)

since it was based on a model using DESI+CMB+Union3 data combination like the Gaussian

process regression Om(z) curve and the model otherwise seemed a reasonable proxy for the

Gaussian process regression. We varied the ΛΓ model parameters a, b, c over all parameter

space in steps of 0.01 consistent with the a + b + c = 1 constraint, a > 0 (since a = 0 just

gives an approximate power-law dependence of x on τ (see the Γ4 in Equation (17) and that

is remote from the Λ-CDM behavior which is accepted as a good approximation in any case

and a < 0 has solutions with maxima (see the Equation (18)), and b ≥ 0 (since we need

positive Γ dark energy to achieve the decreasing total dark energy implied by data of Lodha

et al. 2025 and Abdul Karim et al. 2025).

Only two ΛΓ model solutions matched all the constraints and they were nearly the same.

We deem the slightly better one to have the Λ parameter a = 0.53, the Γ parameter b = 0.18,

and the matter parameter c = 0.29. The quantity b2−4ac = −0.5824 which is less than zero,

and so the Γ1 solution (Equation (14)) is the fitted solution. We expected the Γ1 solution

to be best since it is closest the Λ-CDM solution. The universe age t = 13.54 Gyr which is

significantly lower the Λ-CDM universe age 13.797(23) Gyr favored by Planck Collaboration
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(Aghanim et al. 2021, p. 15). The relative deviation from the ΛΓ model Om(z) from that

of Lodha et al. (2025) (whose values were crudely measured) is −15.6 % at z = 0 rising to

3.8 % at z = 1.2 and then declining to −1.6 % at z = 3.

Given the crudeness of the fitting procedure, the fit solution achieved by the ΛΓ model

is adequate for the observations so far. However, given that the ΛΓ model is just a heuristic

model, the fit solution can only be considered as interesting.

6. The Deceleration Parameter

The deceleration parameter (symbolized here by qdec to distinguish it for the power q)

can also be used as a diagnostic. It is essentially a way of rewriting the 2nd derivative of

the cosmics scale factor x(τ) = 1/(1 + z) (where z is cosmological redshift) in a way to

emphasize features not otherwise obvious in direct presentations of x(τ) and its 1st and 2nd

derivatives. We do not make use of the deceleration parameter as diagnostic in this paper,

but for future reference, we give general and special case formulae below.

Making use of the standard general formula for the deceleration parameter (e.g., Liddle

2015, p. 53), the Friedmann acceleration equation (e.g., Liddle 2015, p. 27), and Equation (3)

and Equation (25) (which implies a limitation to density components that evolve as inverse

powers of the cosmic scale factor), we obtain

qdec =


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− ẍx

ẋ2
= − ẍ

x

1

h(x)2
=

1

2

[∑N
n=0 an(pn − 2)(1 + z)pn

∑N
n=0 an(1 + z)pn

]

general formula.

−1 +
1

2

[∑N
n=1 anpn(1 + z)pn

∑N
n=0 an(1 + z)pn

]

general formula

recalling
∑N

n=0 an = 1

and p0 = 0.

= −1 +

(

1

2

) N
∑

n=1

anpn for z = 0.

−1 +
pN

2
for z → ∞.

(30)
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qdec =


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−1 +
1

2

[

bq(1 + z)q + cp(1 + z)p

a + b(1 + z)q + c(1 + z)p

]

for the V model

recalling q = p/2.

−1 +
1

2
(bq + cp) = −1 +

p

2

(

b

2
+ c

)

for z = 0

= −1 +
p

4
(1 − a + c) and using b = 1 − (a + c)/2.

−1 +
p

2
for z → ∞.

(31)

qdec =


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−1 +
1

2

[

(3/2)b(1 + z)3/2 + 3c(1 + z)3

a + b(1 + z)3/2 + c(1 + z)3

]

for the ΛΓ model.

1 +
3

2

(

b

2
+ c

)

= −1 +
3

4
(1 − a + c) z = 0 and using

b = 1 − (a + c).
1

2
for z → ∞

and also for the

Λ-CDM model

with z → ∞.

(32)

qdec =
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−1 +
3

2

[

c(1 + z)3

a + c(1 + z)3

]

for the Λ-CDM model.

−1 +
3

2
c =

1

2
− 3

2
a for z = 0 and

using c = 1 − a.

−0.55

[

0.5 − 1.05 × (a/0.7)

−0.55

]

for z = 0 and

fiducial a = 0.7.

(33)

7. Discussion

It would be interesting project is to see if ΛΓ model Γ1 solution (Equation (14)) can

give a good fit to all data cited by Lodha et al. (2025) and Abdul Karim et al. (2025) with

a least-squares fit done by varying the a parameter (i.e., the Λ parameter: conventionally

the constant density parameter ΩΛ) and the c (i.e., the matter parameter and conventionally

the cosmic present matter density parameter ΩM,0). The fact that the Λ-CDM cosmic scale

factor solution (i.e, the matter-Λ universe solution) fits all the aforesaid data to the eye very

well (Abdul Karim et al. 2025, Fig. 1) suggests that the b parameter (i.e., Γ parameter: the

cosmic present Γ dark energy density with the constraint b = 1 − (a + c)) will be relatively

small in a good fit. However, the crude fit to the Om(z) curve of Lodha et al. (2025) (§ 5)
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suggests the possibility that Γ dark energy density parameter b might larger than very small.

To recapitulate from the abstract, given that ΛΓ model is just a heuristic model with

no physical reason for its equation of state parameter wΓ = −1/2, any expectation that even

a good fit of it to observations will be meaningful is very modest.

Support for this work was provided the Department of Physics & Astronomy and the

Nevada Center for Astrophysics (NCfA) of the University of Nevada, Las Vegas.
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