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ABSTRACT

We present a general treatment for exact solutions (i.e., exact analytical so-

lutions) for the cosmic scale factor for universes (i.e., universe models) for the

Friedmann equation depending on only two density components (which are for-

mulated as density parameters ΩP ) both of which depend on inverse powers of

the cosmic scale factor via terms of the form ΩP,0(a0/a)P . For the Friedmann

equation with only two density components, there are in fact only 3 exact gen-

eral solutions for a generalized cosmic scale factor z as function a generalized

conformal time η̃. All other special cases of two-density-component solutions

for (ordinary) cosmic scale factor and (ordinary) cosmic time follow from these

although complete exact solutions (those for which are available either of exact

a(t) and t(a) or both exact a and t in terms conformal time or generalized con-

formal time) are only available for a restricted class of solutions. We give a fairly

detailed explication of the 3 general two-density-component solutions and some

examples of interesting special cases of complete exact solutions. However, we

usually leave these complete exact solutions in terms of scaled scale factors (sym-

bolized by variables x or y) from which a is easily obtained and scaled cosmic

times (symbolized by variables τ or w) from t is easily obtained. For simplicity,

we usually just call a, x, and y scale factors and t, τ , and w time. The complete

exact solutions we give include all cases with one of the two density components

having power P = 0 (i.e., the Λ density component) and the radiation-matter

universe (which has density components having powers P = 4 and P = 3). The

radiation-matter universe, in fact, has an exact solution formula for the scale

factor as function of time (reported as y(w) here) given by Galanti & Roncadelli

(2021) which we call the 1st exact formula. We have found another exact solu-

tion formula (which we call the 2nd exact formula) which we judge to be simpler.

The two exact formulae are, of course, mathematically equivalent, but that is
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not obvious to the eye. They are also numerically equivalent to within machine

precision, of course. Both formulae lose numerical accuracy as time goes toward

time zero, and so we derive the small time expansion series for them to use for

high accuracy at very early times. We also present a moderately??? accurate

interpolation formula (which we believe to be novel) for the cosmic scale factor

for the Λ-CDM model (i.e., the radiation-matter-Λ universe for a limited range

of ΩP,0 values) which is complementary to the nearly exact formula of Galanti

& Roncadelli (2021).

For reference, Appendix A presents one-density component exact solutions

to the Friedmann equation of strong interest. In Appendix B, we consider how

far we can generalize our two-density-component treatment to a three-density-

component treatment. The generalization does give Friedmann equation solu-

tions that apply to the radiation-curvature-Λ universe and the radiation-cosmic-

string-Λ universe and these solutions may be of actual cosmological interest for

some versions of inflation. Of these solutions, one is for the radiation analogue

to the Lemâıtre universe and another for radiation analogue to the Lemâıtre-

Eddington universe. Both these historic universes are positive-curvature-matter-

Λ universes. In Appendix C, we consider stationary points and constants so-

lutions of 1st order autonomous ordinary differential equations since these are

relevant to the Friedmann equation (which is a 1st order autonomous ordinary

differential equation). In Appendix D, we review the stability of constant solu-

tions to 1st order autonomous ordinary differential equations.

Because we present a fair number of the more elementary special case solutions

of the Friedmann equation for the cosmic scale factor (most of which must appear

in many places in the literature), this paper also constitutes an educational review

of such solutions.

Unified Astronomy Thesaurus concepts: Cosmology (343); Accelerating universe

(12); Big Bang theory (152); Closed universe (256); Cosmic background radiation

(317); Cosmological constant (334); Cosmological evolution (336); Cosmologi-

cal models (337); Cosmological parameters (339); Cosmological principle (2363);

Dark energy (351); de Sitter universe (361); Density parameter (372); Einstein

universe (452); Expanding universe (502); Flat space (543); Friedmann universe

(551); Lambda density (898); Lemâıtre universe (914); Matter density (1014);

Open universe (1161)
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1. Introduction

To continue from the abstract, in § 2, we introduce the Friedmann equation and the

primary scaled Friedmann equation. In § 4, we discuss general exact solutions to the Fried-

mann equation and define complete and incomplete exact solutions. In § 5, we derive a

two-density-component Friedmann equation in terms of the generalized cosmic scale factor

z as function a generalized conformal time η̃. We call this equation just the two-density-

component Friedmann equation for simplicity. In § 3, we consider stationary points and

constant solutions of the Friedmann equation in general in preparation for considering these

items for the two-density-component solutions. Then in § 6 we derive the 3 general formulae

for generalized cosmic scale factor z as functions of generalized cosmic time η̃. In § 7, we

find the all the cases there is a complete exact solution which requires there to be an exact

solution for cosmic time as a function of generalized cosmic time. In § 12, we derive formu-

lae for special complete exact solutions of interest, in most of which generalized cosmic time

η̃ has been eliminated. These cases include all cases with one of the two density compo-

nents having power P = 0 (i.e., the Λ density component) and the radiation-matter universe

(which has density components having powers P = 4 and P = 3). In § 13, we rederive

the well known exact solution for cosmic time for the radiation-matter universe but from

a straightforward approach and not our general treatment as a complement to the general

treatment and present some further analysis of it. We then compare our formula for the

cosmic scale factor for the radiation-matter universe to that of Galanti & Roncadelli (2021)

in § 14. The conclusions (§ 15) are followed by Appendices A, B, and C, D.

2. The Friedmann Equation and the Primary Scaled Friedmann Equation

The Friedmann equation written in a standard modern form is

H2 =

(

ȧ

a

)2

=
8πG

3
ρ − k

a2
+

Λ

3
, (1)

where H is the Hubble parameter, a is the cosmic scale factor, ȧ is the time derivative of a,

G is the gavitational constant, k is the curvature (positive/negative for a positive/negative

curvature universe and zero for a flat universe) which is always time-independent for the

Friedmann equation, and Λ is the cosmological constant e.g., Wikipedia: Friedmann equa-

tions; Liddle 2015, p. 24,55–56). Note that extended without bound, a positive curvature

universe is a finite unbounded hyperspherical space, a negative curvature universe is an in-

finite hyperbolical space, and the zero curvature universe is an infinite Euclidean (i.e., flat)

space (see Wikipedia: Shape of the universe; Wikipedia: n-sphere; Liddle 2015, p. 29–36).
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For a general treatment, the density ρ is broken up into components that in the most con-

sidered cases depend on various inverse powers of a (see below) and the curvature and the

Λ terms are written as pseudo density terms to allow a uniform treatment: i.e.,

ρk = − 3k

8πGa2
and ρΛ =

Λ

8πG
, (2)

where the minus sign has been absorbed into ρk for uniformity of appearance with the

annoying side effect of making ρk negative/positive for positive/negative curvature.

All the free parameters to determine the solution of Equation (1) can be set in the

density components. However, one can substitute for these by fits to the solution itself.

The most considered substitution is of the Hubble constant (i.e., the Hubble parameter at

a fiducial cosmic time) to eliminate any one of the density component parameters, usually

the curvature k since that sets the whole curvature density component evolution given the

solution a itself.

For finding exact solutions, it is convenient to change the standard modern form Fried-

mann equation (Equation (1) above) to a scaled form. The primary scaled form we give here

where a and t are replaced by the scaled x and τ : see below. We need a secondary scaling to

deal with the specific exact solutions we investigate. For these solutions, the scaled y and w

replace x and τ ; for the specificaltion of y, see § 5; for the specificaltion of w, see § 7. Note

the unscaled variables and primary and secondary variables are linearly related: all the scale

factor variables are mutually proportional; all the time variables are mutually proportional.

To be explicit:

a(t) ∝ x(τ) ∝ y(w) and t(a) ∝ τ(x) ∝ w(y) . (3)

However, the 3 exact general solutions use generalized cosmic scale factor z and generalized

conformal time η̃ which are not proportional, respectively, to the ordinary scale factor and

time variables. For their specification, see § 5.

The primary scaled Friedmann equation written in terms of density parameters (i.e.,

density components divided by the critical density ρcritical,0: see below) and scaled variables

is

h2 =

(

ẋ

x

)2

=
∑

P

ΩP,0x
−P or h =

ẋ

x
= ±

√

∑

P

ΩP,0x−P , (4)

where 0 indicates the fiducial cosmic scale time t0 (which is not in general cosmic present in

this paper, but it can be), the ΩP,0 = ρP,0/ρcritical,0 are the density parameters at t0

x =
a

a0
(5)
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is a scaled cosmic scale factor, a0 is the cosmic scale factor at t0 (which is usually set by

a0 = 1 especially for cosmic present, but can be left general), h is the (dimensionless) scaled

Hubble parameter, and the implicit time variable τ is a scaled (dimensionless) cosmic time.

To explicate the scaled variables and other variables:











































































































































































τ =
t

tH0

the scaled time which equals 1

at t = tH0
;

tH0
=

1
√

(8πG/3)ρcritical,0

is the Hubble time at t0;

H0 = t−1
H0

is the Hubble parameter at t0.

(i.e., the Hubble constant for t0;

ρcritical,0 =
H2

0

(8πG/3)
=

1

(8πG/3)t2H0

is the critical density at t0;

ΩP,0 =
ρP,0

ρcritical,0
the general density parameter at the t0.

∑

P

ΩP,0 = 1 at t0 or τ0, this is required;

H(t0) = H0 is the equation for determining t0;

h(τ0) = 1 is the equation for determining τ0

which, of course, is equivalent to

the equation determining t0.

Note t0 and τ0 are usually

part of the solution of the Friedmann

and are not taken as free parameters.

(6)

Note that if we fully specify the density components ρP,0 by their values at t0 the solution

is fully determined for the scaled Friedmann equation (Equation (4) above). However, to go

from the generic case as mentioned above to the specific case here, one can substitute for

these density components by fits to the solution itself. The most considered substitution is

of the Hubble constant H0 (or equivalently ρcritical,0 or tH0
to eliminate any one of the density

component parameters, usually the curvature k since that sets the whole curvature density

component evolution given the solution a itself. For actual cosmological modeling, the value

of cosmic present Hubble constant H0 is often used as one of the free parameters for cosmic

scale factor solutions since it is a direct observable. In this paper, we are only concerned

with exact solutions in scaled quantities (which have natural parameters), and so do not set

free parameters.
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In regard to solutions of Equation (4), we will not consider those that are negative or

complex since they cannot be physically real. Also note that the second form of Equation (4)

has the ± cases. What this means is that every solution x(τ) has a twin solution x(−τ). One

can see just by writing dτtwin = −dτ and then the solution for x(τtwin) clearly is the same as

x(τ) and x(−τ) is x(τ) mirror imaged around τ = 0 vertical. Another perspective from the ±
cases is that to any solution at a point there is another solution whose slope has the opposite

sign to the first solution. If x(τ) is monotonically increasing, then x(−τ) is monotonically

decreasing. Since the actual universe does not have a monotonically decreasing cosmic

scale factor, monotonically decreasing solutions are not very interesting. To avoid pointless

generality, we will usually not explicitly give any monotonically decreasing solutions.

Is there a second kind of twin solution? If the right-hand side of Equation (4) depeonds

only on even powers of x and x ≥ 0 is a solution, then −x ≤ 0 is a solution, but an unphysical

one since x ≥ 0 is required for physical scale factor. We will usually not consider the second

kind of twin solutions.

Re: the critical density, Albert Einstein (1879–1955) and Willem de Sitter (1872–1934)

introduced the concept of critical density for what we call the Einstein-de Sitter universe

(presented 1932: e.g., Wikipedia: Einstein-de Sitter universe; Bondi 1961, p. 166; North

1994, p. 535; Kragh 1996, p. 35,37–38,50,73–75,79,274,286–287; O’Raifeartaigh et al. 2015)

which was often considered the standard cosmological model circa 1960–1995 before the start

of the dominance of the Λ-CDM circa 1995 (e.g., Bondi 1961, p. 166; Scott 2018, p. 10).

The only mass-energy content in the Einstein-de Sitter universe is matter in the cosmological

sense of matter at rest or nearly at rest in the comoving frames of the expanding universe :i.e.,

those inertial frames which participate in the mean expansion of the universe as determined

by the cosmic scale factor. The density of the matter is exactly the critical density and

therefore the critical denstiy, the Hubble constant, and the Hubble time are information

equivalent parameters as seen in Equation (6 above. Einstein and de Sitter introduced the

Einstein-de Sitter universe as the simplest universe model and they believed that that was

all that was justified by observations circa 1932 (e.g., Kragh 1996, p. 35; O’Raifeartaigh et

al. 2015) The Einstein-de Sitter universe has space flat and infinite and the cosmic scale

factor and time since the point origin (the older jargon name for the Big Bang singularity:

Bondi e.g., 1961, p. 117) are given by, respectively,

a = a0

(

t

t0

)2/3

and t0 =
2

3
tH0

=
2

3

1

H0

. (7)

In fact, in Einstein and de Sitter’s short paper of 1932 did not explicitly give the results

in Equation (7) though Einstein did give them explicitly in a review paper of 1933 (e.g.,

O’Raifeartaigh et al. 2015, p. 15–16). The review shows that as of 1933, Einstein did
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not believe simple relativistic models could accurately describe the early universe (e.g.,

O’Raifeartaigh et al. 2015, p. 1). In fact in the 1930s, it seems that only Georges Lemâıtre

(1894–1966) theorized about an early universe that was radically different from the mod-

ern universe (e.g., McCrea 1984, p. 13; Kragh 1996, p. 56). We give a brief discussion of

Lemâıtre’s theories in Appendix B.1: i.e., the Lemâıtre universe (as we call it: positive-

curvature-matter-Λ universe) and the primeval atom (e.g., Bondi 1961, p. 82,84–85,120–

122,165,168–170,175–176; McCrea 1984, p. 7–10; Peebles 1984, p. 23–30; North 1994, p. 528,530–

531; Kragh 1996, p. 23–60; Luminet 2011).

3. Stationary Points and Constant Solutions of the Friedmann Equation in

General

The Friedmann equation is, in fact, a 1st order autonomous ordinary differential equa-

tion (e.g., Wikipedia: Autonomous system (mathematics)). Autonomous differential equa-

tions do not depend explicitly on the independent variable and 1st order ones do not in most

cases have solutions with stationary points, except at infinity of the independent variable

(i.e., either positive or negative infinity) where all orders of derivatives of the solutions are

zero and the solutions approach horizontal asymptotes. A horizontal asymptote is actually

a constant solution of the 1st order autonomous ordinary differential equation. Constant

solutions always accompany solutions with solutions that approach horizontal asymptotes.

Hereafter we will refer the stationary points at infinity as asymptotic stationary points to

differentiate them from ordinary stationary points. That 1st order autonomous ordinary

differential equations usually do not have ordinary stationary points we call the no-ordinary

stationary point rule.

But there are exceptions to the no-ordinary stationary point rule as we have hinted

above. In Appendix C, we prove the no-ordinary stationary point rule and determine the

most obvious exceptions to it.

The Friedmann equation is, in fact, cases where there are exceptions to the no-ordinary

stationary point rule, and so can give solutions with ordinary stationary points. We discuss

the solutions with ordinary stationary points relevant to this paper in § 3.1 below.

We note as digression that universes where dynamics depended on 1st order autonomous

differential equations (generalizing loosely from just ordinary ones) might be rather boring.

For example, say that Newton’s 2nd law ~Fnet = m~a were replaced by ~Fnet = m~v and we

consider only autonomous cases. It seems there would be no oscillatory behavior and there

would have to be absolute states of rest and motion. Perhaps, life would not be possible
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in such universes. That Newton’s 2nd law is a 2nd order autonomous differential equation

(when force has no explicit time dependence) might have an anthropic principle explanation

if we allow other possibilities could have occurred somehow.

3.1. The Friedmann Equation Exception to the No-Ordinary Stationary Point

Rule

As pointed out in § C.2, the Friedmann equation is an obvious possible exception to the

no-ordinary stationary point rule since it has ẋ equal to the square root of a function of x:

see, e.g., Equation (4) in § 2. So it can occur that there are ordinary stationary points and

also asymptotic stationary points that also correspond to the constant solutions.

In the case of the two-density-component Friedmann equation, there are, in fact, or-

dinary stationary points as can be seen from the 3 exact solutions in terms of generalized

cosmic scale factor and generalized conformal time: see below, § 6.2 for the hyperbolic sine

solution § 6.3 for the hyperbolic cosine solution, and § 6.4 for the sine/cosine solution. The

hyperbolic sine solution has no stationary points at all. The hyperbolic cosine solution has a

single minimum. Note that the negative value solution is not physically allowed for a cosmic

scale factor. The sine/cosine solution has a single maximum. Note that only one half wave of

the sine/cosine solution is physically allowed since negative values are not physically allowed

for a cosmic scale factor.

What of other cases of the Friedmann equation? The one-component Friedmann equa-

tion does have one solution with a stationary point at infinity. This is the exponen-

tially expanding de Sitter universe (presented 1917: e.g., Bondi 1961, p. 98–99,105,146–

147,154,159,166; Wikipedia: de Sitter universe)) which we derive in Appendix A. However,

the accompanying constant solution has x = 0, and so is not physically allowed. No other

solutions with stationary points exist for the one-component Friedmann equation.

For 3 or more density components, solutions with ordinary stationary points and asymp-

totic stationary points (with their accompanying constant solutions) can exist. In Ap-

pendix B, we show example solutions for the three-density-component Friedmann equation

case of which some have ordinary stationary points and some have asymptotic stationary

points with their accompanying constant solutions.

As final word, we note that all constant solutions of the Friedmann equation are un-

stable to general perturbations. The reason for this is the ± cases in Equation (4) in § 2.

The ± cases imply that a general perturbation from a static universe model will have ex-

panding and contracting solutions and one or the other of these will diverge forever (unless
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some other perturbation happens) from the constant solution. So if general perturbations

occur, sooner or later one will lead to divergence. Note that we are considering global per-

turbations of a universe model assumed to remain homogeneous and isotropic (i.e., obey

the cosmological principle) no matter what perturbations occur. An actual universe in an

overall static state would be probably have local expanding and contracting perturbations.

For example consider the Lemâıtre-Eddington universe (a Friedmann equation expanding

positive-curvature-matter-Λ universe) which was considered by some to be a viable uni-

verse model prior to circa 1961 (e.g., Bondi 1961, p. 84–85,117–121,159). It starts from

a asymptotic static phase (i.e., an Einstein universe phase: for the Einstein universe, pre-

sented 1917, see, e.g., Bondi 1961, p. 84,98–99,117–121,158–159,171; O’Raifeartaigh et al.

2017; O’Raifeartaigh 2019; Wikipedia: Einstein’s static universe) and then undergoes global

expansion that asymptotically approaches the exponentially expanding de Sitter universe .

The actual behavior of the universe model with this global behavior was thought to be global

expansion with local contractons that became galaxies (e.g., Bondi 1961, p. 118–119).

Note the positive-curvature-radiation universe we derive in Appendix B.2 is the radiation

analogue for the positive-curvature-matter universe. The expanding version of the positive-

curvature-radiation universe is the radiation analogue of the Lemâıtre-Eddington universe.

The constant positive-curvature-radiation universe we derive in both Appendix B.1 and

Appendix B.2 is the radiation analogue of the Einstein universe.

4. General Exact Solutions to the Friedmann Equation

First, what do we mean by an exact solution? We mean one where we have exact solution

(1) a(t), (2) t(a), or (3) both a(u) and t(u) (or the equivalent of these cases in scaled form),

where u is some auxiliary parameter: e.g., conformal time (see below), generalized conformal

time (§ 5), or some other auxiliary parameter. If we have any of the 3 cases, we can exactly a

and t though we may have do a numerical inversion of one of a(t) and t(a) if we do not have

an exact analytic inversion formula for one or the other. Note that the using an auxiliary

parameter in and of itself is not very useful since it has no direct physical meaning. For

example, physical systems do not evolve with conformal time in a direct sense.

What if one has only one a(u) or t(u) and not the other one and needs to calculate its

value numerically. We call this an incomplete exact solution. Exact solutions which are not

incomplete exact solutions we call complete exact solutions but usually only when we need

to distinguish them from incomplete exact solutions.

Only a limited set of the exact solutions of the two-density component Friedmann equa-
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tion in terms of a a generalized scale factor and generalized conformal time we derive in § 5

can be changed into exact solutions in the sense described above. However, the example

cases we consider all can be. All of the some three-component-component solutions in Ap-

pendix B are exact solutions, but they are for a limited set of inverse power dependences for

density components. One-density-component cases all have exact solutions which, in fact,

follow from one general solution that we derive in Appendix A. To conclude this paragraph,

we do not investigate solutions that are not complete exact solutions in this paper.

How many exact exact solutions are there? In fact, there must be many, but most will

probably have no cosmological relevance. To explicate consider the standard modern form

Friedmann equation (Equation (1) in § 2) rewritten in an indefinite integral form
∫

da

a
√

(8πG/3)ρ(a)
=

∫

dt , (8)

where ρ(a) is general and can includes pseudo density terms for curvature and the cosmo-

logical constant (see § 2). Any exact solution for the indefinite integral (e.g., from a table

of integrals: e.g., Wikipedia: List of integrals of irrational functions) gives an exact t(a)

which is an exact solution in sense defined above. An exact inverse a(t) will not in general

be available. However as indicated above, most of these exact solutions will not have any

cosmological relevance.

One can get more exact solutions by using conformal time (which is not our generalized

conformal time in general) symbolized by η. One defines conformal time for the standard

modern form Friedmann equation by dη = dt/a and then one can rewrite this equation to

the form
∫

da
√

(8πG/3)ρ(a)a4
=

∫

dη , (9)

Equation (9) eliminates any inverse powers under the radical symbol with inverse power

less than or equal to 4. Any exact solution for the indefinite integral (e.g., from a table

of integrals: e.g., Wikipedia: List of integrals of irrational functions) gives an exact η(a)

However, in order to get an exact solution, one needs the inverse solution a(η) or dη/da (as

a function of a) and an exact solution is obtained for one or other of the indefinite integrals

in

t =

∫

a(η) dη =

∫

a
dη

da
da (10)

if either of the integrals can be solved analytically. If the first indefinite integral can be done,

one has exact t(η) and a(η) and so exact solutions in terms of the auxiliary variable η which

perhaps in some cases can be eliminated to give t(a) and/or a(t). If the second indefinite

integral can be done, one has exact t(a) and perhaps in some cases this can be inverted to

give a(t).
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As an example of using conformal time, we rewrite Equation (4) (in § 2) in terms

conformal time dη = dτ/x (where we are now using our primary scaled variables from § 2

and limit the inverse powers P ∈ [0, 4] and obtain

dη = ± dx
√

∑4
P=0 ΩP,0x4−P

, (11)

which because of it nice mathematical appearance is prima facie suggestive that exact so-

lutions for multiple nonzero ΩP,0 are possible. In fact, Equation (11) has been solved an-

alytically for x(η) for all density components simultaneously nonzero for integer P ∈ [0, 4]

by Steiner (2008, p. 7–9) though with dependence on the Weierstrass elliptic function

(Wikipedia: Weierstrass elliptic function). We will not present this solution in this paper.

A similar and mathematically equivalent solution (but without a P = 1 density component)

has been given by Boyle & Turok (2022, eq. (12)). However, these solution are incomplete

exact solutions since there is no exact solution for cosmic time from conformal time.

The inverse powers P in Equation (4) (in § 2) are general, however, the only widely

considered powers seem to be as follows:



























































P = 0 for Λ (either the cosmological constant or constant dark energy);

P = 1 for quintessence (in some theories);

P = 2 for curvature, cosmic strings (in some theories), or the Rh = ct universe

P = 3 for matter (in the cosmological sense of matter at rest

or nearly at rest in the comoving frames of the expanding universe)

which includes baryonic matter and dark matter;

P = 4 for radiation (in the cosmological sense of mass-energy moving

at or nearly at the vacuum light speed

in the comoving frames of the expanding universe).

(12)

(e.g., Steiner 2008, p. 6–7; e.g., Melia 2014 for the Rh = ct universe).

5. The Two-Density-Component Friedmann Equation

We now specialize the Friedmann equation to the case of the Friedmann equation de-

pending on only two powers of a: i.e., powers P = p and P = q with p > q always without

loss of generality. Note p and q are not required to be integers. Note that p = q reduces

the Friedmann equation to a one-density-component case which is trivially solved by x(τ)

being a power-law in τ or, in the case of p = 0, being an exponential. We present one-

density-component solutions of strong interest in Appendix A. In the following, we carry
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out the specialization, make transformations to a generalized scale factor z and a generalized

conformal time η̃, and make some useful definitions:

(

ẋ

x

)2

= Ωp,0x
−p + Ωq,0x

−q

xp

(

ẋ

x

)2

= Ωp,0 + Ωq,0x
p−q

xp

|Ωp,0|

(

ẋ

x

)2

= g + h

[

( |Ωq,0|
|Ωp,0|

)1/2

xR/2

]2

where we define g =
Ωp,0

|Ωp,0|
, h =

Ωq,0

|Ωq,0|
, R = p − q

and note R > 0 is required, but not R integer
(

xp/2

√

|Ωp,0|
ẋ

x

)2

= g + h

[

xR/2

√

|Ωp,0|/|Ωq,0|

]2

= g + (yR/2)2

where define y by xscale by

y =
x

xscale

=
x

(

√

|Ωp,0|/|Ωq,0|
)2/R

(

xp/2

√

|Ωp,0|
2

R

z̃

z

)2

= g + hz2

where we define z and y by

z = yR/2 =
xR/2

√

|Ωp,0|/|Ωq,0|
and use

z̃

z
=

R

2

ẋ

x
(

xq/2

√

|Ωq,0|
2

R
z̃

)2

= g + hz2

(

2

R

xq/2

√

|Ωq,0|
dη̃

dτ
z̃

)2

= g + hz2

where we define z̃ =
dz

dη̃

z̃2 = g + hz2 , (13)

where the generalized scale factor z increases strictly with x and y and must be real and

non-negative since physical x and y must be real and non-negative (but see further discussion
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below in § 5.2) and we define the generalized conformal time η̃ by

dτ =
2

R

xq/2

√

|Ωq,0|
dη̃ =

2

R

(

√

|Ωp,0|/|Ωq,0|
)Q

√

|Ωq,0|
zQ dη̃ , (14)

where we note that τ increases strictly with η̃ since z ≥ 0 always and where we define

Q =
q

R
=

q

p − q
. (15)

We take up the solution for τ(η̃) and its inverse η̃(τ) in § 7.

Note that z must monotonically increase with x and y, and vice versa. Note also that

g =



























































Ωp,0/|Ωp,0| in general;

1 for Ωp,0 > 0;

−1 for Ωp,0 < 0

which is only

true for a

positive

curvature universe

(which gives

p = 2),

and h =























































































Ωq,0/|Ωq,0| in general;

1 for Ωq,0 > 0;

−1 for Ωq,0 < 0

which is only

true for a

positive

curvature universe

(which gives

q = 2) or

for a Λ < 0

universe (which

gives q = 0).

(16)

The case of both g and h equal to −1 (i.e., g = h = −1) is physically ruled out since that

leads to an inconsistency. If g = h = −1, the value for ẋ/x on the left-hand side of the first

line of Equation (13)) would be complex for x real and non-negative on the right-hand side.

Recall we require physically real solutions for x to be real and non-negative, and so ẋ and

ẋ/x must both be real and non-negative.

To conclude, the two-density-component Friedmann equation is

z̃2 = g + hz2 and z̃ = ±
√

g + hz2 . (17)

Similarly to our discussion in § 2, the ± cases cause every solution to have a twin solution.

Also similarly to our discussion in § 2, we will not usually consider those twin solutions for z

that are monotonically decreasing (implying monotonically decreasing solution x) since since

they are uninteresting since the actual universe does not have a monotonically decreasing

scale factor.
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We address two fine points arising from this section that we address in the subsections

below: § 5.1 explores the meaning of xscale; § 5.2 shows that complex z solutions are not

useful.

5.1. The Meaning of xscale

To elucidate the meaning of xscale, we take the ratio Rqp of the absolute values of the

two density components in the first line of Equation (13) in § 5:

Rqp =
|Ωq,0|x−q

|Ωp,0|x−p
=

|Ωq,0|
|Ωp,0|

xp−q =

[

x

(|Ωp,0|/|Ωq,0|)1/R

]R

=







x
(

√

|Ωp,0|/|Ωq,0|
)2/R







R

=

(

x

xscale

)R

= yR , (18)

where we have made other uses of Equation (13) in § 5.

So xscale is the scaled cosmic scale factor when the bsolute values of the two density

components in the first line of Equation (13) in § 5 are equal and y is the ratio of the two

components to the power R = p − q.

We can derive a characteristic time τCh (the characterstic time scale over which x changes

by an amount of order xscale when x = xscale) in a series of characteristic equations also making

use of the first line of Equation (13) § 5:

ẋ

x

∣

∣

∣

∣

xscale

=

√

2|Ωp,0|x−p
scale =

√

2|Ωq,0|x−q
scale which is actually exact

if both Ω parameters

are positive

τCh =
∆x

xscale

√

2|Ωq,0|x−q
scale

where (ẋ/x)|xscale
is approximated by (∆x/xscale)/τCh

τCh =
1

√

2|Ωq,0|x−q
scale

where ∆x is approximated by xscale. (19)

Equation (19) is used below in § 7.
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5.2. Complex z Solutions Are Not Useful

To explicate a fine point, x(η̃) and y(η̃) are required to be real and non-negative. But

is z(η̃) absolutely so required? Let us assume for the moment that z is a complex solution

to Equation (13) and write it in polar form with zRe as modulus and φ 6= 0 as argument or

phase: thus, z = zRee
iφ. Then from Equation (13), we have

y = z
2/R
Re eiφ(2/R) . (20)

In order for y to be real and non-negative, φ(2/R) = (2πn) or φ = πRn, where n is a general

non-zero integer. Since we cannot physically allow φ to make discontinuous jumps by letting

n vary as η̃ varies, we require φ to be a constant for the complex z solution. If we substitute

z = zRee
iφ into the first form of Equation (17), we get

z̃2
Ree

2iφ = g + hz2
Ree

2iφ

z̃2
Re = ge−2iφ + hz2

Re

e−2iφ = e−iπ(2Rn) which must be real to satisfy the differential equation, and so

e2iφ = eiπ(2Rn) = ±1 where 2Rn must be an integer. (21)

There are 2 cases to consider. Case 1: For the upper case in the last line of Equation (21),

2Rn must be an even integer and z = zRee
iπ(Rn) = ±zRe (upper/lower case for Rn even/odd)

and the x solution we obtain from the zRe solution is for the x version of the Friedmann

equation with g and h. Case 2: For the lower case, 2nR must be an odd integer (which

implies Rn is an odd integer divided by 2) and z = zRee
iπ(Rn) = ±izRe (upper case for

Rn = (1/2 + 2k) and lower case for 2Rn = 3/2 + 2k, where k is any integer) and the x

solution we obtain from zRe solution is for the x version of the Friedmann equation with

−g and h. Since the complex z solution we get for g and h in this case leads to the same

solution we get for −g and h from a real z solution, there is nothing to be gained looking

for the complex z solution for g and h. We assume that −g and h are both non-negative or

there is no real solution as we discussed above.

The conclusion from the 2 cases is that complex z solutions are not useful since all

physical solutions can be obtained from real z solutions which recall increase strictly with x

and y.

6. Two-Density-Component Solutions for the Generalized Cosmic Scale

Factor as a Function of Generalized Conformal Time

In the following subsections, we derive the 3 exact solutions (and there are no inexat

ones) for the two-density-component Friedmann equation for generalized cosmic scale factor
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and generalized conformal time (i.e., Equation (17) in § 5). All (ordinary) exact cosmic

scale factor two-density-component solutions can be derived from these 3, and so we call

the 3 general exact solutions. Note only a restricted class of the exact cosmic scale factor

two-density-component solutions are complete exact solutions in the sense of § 4. In § 12, we

derive formulae for special case solutions of the cosmic scaled factor (using the generalized

cosmic scale factor z solutions) in terms of scaled cosmic time (not generalized conformal

cosmic time) where possible and conformal cosmic time where not. We do not consider

incomplete exact solutions.

6.1. Summary of Hyperbolic Function Identities

For use in this section and other sections below, we summarize here the most useful

hyperbolic function identities:

cosh2(x) − sinh2(x) = 1 , cosh2(x) = 1 + sinh2(x) , sinh2(x) = cosh2(x) − 1 ,

sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y) ,

cos(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y) ,

d sinh(x)

dx
= cosh(x) ,

d cosh(x)

dx
= sinh(x) ,

arcsinh(x) = ln
(

x +
√

x2 + 1
)

, arccosh(x) = ± ln
(

x +
√

x2 − 1
)

sinh2(x) =
1

2
[cosh(2x) − 1] , and cosh2(x) =

1

2
[cosh(2x) + 1] , (22)

(e.g., Wikipedia: Hyperbolic functions: Useful relations; Wikipedia: Hybperbolic functions:

Inverse functions as logarithms).

6.2. The Solution for z for g = h = 1

First, we note that this general solution has great physical relevance since all special

case two-density-component solutions follow from it except those with positive curvature

(i.e., those with Ω2,0 < 0) and negative Λ (i.e., those with Ω0,0 = ΩΛ,0 < 0 which are not

interesting in modern cosmology at present). In particular the radiation-matter universe and

the matter-Λ universe which combine to the make the Λ-CDM model are derivable from this

general solution.

For g = h = 1, the two-density-component Friedmann equation is

z̃2 = 1 + z2 (23)
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and from the 2nd and 6th members of Equation (22) in § 6.1, it is clear that

z = sinh(η̃) and z = − sinh(η̃) . (24)

are solutions to the two-density-component Friedmann equation (i.e., Equation (17) in § 5).

Note the first solution is only allowed for η̃ ≥ 0 and the second for η̃ ≤ 0.

As mentioned in § 2, we do not usually consider monotonically decreasing solutions for

z and so will not further consider the second solution in Equation (24).

Note that solutions like Equation (24) which expand from a zero of cosmic scale factor

or generalized cosmic scale factor (i.e., solutions for any of z, y, x or a), we call point-origin

solutions. So Equation (24) is a point-origin solution. Point origin is an old term for what

is now called a Big Bang singularity (e.g., Bondi 1961, p. 117). It seems appropriate revive

the term point origin and use it rather than use Big Bang singularity since most point-origin

solutions are not viable cosmic scale factor or generalized cosmic scale factor solutions for

the observable universe, and so there is no need to think of Big Bang like conditions at their

origin in time.

Usually, we write point-origin solutions with the point origin at the zero of the time-like

variable (i.e., time, conformal time, or generalized conformal time). However, sometimes

shifting the point origin to another value of the time-like variable is useful. For example, for

Equation (24), we will shift the point origin to η̃0. Using the 4th member of Equation (22)

in § 6.1, we obtain the time-like-variable-zero-point-shift formula

z = sinh(η̃− η̃0) = cosh(η̃0) sinh(η̃)− sinh(η̃0) cosh(η̃) = A sinh(η̃)±
√

A2 − 1 cosh(η̃) , (25)

where the upper case is for η̃0) ≤ 0 (since it requires a larger z than for η̃0) ≥ 0) and the

lower case for η̃0) ≥ 0 (since it requires a smaller z than for η̃0) ≥ 0), and where we define

A = cosh(η̃0) ≥ 1 . (26)

We can find a A and η̃0 so that we can drive the solution through any arbitrary point

(η̃1 ≥ η̃0, z1 ≥ 0). The appropriate A follows from solving the quadratic equation

0 = A2 + 2zA sinh(η̃1) − [cosh2(η̃1) + z2
1 ] . (27)
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The general solution for A and interesting special cases are given by

A =



















































































−z1 sinh(η̃1) +
√

z2
1 sinh2(η̃1) + [cosh2(η̃1) + z2

1 ] in general and note the

other quadratic root for A

is ruled out since

it gives A < 0;

cosh(η̃1) for z1 = 0. This result

implies η̃0 = ±η̃1;
√

1 + z2
1 for η̃1 = 0;

1 for η̃1 = 0 and z1 = 0

which is just the

unshifted time-like

variable value for A.

(28)

The value for η̃0 is given by

η̃0 = arccosh(A) = ± ln
(

A +
√

A2 − 1
)

(29)

where we have used the 9th member of Equation (22) in § 6.1 However the explicit formula

for arccosh(x) is indeterminate with respect to sign. But η̃0 can be fully determined by

substituting from η̃1 and z1 into Equation (25) and rearranging:

η̃0 = arcsinh

[−z1 + A sinh(η̃1)

cosh(η̃1)

]

. (30)

Alternatively, the sign of −z1 + A sinh(η̃1) gives the sign of η̃0 for Equation (29).

The time-like-variable-zero-point-shift formula Equation (25) was used by (Galanti & Ron-

cadelli 2021, p. (3)) in their nearly exact Λ-CDM cosmic scale factor formula for the matter-Λ

era.

What of stationary points for the cosmic scale factor solutions derived from z(η). From

Equation (14) in § 5, we know that η̃ increases strictly with τ , and so z(τ) is increases

strictly with τ . From Equation (13) in § 5, we know that x increases strictly with z, and so

x(τ) increases strictly with τ or in unscaled terms a(t) increases strictly with cosmic time

t. Consequently, both x(τ) and a(t) have no ordinary stationary points nor as asymptotic

stationary points. Since there are no asymptotic stationary points for these scale factor

solutions, there are no constant solutions accompanying them following the discussion given

in § 3.



– 19 –

6.3. The Solution for z for g = −1, h = 1

This general solution is relevant for special case solutions for positive curvature universes

which are the only considered universes with P > 0 and ΩP,0 < 0. Since p = 2 for g = −1,

we must have q = 0 and Ωq,0 > 0 (i.e., a positive Λ density component) or q = 1 for which

Ωq,0 > 0 are the only considered cases (e.g., a quintessence universe).

For g = −1 and h = 1, the two-density-component Friedmann equation is

z̃2 = −1 + z2 (31)

and from the 3rd and 7th members of Equation (22) in § 6.1, it is clear that

z = cosh(η̃) (32)

and the z = − cosh(η̃) is not allowed since it is negative for all η̃.

We note that the solution z = cosh(η̃) as a single stationary point at η̃ = 0 which is a

minimum point. Analogously to the case of the solution Equation (24) in § 6.2, we see that

this implies all special case solutions for cosmic scale factor scaled y(τ) and consequently

unscaled a(t) derived from z = cosh(η̃) have a single stationary point (which is a minimum)

at a finite time. Since there is no stationary point at infinity, there are no constant solutions

to Equation (23) following the discussion given in § 3.

Universe models with a cosmic scale factor minimum have long been known (e.g., Bondi

1961, p. 84–86) and elaborate variations on them called Big Bounce models have receeved

some consideration. (e.g., Wikipedia: Big Bounce). However, we will not consider any

special case solutions that follow from z = cosh(η̃) in this paper, except briefly in §§ § 12.2

and § 12.3.

Analogously to the case of the solution Equation (24) in § 6.2, we can shift the point

origin of z = cosh(η̃) to any another value of η̃. There is no point in repeating the shifting

procedure for z = cosh(η̃) since it is straightforward.

6.4. The Solution for z for g = 1, h = −1

This general solution is relevant for special case solutions for positive curvature universes

(which Ωq=2,0 < 0 ) and negative Λ universes (which have (Ωq=0,0 < 0).

For g = 1 and h = −1, the two-density-component Friedmann equation is

z̃2 = 1 − z2 (33)
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and the solutions are immediately seen to be

z = sin(η̃) and z = cos(η̃) . (34)

Of course, the two solutions are actually the one and the same solution with a shift of the η̃

zero point for the point origin. Also analogously to the case of the solution Equation (24)

in § 6.2, we can shift the point origin of either z = sin(η̃) or z = cos(η̃) to any another

value of η̃. There is no point in repeating the shifting procedure for these solutions since it

is straightforward.

A key point about the solutions of Equation (34) is that they are not oscillating so-

lutions. The Friedmann equation in and of itself gives no guidance on how to extend the

cosmologically relevant solutions through z = 0. Thus, the solution Equation (34) gives only

a single half cycle of the sine or cosine behavior. Note then that the solution does have one

stationary point, a maximum, and has both a point origin and point end.

We derive the positive-curvature-matter universe solution starting from Equation (34)

in § 12.3.1.

6.5. Summary of Solution for z

To summarize the generalized cosmic scale factor solutions and their ranges of physical

validity without complicating generality:

z =







sinh(η̃) for g = h = 1 for η̃ ∈ [0,∞];

cosh(η̃) for g = −1, h = 1 for η̃ ∈ [−∞,∞];

sin(η̃) for g = 1, h = −1 for η̃ ∈ [0, π].

(35)

There are analytic inverses for the solutions η̃(z) that are particularly useful for cases

where cosmic time w(η̃) has an exact solution as a function of η̃ since then one can find exact

analytic cosmic time solutions w(z) and w(y). The inverse solutions η̃(z) are:

η̃ =







arcsinh(z) = ln
(

z +
√

z2 + 1
)

for g = h = 1 for z ∈ [0,∞];

arccosh(z) = ± ln
(

z +
√

z2 − 1
)

for g = −1, h = 1 for z ∈ [1,∞];

arcsin(z) and π − arcsin(z) for g = 1, h = −1 for z ∈ [0, 1].

(36)

Note that the last two cases are double-value functions of z due to the non-monotonic nature

of the cosh(η̃) and sin(η̃) solutions.
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7. Complete Two-Density-Component Solutions

In order to find all complete two-density-component solutions, we need to find all cases

the cosmic time is an exact (analytic) solution of generalized conformal time. To do this

and making use of Equation (14) in § 5, we define the new scaled time w and new time scale

τscale

F dw =
F dτ

τscale
=

F dτ

F (2/R)
(

√

|Ωp,0|/|Ωq,0|
)Q

/
√

|Ωq,0|
= zQ dη̃ = yq/2 dη̃ , (37)

where we define

F =

{

R/2 for leaving factor R/2 explicit;

1 for including R/2 in the definition of τscale.
(38)

The reason for the F factor is that depending on the special case solutions for w and η̃, one

may want either the factor R/2 explicit or included in the definition of τscale. In fact, we find

leaving the factor R/2 explicit seems the most simplifying and elegant choice since it leaves

the formula for τscale simple and have used this choise in all our special case complete exact

solutions given in §§ 12 § 13, and 14.

The meaing of τscale can be explicated as follows making use of Equation (13) in § 5 for

the definition of xscale, Equation (15) § 5 for the definition of Q, and Equation (19) in § 5.1

for the definition τCh:

τscale = F

(

2

R

)

(

√

|Ωp,0|/|Ωq,0|
)Q

√

|Ωq,0|
= F

(

2

R

)

(√
xscale

)q

√

|Ωq,0|
= F

(

2

R

)

1
√

|Ωq,0|x−q
scale

= F

(

2

R

)√
2

1
√

2|Ωq,0|x−q
scale

= F

(

2

R

)√
2 τCh ≈ τCh , (39)

where the last expression is an order-of approximation. Equation (39) shows that τscale can

also be regarded as charateristic time for x to change by of order xscale when x = xscale.

The effect of the Q parameter introduced in Equation (15) in § 5 on the solutions can
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be explicated as follows:

Q =































































































































































q

R
=

q

p − q
in general;

0 for q = 0 in which case η̃ is

just a secondary scaled time.

1 for p = 2q in which case η̃ is

an ordinary conformal time

relative to the generalized scale factor z.

integer ≥ 0 for which a complete exact solution exists

and one can always obtain an exact w(y) solution

as we show below.

0, 1, 3 for which one can obtain both w(y) and y(w),

and so η̃ becomes an unnecessary variable.

For other integer Q, one cannot obtain an exact y(w),

and so η̃ remains a necessary variable.

We show this below.

non-integer > 0 for which no complete exact solution exists

since trigonometric and hyperbolic

functions raised to non-integer powers

cannot be exactly integrated.

(40)

For convenient reference, note:

p =











































p > 0 for q = 0, but otherwise general.
(

1 +
1

Q

)

q for q > 0.

2q,
3

2
q,

4

3
q,

5

4
q, . . . for, respectively, Q = 1, 2, 3, 4, 5 . . .

4 for the radiation-matter universe

where q = 3 and Q = 4.

(41)

Why are there always complete exact solutions for all Q integer? First, exact integral so-

lutions exist for integer powers Q of hyperbolic sine, hyperbolic cosine, and sine functions of

a variable (see, e.g., Wikipedia: List of integrals of hyperbolic functions: Integrals involving

only hyperbolic sine functions; Wikipedia: List of integrals of hyperbolic functions: Integrals

involving only hyperbolic cosine functions; Wikipedia: List of integrals of trigonometric func-

tions: Integrands involving only sine). Second, the 3 exact general (two-density-component)
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solutions z(η̃) are of these 3 kinds of functions (see Equation (35) in § 6.5). Therefore one

can always find exact w(η̃) solutions to complement the exact z(η̃), and thus always has

complete exact solutions for integer Q.

Why are exact w(y) solutions for all Q integer? As shown by Equation (36) in § 6.5,

one exact solutions η̃(z), and so one can obtain w(z) solutions and so w(y) solutions.

Why do exact y(w) solutions exist only for Q values 0, 1, and 3? For Q values 0

and 1, one can easily invert the w(η̃) solutions as we show in in §§ 8 and 9, and so easily

obtain the corresponding y(w) solutions. In § 11, we solve a depressed cubic equation (see

Wikipedia: Cubic equation: Depressed cubic) to invert the w(η̃) solution, and so obtain the

corresponding y(w) solution.

Now for even Q values other than 0, the w(η̃) solutions require the exact integrals for

even integer powers Q > 0 of hyperbolic sine, hyperbolic cosine, and sine functions of a

variable see, e.g., Wikipedia: List of integrals of hyperbolic functions: Integrals involving

only hyperbolic sine functions; Wikipedia: List of integrals of hyperbolic functions: Integrals

involving only hyperbolic cosine functions; Wikipedia: List of integrals of trigonometric

functions: Integrands involving only sine). However, these exact solutions always depend on

8. The Q = 0 Solutions w(η̃), w(y), and y(w)

9. The Q = 1 Solutions w(η̃), w(y), and y(w)

10. The Q = 2 Solutions w(η̃), w(y), and y(w)

11. The Q = 3 Solutions w(η̃), w(y), and y(w)

12. Special Complete Two-Density-Component Solutions

In this section, we derive formulae for special case solutions of the cosmic scale factor

(using the generalized cosmic scale factor z solutions) in terms of scaled cosmic time (not

generalized conformal cosmic time) where possible and conformal cosmic time where not.

But first we need some more formalism. ?????

In the following subsections, where we derive the special case solutions, we consider

only integer Q ∈ [0, 3] since these seem to be the cases of most general interest and are most

tractable.
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12.1. Solutions for Q = 0

Using Equation (37) in § 7 with Q = 0, we have

Fw = η̃ , (42)

where we have neglected constants of integration since they are a pointless generalization.

Thus, our generalized conformal time reduces to ordinary scaled cosmic time aside from the

factor of F .

In fact, for Q = 0 solutions, q = 0, and so one of the two density components for the

two-density-component solution cases must be the Λ component. The other term is general,

except that p > q = 0.

The general solution for Q = 0, q = 0, p > q = 0, and also Ω0,0 > 0 (i.e., positive

Λ universes since negative Λ universes are not so interesting in modern cosmology) follows

from Equation (24) in § 6.2 (i.e., z = sinh(η̃)), Equation (13) in § 5 (i.e., y = z2/R), and

setting F = R/2 = p/2 in Equation (38) in § 7:

y =































sinh2/p
(p

2
w
)

in general;

(p

2
w
)2/p

in the small w limit;

ew

2
in the large w limit.

(43)

If we descale from y to x (using Equation (13) in § 5 and w to τ (using Equation (37)

in § 7 and recalling ΩΛ,0 > 0 (as aforementioned), Equation (43) above becomes

x =







































(

Ωp,0

ΩΛ,0

)1/p

sinh2/p
[(p

2

√

ΩΛ,0

)

τ
]

in general;

[(p

2

√

Ωp,0

)

τ
]2/p

in the small τ limit;

(

Ωp,0

ΩΛ,0

)1/p
e(
√

ΩΛ,0 )τ

2
in the large τ limit.

(44)

Note that the 3rd line of Equation (44) is not exactly the exact solution for the pure Λ

universe because the Ωp,0 factor has not canceled out. This is a feature of our assumption

that there are two powers-of-a terms in the Friedmann equation. If one starts from the

Friedmann equation form given by Equation (4) in § 2 with only the ΩΛ,0 term, one obtains
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the pure Λ universe cosmic scale factor: i.e.,

x = x0e
√

ΩΛ,0(τ−τ0) , (45)

where the x0 and τ0 are just constants of integration to be set by initial conditions. We note

the pure Λ universe has no point origin and the scale factor only goes to 0 asymptotically

as τ → −∞. The pure Λ universe is, in fact, the de Sitter universe (presented 1917: e.g.,

Wikipedia: de Sitter universe) which was the first expanding universe model. The 3rd line

is a general p > q = 0 analogue solution for the de Sitter universe.

12.1.1. Solutions for the Matter-Positive-Λ Universe

An important special case of Equation (44) in § 12.1 is for p = 3 (i.e., the p case for

matter):

x =











































(

ΩM,0

ΩΛ,0

)1/3

sinh2/3

[(

3

2

√

ΩΛ,0

)

τ

]

in general;

[(

3

2

√

ΩM,0

)

τ

]2/3

in the small τ limit;

(

ΩM,0

ΩΛ,0

)1/3
e(
√

ΩΛ,0 )τ

2
in the large τ limit.

(46)

The first line of Equation (46) is the well known Λ-CDM model cosmic scale factor

solution for the matter-Λ era (e.g., Steiner 2008, p. 12; Universe in Problems: Evolution of

Universe Problem 13), here, of course, in scaled x and τ rather than a and t.

The 2nd line of Equation (46) is the exact solution for a pure matter universe and is,

in fact, the Einstein-de Sitter universe (presented 1932: e.g., Wikipedia: Einstein-de Sitter

universe; O’Raifeartaigh et al. 2015) which was often considered the standard cosmological

model circa 1960–1995 before the start of the dominance of the Λ-CDM circa 1995 (e.g.,

Bondi 1961, p. 166; Scott 2018, p. 10). The pure matter universe cosmic scale factor in

unscaled quantities is derived directly in Appendix B.

The 3rd line of Equation (46) is the p = 3 analogue solution for the de Sitter universe

(presented 1917: e.g., Wikipedia: de Sitter universe). We show the general p analogue above

in § 12.1.
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12.1.2. Solutions for the Radiation-Positive-Λ Universe

Another important special case of Equation (44) in § 12.1 (though not as important as

the p = 3 case of § 12.1.1 since it does not apply to the actual observable universe) is for

p = 4 (i.e., the p case for radiation):

x =







































(

ΩR,0

ΩΛ,0

)1/4

sinh1/2
[(

2
√

ΩΛ,0

)

τ
]

in general;

[(

2
√

ΩR,0

)

τ
]1/2

in the small τ limit;

(

ΩR,0

ΩΛ,0

)1/4
e(
√

ΩΛ,0)τ

2
in the large τ limit.

(47)

The first line of Equation (47) (i.e., the exact radiation-positive-Λ universe cosmic scale

factor solution) is the analogue of the first line of Equation (46) in § 12.1.1 (i.e., the exact

matter-positive-Λ universe cosmic scale factor solution). We will make use of

12.2. Solutions for Q = 1

For Q = 1 and choosing the integration interval for maximum simplicity, we have for

w(η̃) solutions

Fw =

∫ η̃

0

z dη̃′ =



































cosh(η̃) − 1 for g = h = 1, z = sinh(η̃),

and η̃ ∈ [0,∞];

sinh(η̃) for g = −1, h = 1, z = cosh(η̃),

and η̃ ∈ [0,∞];

1 − cos(η̃) for g = 1, h = −1, z = sin(η̃),

and η̃ ∈ [0, π],

(48)

where the 3 general solutions for z(η̃) are from, respectively, SS 6.2, 6.3, and 6.4. Recall

that since z ≥ 0 always, the z = sin(η̃) is limited to the argument range η̃ ∈ [0, π]: i.e., this

solution has both a point origin and point end.
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All the Fw(η̃) solutions can be inverted analytically for η̃(w) solutions:

η̃ =

∫ η̃

0

z dη̃′ =



































arccosh(Fw + 1) for g = h = 1, z = sinh(η̃),

= ln[(Fw + 1) +
√

(Fw + 1)2 − 1] and Fw ∈ [0,∞];

arcsinh(Fw) = ln[Fw +
√

(Fw)2 + 1] for g = −1, h = 1, z = cosh(η̃),

and Fw ∈ [0,∞];

arccos(1 − Fw) for g = 1, h = −1, z = sin(η̃),

and Fw ∈ [0, 2],
(49)

where we have used two of the hyperbolic function identities of Equation (22) in § 6.1.

Now for q/R = q/(p − q) = 1, we must have p = 2q. Given that the only widely

considered powers are integers P ∈ [0, 4] (see § 6), there may be only two interesting cases of

Q = 1: i.e., with p = 2 and q = 1 and with p = 4 and q = 2. In fact, only the case with p = 4

and q = 2 (and therefore R = p − q = 2 and F = R/2 = 1) seems very interesting since this

corresponds to the negative-curvature-radiation universe (i.e., which has Ωq=2,0 > 0) and the

positive-curvature-radiation universe (i.e., which has Ωq=2,0 < 0). Recall the general solution

for g = −1, h = 1 can only occur if p = 2 since curvature density parameter is the largest

density component that can be negative.

For the negative-curvature-radiation universe, one finds from the above formulae, the

hyperbolic function identity sinh2(x) = cosh2(x) − 1, and Equation (13) in § 6 (i.e., y =

z2/R = z in this case) that

y = sinh(η̃) = sinh[arccosh(w + 1)] =
√

{cosh[arccosh(w + 1)]}2 − 1

=
√

(w + 1)2 − 1 =
√

w2 + 2w =
√

w
√

w + 2 (50)

for w ∈ [0,∞]. For the positive-curvature-radiation universe, one finds from the above

formulae that

y = sin(η̃) = sin[arccos(1 − w)] =
√

1 − {cos[arccos(1 − w)]}2

=
√

1 − (1 − w)2 =
√

2w − w2 =
√

w
√

2 − w (51)

for w ∈ [0, 2].
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12.3. Solutions for Q = 2

For Q = 2 and choosing the integration interval for maximum simplicity, we have for

w(η̃) solutions

Fw =

∫ η̃

0

z2 dη̃′ =



















































































∫ η̃

0

sinh2(η̃′) dη̃′ for g = h = 1, z = sinh(η̃),

=
1

2

[

1

2
sinh(2η̃) − η̃

]

and η̃ ∈ [0,∞];
∫ η̃

0

cosh2(η̃′) dη̃′ for g = −1, h = 1, z = cosh(η̃),

=
1

2

[

1

2
sinh(2η̃) + η̃

]

and η̃ ∈ [0,∞];
∫ η̃

0

sin2(η̃′) dη̃′ for g = 1, h = −1, z = sin(η̃),

=
1

2

[

η̃ − 1

2
sin(2η̃)

]

and η̃ ∈ [0, π],

(52)

where we have used the 3 general solutions for z(η̃) from, respectively, SS 6.2, 6.3, and 6.4,

hyperbolic function identities from from Equation (22) in § 6.1, and the trigonometric identity

sin2(x) = (1/2)[1 − cos(2x)] (e.g., Wikipedia: List of trigonometric identities: Half-angle

formulae). Recall that since z ≥ 0 always, the z = sin(η̃) is limited to the argument range

η̃ ∈ [0, π]: i.e., this solution has both a point origin and point end.

There are no analytic inversion formulae η̃(w) for the formulae in Equation (52). So

one can only find solutions for y = z2/R in terms of generalized conformal time η̃(w) or the

standard conformal time η as it turns out.

12.3.1. The Negative-Curvature-Matter Universe and the Positive-Curvature-Matter

Universe Solutions

In this case for Q = q/R = q/(p−q) = 2, we must have p = (3/2)q. Given that the only

widely considered powers are integers P ∈ [0, 4] (see § 6), there is only one interesting case

of Q = 2: i.e., with p = 3, q = 2, R = p− q = 1, and F = R/2 = 1/2. This case (which is all

we consider below) corresponds to the negative-curvature-matter universe (i.e., which has

Ωq=2,0 > 0) and the positive-curvature-matter universe (i.e., which has Ωq=2,0 < 0). Recall

the general solution for g = −1, h = 1 can only occur if p = 2 since curvature density

parameter is the largest density component that can be negative.
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For r = 1 and F = R/2 = 1/2, we have

y = z2 and dw = 2y dη̃ , (53)

where we have used and Equation (13) in § 6 (i.e., y = z2/R = z2 in this case) and Equa-

tion (37) (in § 7: i.e., F dw = zq/R dη̃ = y dη̃ in this case????). Actually, the (standard)

conformal time η is defined by dw = y dη and so in this case η = 2η̃. Rewriting Equa-

tion (52) for the negative-curvature-matter universe and positive-curvature-matter universe

using η instead of η = η̃

w =























1

2
[sinh(η) − η] for g = h = 1, z = sinh(η/2),

and η ∈ [0,∞];
1

2
[η − sin(η)] for g = 1, h = −1, z = sin(η/2),

and η ∈ [0, 2π],

(54)

The solutions y(η) are

y =











sinh2
(η

2

)

=
1

2
[cos(η) − 1] for η ∈ [0,∞];

sin2
(η

2

)

=
1

2
[1 − cos(η)] for η ∈ [0, 2π],

(55)

where we have used hyperbolic function identities from from Equation (22) in § 6.1, and the

trigonometric identity sin2(x) = (1/2)[1 − cos(2x)] (e.g., Wikipedia: List of trigonometric

identities: Half-angle formulae).

Note the Friedmann equation as aforesaid does not in and of itself allow us to extrapolate

through zeros of its solutions. So the positive-curvature-matter universe solution is only

defined for the η domain [0, 2π], and therefore the w domain [0, π]. At the end points, y(η)

and y(w) are zero. Note also that

dy

dη
=

1

2
sin(η) , (56)

and so y(η = π) = y(w = π/2) = 1 is the only maximum of y(η).

As noted above, there are no analytic inversion formulae for w(η̃) which is the same

as saying no analytic inversion formulae for w(η). However, one can determine some things

about the solutions y(w). For an example, consider the positive-curvature-matter universe.

We note the following identities:

y(2π − η) =
1

2
[1 − cos(2π − η)] =

1

2
[1 − cos(2π) cos(η) − sin(2π) sin(η)]
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=
1

2
[1 − cos(η)] = y(η) . (57)

dy

dw
(η) =

dy/dη

dw/dη
=

1

2

sin(η)

y(η)
(58)

dy

dw
(2π − η) = −1

2

sin(η)

y(η)
= − dy

dw
(η) (59)

w(2π − η) =
1

2
[2π − η − sin(2π − η)] =

1

2
[2π − η − sin(2π) cos(η) + cos(2π) sin(η)]

=
1

2
[2π − η + sin(η)] = π − w(η) . (60)

From the first and third equation above, we see that y(η) at symmetrical points around the

point η = π has the same value and has slopes dy/dw of the opposite sign. Those two points

along the η axis by the 4th equation above correspond to symmetrical points on the w axis

about the point w = π/2. The upshot is that y(w) is symmetrical about w = π/2: i.e.,

y(π − w) = y(w) , (61)

which is an interesting result to know. Recall that y(w = π/2) = 1 is the maximum of y(w).

In fact, the symmetry result Equation (61) suggests that y(w) can be approximated by

a sine-like function over the w domain [0, π]. In the following discussion we follow this clue,

but we refer only to the w domain [0, π/2] since the w domain [π/2, π] has the same behavior

mutatis mutandis. For a good approximation, we have to incorporate how y(w) behaves for

small w. So now consider, the small w expansions of w(η) and y(η):

w =
1

2
[η − sin(η)] ≈ 1

12
η3 (62)

y =
1

2
[1 − cos(η)] ≈ 1

4
η2 =

122/3

4
w2/3 =

(

3

2

)2/3

w2/3 = (1.31037 . . .) × w2/3 . (63)

In order to incorporate the small w behavior of y(w) in an sine-like approximation for y(w),

we first suggest an approximation A:

yA(w) = sin2/3(w) . (64)

Approximation A at the endpoints w = 0 and w = π/2 has the exact values (respectively 0

and 1) and is always an underestimate with maximum relative error of ∼ 24 % asymptotically

as w → 0. Approximation A’s major problem is that it has the wrong power coefficient (i.e.,

1) as w → 0: the right power coefficient is (3/2)2/3, of course. We improve approximation A

to approximation B with a 2nd order divisor correction that gives the right power coefficient

as w → 0:

yB(w) =
sin2/3(w)

[1 − C(w − π/2)]2
, (65)
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where

C =
1 − 1/(3/2)2/3

(π/2)2
. (66)

Approximation B at the endpoints w = 0 and w = π/2 has the exact values (respectively

0 and 1) and is always an overestimate with maximum relative error of ∼ 2.25 % at about

w = (0.11169 . . .) × π/2. Approximation B is probably as accurate as one would like for ed-

ucational reasons. Note a comparable 2nd order multiplier correction is always less accurate

than the 2nd order divisor correction: they are asymptotically the same as w → 0 and the

latter has relative error ∼ 30 % smaller than the former asymptotically as w → π/2.

12.4. Solutions for Q = 3

For Q = 3, we have only one interesting case: the radiation-matter universe which has

p = 4, q = 3, R = 1, and g = h = 1. The radiation-matter universe is, of course, Λ-CDM

model in the radiation-matter era which is prior to the matter era which is prior to the

matter-Λ era where cosmic present is located.

From Equation (13) in § 5 Equation (24) in § 6.2, and Equation (37) in § 7 and Equa-

tions (40) and (38) in § 7, we find that

y = z2 = sinh2(η̃) , (67)

1

2
dw = sinh3(η̃) dη̃ , (68)

and

w =
τ

τscale

=
τ

(ΩR,0/ΩM,0)
3/2 /

√

ΩM,0

=
τ

Ω
3/2
R,0/Ω2

M,0

, (69)

where we have set F = R/2 = 1/2 in Equation (38) from § 7. We now solve for w(η̃) requiring

w(η̃ = 0) = 0 so that the zero point of scaled cosmic time and generalized conformal time

agree which implies that the cosmic time zero gives the generalized scale factor zero (since

z = sinh(η̃)), and so the point origin occurs at the fiducial cosmic time zero as one would

like. The solution is

1

2
w =

∫ η̃

0

sinh3(η̃′) dη̃′

=

∫ η̃

0

sinh(η̃′)[cosh2(η̃′) − 1] dη̃′

=

[

1

3
cosh3(η̃′) − cosh(η̃′)

] ∣

∣

∣

∣

η̃

0
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=
1

3
cosh3(η̃) − cosh(η̃) +

2

3
(70)

which could have been done by a table integral (see, e.g., Wikipedia: List of integrals of

hyperbolic functions: Integrals involving only hyperbolic sine functions). We can now find

w(y) explicitly:

w =
2

3
[1 + sinh2(η̃)]3/2 − 2[1 + sinh2(η̃)]1/2 +

4

3
=

2

3
(1 + y)3/2 − 2(1 + y)1/2 +

4

3

=
2

3
(y − 2)

√

1 + y +
4

3
. (71)

We will explicate the solution w(y) in § 13. Here we are interested in finding the inverse

solution y(w).

For inverse solution y(w), we first find cosh(η̃) as a function of w. Defining

u = cosh(η̃) , (72)

we can rearrange Equation (70) as a cubic equation

0 = u3 − 3u +

(

2 − 3

2
w

)

(73)

Equation (73) is, in fact, a depressed cubic equation in that it lacks a u2 term (e.g., Wikipedia:

Cubic equation: Depressed cubic). Depressed cubic equations have simpler solutions than

general cubic equations.

The solution of Equation (73) follows from a standard procedure (e.g., Press et al. 1992,

p. 179). First we define parameters

Q̃ = 1 and R̃ = 1 − 3

4
w , (74)

where the tildes are needed to distinguish parameters from the totally different parameters

Q and R that we use for other purposes. For

R̃2 =

(

1 − 3

4
w

)2

≤ 1 = Q̃3 (75)

implying w ∈ [0, 8/3], there are three real roots written in terms of parameter

θ = arccos





R̃
√

Q̃3



 = arccos

(

1 − 3

4
w

)

(76)
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In fact, the 1st and 3rd of the three real root formulae specified by the procedure (e.g.,

Press et al. 1992, p. 179) are ruled out since they give some values for u < 1 and since

u = cosh(η̃) ≥ 1 always. That leaves the 2nd root formula which we rearrange thusly

u = −2 cos

{

arccos[1 − (3/4)w] + 2π

3

}

= −2 cos

{

π − arccos[(3/4)w − 1] + 2π

3

}

= −2 cos

{

π − arccos[(3/4)w − 1]

3

}

= 2 cos

{

arccos[(3/4)w − 1]

3

}

, (77)

where we used the inverse trigonometric identity arccos(x) = π−arccos(−x) (e.g., Wikipedia:

Inverse trigonometric functions: Relationships among the inverse trigonometric functions)

and the trigonometric identity cos(x + y) = cos(x) cos(y) − sin(x) sin(y) (e.g., Wikipedia:

Trigonometric functions: Sum and difference formulas). So our formula for allowed root u is

u =



























2 cos

{

arccos[(3/4)w − 1]

3

}

for w ∈ [0, 8/3];

1 for w = 0;√
3 for w = 4/3;

2 for w = 8/3.

(78)

For

R̃2 =

(

1 − 3

4
w

)2

≥ 1 = Q̃3 (79)

implying w ≥ 8/3, there is only one real root

u =







A +
1

A
for w ≥ 8/3;

2 for w = 8/3,

(80)

where

A =







[(

3

4

)

w − 1

]

+

√

[(

3

4

)

w − 1

]2

− 1







1/3

. (81)

From Equation (67) and Equation (72) above and the first line of Equation (22) in § 6.1,
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we find the solution for the scaled cosmic scale factor

y(w) = cosh2(η̃) − 1 = u2 − 1 =



































































[

2 cos

{

arccos[(3/4)w − 1]

3

}]2

− 1 for w ∈ [0, 8/3];

(

A +
1

A

)2

− 1 for w ≥ 8/3.

(

3

2
w

)2/3

for w >> 1

(i.e., the large w

asymptotic

solution).
(82)

We call Equation (82) the 2nd exact formula for y(w). What we call 1st exact formula

(Galanti & Roncadelli 2021, p. 3) is given by Equation (99) in § 14.

The functional behavior of y(w) is not obvious (except for the large w asymptotic

solution), but it can be easily investigated using the inverse w(y) which we have already

found above in Equation (71). However, for a sanity check we rederive it from Equations (73)

and (82) and then obtain its 1st and 2nd derivatives:

w(y) =
2

3
u3 − 2u +

4

3
=

2

3
(1 + y)3/2 − 2(1 + y)1/2 +

4

3
=

2

3
(y − 2)

√

1 + y +
4

3
(83)

dw

dy
=

y√
1 + y

(84)

d2w

dy2
=

1 + (1/2)y

(1 + y)3/2
. (85)

From the derivative dw/dy, the only stationary point of y(w) is a minimum at y = 0 (i.e., the

point origin) and this implies that y(w = 0) has infinite slope and for w ≥ 0, y(w) increases

strictly. The 2nd order small y solution for w(y) is

w =
1

2
y2 implying y =

√
2w (86)

is the lowest order solution for y(w). In fact, y =
√

2w is the pure radiation universe

solution for y(w) and it follows from from the small w limit with p = 4 (which is exactly

a pure radiation universe) of Equation (43) in § 12.1. The asymptotic large y solution for

w(y) is

w =
2

3
y3/2 implying y =

(

3

2
w

)2/3

(87)
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which is the asymptotic large w solution y(w) again. The y = [(3/2)w]2/3 is the pure matter

universe solution for y(w) and it follows from from the small w limit with p = 3 (which is

exactly a pure matter universe) of Equation (43) in § 12.1.

Given that Equation (83) for w(y) has a relatively simple form and has simple limiting

behaviors, we conclude that its overall behavior is not complicated. Therefore, we conclude

the behavior of y(w) (the inverse of w(y)) will not be complicated and will have the simple

limiting forms we expect (i.e., for the pure radiation universe and the pure matter universe)

despite the complicated appearance of the 2nd exact formula (Equation (82) above). The

1st exact formula also has a complicated appearance (see Equation (99) in § 14).

13. The Radiation-Matter Universe t(a) Solution

We have have already determined the solution for t(a) for the radiation-matter universe

in the scaled form w(y) by Equation (71) in § 12.4. However, for educational reasons we will

rederive the solution starting from primary scaled form of the Friedmann equation for the

radiation-matter universe (see the first line of Equation (13) in § 5).

The Friedmann equation radiation-matter universe (with radiation labeled by p with

p = 4 and matter labeled by q with q = 3) can be changed into a solvable equation for w(y)

for said universe as follows:

(

ẋ

x

)2

= Ωp,0x
−4 + Ωq,0x

−3

ẋ =
√

Ωp,0x−2 + Ωq,0x−1

dτ =
dx

√

Ωp,0x−2 + Ωq,0x−1

dτ =
x dx

√

Ωp,0 + Ωq,0x

dw =
y dy√
1 + y

, (88)

where the scaled cosmic scale factor is given by

y =
x

xscale
=

x

Ωp,0/Ωq,0
(89)

and the scaled time is given by

dw =
dτ

τscale
=

dτ

x2
scale/

√

Ωp,0

=
dτ

(Ωp,0/Ωq,0)2/
√

Ωp,0

=
dτ

(Ωp,0/Ωq,0)3/2/
√

Ωq,0

. (90)
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The xscale is, in fact, the radiation-matter-equality scaled cosmic scale factor x as follows

from matter-to-radiation ratio

RatioMR =
ΩM,0x

−3

ΩR,0x−4
=

ΩM,0

ΩR,0
x = y . (91)

Equation (88). Thus, y = 1 is the radiation-matter-equality scaled cosmic scale factor.

Equation (88) fifth line can be solved by a table integral for w(y) (i.e., t(a) when

unscaled), where w(y = 0) = 0. Additionally, the integrand can be Taylor expanded in small

y to obtain series expansion for w(y) that is useful for numerically accurate evaluation of

w(y) for small y as we discuss below. We summarize the formulae and some specific values



– 37 –

for w(y) as follows:

w =



























































































































































































































































2

3
(y − 2)

√

y + 1 +
4

3
in general;

0 for y = 0: i.e., time zero.

wRM =
4

3

(

1 − 1√
2

)

= 0.39052 . . . for y = 1, where wRM is

the radiation-matter-equality time;

4

3
= 1.33333 . . . = (3.41421 . . .) × wRM for y = 2: i.e., when the

matter-to-radiation ratio is 2;

8

3
= 2.66666 . . . (6.82842 . . .) × wRM for y = 3: i.e., when the

matter-to-radiation ratio is 3;
∫ y

0

dy

[ ∞
∑

n=0

(−1)n (2n − 1)!!

2nn!
yn+1

]

=

∫ y

0

dy

[

y − 1

2
y2 +

3

8
y3 − 5

16
y4

+
35

128
y5 − 63

128

6

+
231

1024
y7

− 429

2048
y8 + . . .

]

the integral with dw/dy series

as integrand and note (-1)!!=1;
∞
∑

n=0

any
n+2 =

∞
∑

n=0

(−1)n (2n − 1)!!

2nn!

yn+2

n + 2

=

∞
∑

n=0

(−1)n (2n − 1)!!

(2n)!!

yn+2

n + 2

=
1

2
y2 − 1

6
y3 +

3

32
y4 − 1

16
y5

+
35

768
y6 − 9

128

7

+
231

8192
y8

− 143

6144
y8 + . . . the w(y) series

(92)

The general solution given in Equation (92) is, of course, the exact solution mathe-

matically, but numerically it is subject to significant round-off error as y → 0 because the

first term must cancel to give w(y = 0) = 0. Thus, for series solution for w(y) will become

numerically more accurate at some point as y → 0. So the series solution is of interest.

Below we elucidate its convergence properties in § 13.1 and requirements for switching from
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the exact to the series solution in order to maintain numerical precision in § 13.2.

13.1. Convergence Properties of the w(y) Series Solution

First, what are the convergence properties of w(y) series solution. Appling the D’Alembert

ratio test for absolute convergence (e.g., Arfken 1985, p. 282,294) gives

RatioD’Al.-ra.-test = lim
n→∞

∣

∣

∣

∣

an

an−1

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

(2n − 1)

(2n)

(n + 1)

(n + 2)
y

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

(

1 − 1

2n

)(

1 +
1

n

)(

1 − 2

n

)

y

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

(

1 − 3

2n

)

y

∣

∣

∣

∣

=







y < 1 absolute convergence;

y = 1 indeterminate or no test;

y > 1 absolute divergence.

(93)

For the case of y = 1, we apply the Raabe test (e.g., Arfken 1985, p. 287,294):

RatioRaabe-test(y = 1) = lim
n→∞

n

∣

∣

∣

∣

an−1

an
− 1

∣

∣

∣

∣

= lim
n→∞

n

∣

∣

∣

∣

3

2n

∣

∣

∣

∣

=
3

2
> 1 (94)

which implies absolute convergence. Is there conditional converge for some y > 1? Note for

y > 1,

lim
n→∞

|an| = lim
n→∞

∣

∣

∣

∣

(2n − 1)!!

(2n)!!

yn+2

(n + 2)

∣

∣

∣

∣

≤ lim
n→∞

∣

∣

∣

∣

yn+2

n

∣

∣

∣

∣

= lim
n→∞

e(n+2) ln(y)

n
= lim

n→∞

ln(y)e(n+2) ln(y)

1
= ∞ , (95)

where we have treated n as a real number and used L’Hôpital’s rule (see, e.g., Wikipedia:

L’Hôpital’s rule). Since it is a general sufficient condition for divergence that limit of the

terms of an infinite series is nonzero (see, e.g., Wikipedia: Divergent series), we see that

the w(y) series diverges in all senses for all y > 1. To conclude, the w(y) series converges

absolutely for y ≤ 1 and diverges in all senses for y > 1.

13.2. Switching from the Exact to the Series Solution for w(y) in Order to

Maintain Numerical Precision

For what y value as y → 0 should one switch from the exact solution to series solution

for w(y) in order to maintain numerical precision? Both solutions recall are given by Equa-

tion (92) in § 13. Say one keeps terms of numerical signficance to of order precision m: i.e.,
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the smallest term one keeps has size relative to the zero term of order given by

10−m =
yj

yj0
= yj−j0 = yn = 10−un , (96)

where j = n+2 for the w(y) series and where we write y = 10−u. We now solve for n to find

n =
m

u
. (97)

Now in all the calculations done for this paper we use Fortran-95 with machine precision

m = 18. With m = 18, we find for u = 18, 9, 6, 3, 2, 1, 0.18 that, respectively, we need to

keep terms to approximately n = 1, 2, 3, 6, 9, 18, 100. Note y = 10−0.18 ≈ 0.66. Recall the

actual number of terms is n + 1 for the w(y) series.

To study the actual accuracy behavior of the series and exact solutions for w(y), we

compare their values for y ∈ [10−10, 1] computing series coefficients numerically for those

of higher order than displayed in Equation (92) in § 13. Recall the series solution is just

marginally absolutely convergent y = 1 (see S 13.1). For y = 10−10, the series solution gives

w = 0.499999999983333334× 10−20 ≈ 0.5 as expected and the exact solution fails altogether

giving 0 which has infinite relative error. For y = 10−9, the series solution and exact solution

agree to within relative error 0.08. For y ∈ [0.47, 0.70], the two solution agree to within

machine precision (i.e., their relative discrepancy is less than 10−18) using n = 99 for the

whole range. The approximate prediction in the last paragraph that n = 100 for the series

solution gives a machine precision value for w for y / 0.66 is verified. For y = 1, the relative

discrepancy between the two solutions, though growing, is still only 0.0007 for n = 100.

The range of agreement within machine precision of the two solutions implies that

the exact solution reaches machine precision for all y & 0.47. In fact for y < 0.50, the

series solution needs only n = 52 to give agreement within machine precision with the exact

solution. Therefore, we recommend switching to the series solution for y < 0.50 using n = 52

(i.e., 53 terms in the series solution).

14. COMPARISON OF FORMULAE FOR THE EXACT SOLUTION OF

THE RADIATION-MATTER UNIVERSE COSMIC SCALE FACTOR

The exact w(y) formula for the radiation-matter universe given by Equation (92) in § 13

can be rearranged as a cubic equation for y: i.e.,

0 = y3 − 3y2 +

(

−9

4
w2 + 6w

)

(98)
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which is not a general cubic equation since it lacks a y term but it is not a depressed cubic

equation since it has y2 term (e.g., Wikipedia: Cubic equation: Depressed cubic). Because

Equation (98) is not a depressed cubic equation or a simpler kind of cubic equation, its

solution is not as simple as the solution we found for the depressed cubic equation for u: i.e.,

Equation (73) in § 12.4 (e.g., Press et al. 1992, p. 179). Equation (98) is actually the starting

point for the derviation of the radiation-matter universe exact solution for the cosmic scale

factor given by Galanti & Roncadelli (2021, eq. (25)). However, they write it in an unscaled

form (Galanti & Roncadelli 2021, eq. (25)).

The exact solution formula of Galanti & Roncadelli (2021, eq. (20)) in scaled form

(scaled via Equation (6) in § 2, Equations (5), and (13) in § 5, and Equation (37) in § 7 is

y(w) =



















































1 − 2 sin

[

arcsin(W̃ )

3

]

for w ∈ [0, 4/3];

1 + 2 cos

[

arccos(W̃ )

3

]

for w ∈ [4/3, 8/3];

1 + 2 cosh

[

arccosh(W̃ )

3

]

for w ≥ 8/3,

(99)

where

W̃ = 1 − 3w +
9

8
w2 . (100)

Our exact solution formula for the cosmic scale factor (in scaled form) for the radiation-

matter universe recapitulated and compacted a bit from Equations (82) and (81) in § 12.4

is

y(w) =



















{

2 cos

[

arccos(W )

3

]}2

− 1 for w ∈ [0, 8/3];

(

A +
1

A

)2

− 1 for w ≥ 8/3.

(101)

where

A =
(

W +
√

W 2 − 1
)1/3

and W =
3

4
w − 1 . (102)

It is a remarkable fact that 1st exact formula (i.e., Equation (99)) and the 2nd exact

formula (i.e., Equation (101)) are mathematically equivalent given that they look so different.

However, they can both be derived exactly from Equation (83) in § 12.4: the former starting

with variable y and the latter with the variable u. That there two exact formulae that look

so different for the same universe model suggests that there may other cases of this situation

for other universe models dervied from the Friedmann equation.
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Note we did not need our general treatment of the two-density-component Friedmann

equation to find the 2nd exact solution. We just needed Equation (83) in § 12.4 in its form

for variable u. However, our general treatment was a natural path to that equation form

which otherwise would have been hard to find.

We judge the 2nd exact formula to be the simpler the 1st exact formula. It has only 2

time eras rather than 3. It uses only 2 special functions rather than 6. The innermost argu-

ment expression W is linear in scaled cosmic time w rather than quadratic w as is innermost

argument expression W̃ . However, the A parameter used in Equation (101) is a complica-

tion, but we judge that to be less important. Also that the derivation of Equation (101) is

simpler than that of Equation (99) as can be seen by a comparison of the derivation of the

former in § 12.4 and the derivation of the latter by Galanti & Roncadelli (2021, p. 5–7).

The small and large w cases for the 2 exact formulae are given by

y(w) =











√
2w w << 1;

(

3

2
w

)2

w >> 1,
(103)

where the small w case follows the w(y) series solution in Equation (92) in § 13 (see above)

and also Equation (108) in § 14.1 (see below) and the large w case follows directly from

Equations (99) and (100) or Equations (101) and (102) above. The small w case is the

pure radiation universe and the large w case the pure matter universe. The pure radiation

universe and pure matter universe cosmic scale factors in unscaled quantities are derived

directly in Appendix A. The pure matter universe (as mentioned above in § 12.1.1) is, in

fact, the Einstein-de Sitter universe (presented 1932: e.g., Wikipedia: Einstein-de Sitter

universe; O’Raifeartaigh et al. 2015) which was often considered the standard cosmological

model circa 1960–1995 before the start of the dominance of the Λ-CDM circa 1995 (e.g.,

Bondi 1961, p. 166; Scott 2018, p. 10).

We have tested the two exact formulae for numerical accuracy. We first calculate w(y)

to machine precision (i.e., m = 18 giving relative error . 10−18 for range of y values log-

arithmically spaced from y = 10−10 to y = 10. So we know the exact input y values to

machine precision. We then calculate the output y values from for obtained w values for

both exact formulae. Note the two exact formulae go to zero if evaluated exactly as w → 0

as Equation (103) shows. However, Equations (99) and (101) show that round-off will occur

as w → 0 in the numerical evaluation of the exact formulae since an additive factor of 1 must

be canceled for y → 0 as w → 0. As expected the exact formulae output values have relative

error less than machine precision for all large values of w, but as w becomes small eventually

have growing relative error. For the 1st exact formula Equation (99), relative error starts
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growing for w . 0.002 (y .???) and for y(w) series that we describe in § 14.1 below. The

y(w) series yields

14.1. The Series Solution for y(w)

The exact solution formulae for y(w) (Equations (99) and (101) in § 14) both seem

rather intractable for series expansion for small w. So instead we invert the series solution

for w(y) (Equation (92) in § 13) making some notational innovations for convenience as

necessary. First, let

y =

∞
∑

k=1

bkz
k =

∞
∑

k=0

b̃kz
k+1 . (104)

where we define z =
√

w and b̃k = bk+1 (e.g., b̃0 = b1, etc.). Second,

w = z2 =
∞
∑

n=2

ãnyn =
∞
∑

n=2

ãn

( ∞
∑

k=1

bkz
k

)n

(105)

=
∞
∑

n=2

ãn

( ∞
∑

k=0

b̃kz
k+1

)n

=
∞
∑

n=2

ãnz
n

( ∞
∑

k=0

b̃kz
k

)n

=
∞
∑

i=2

[

i
∑

n=2

cm=i−n(n)

]

zi , (106)

where ãn = an−2 (e.g., ã2 = a0, etc.: the an coefficients are those appearing in Equation (92)

in § 13) and the cm=i−n(n) coefficients are obtained from the formulae for a power series

raised to a power:

cm=0(n) = bn
0

cm=i−n>0(n) =
1

mb0

m
∑

k=1

(kn − m + k)bkcm−k(n) (107)

(see Wikipedia: Formal power series: Power series raised to powers).

Equation (105) was used to obtain analytic formulae for the first 6 coefficients bk by

hand with increasing labor as k increased and Equations (106) and (107) (using an algo-

rithm discussed below in § 14.2) were used to numerically confirm the analytic formulae and

compute numerical values for the coefficients bk for k = 7 to k = 12. The coefficients bk for

k = 1 to k = 12 were sufficient to obtain machine precision values for y ????
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bk =







































































































































































































1√
a2

=
√

2 = 0.141421 . . . for k = 1;

− ã3b
2
1

2ã2
=

1

3
= 0.333333 . . . for k = 2;

− ã2b
2
2 + 3ã3b

2
1b2 + ã4b

4
1

2ã2b1
= − 7

144

√
2 = −0.06874649 . . . for k = 3;

(

3ã2ã3ã4 − 2ã3
3 − ã2

2ã5

2ã3

)

b4
1 =

5

216
= 0.0231481 . . . for k = 4;

−
(

1

2ã2b1

)

[

ã2(2b1b4 + b2
3)

+ã3(3b
2
1b4 + 6b1b2b3 + b3

2)

+ã4(4b
3
1b3 + 6b2

1b
2
2)

+ã5(5b2b
4
1) + ã6b

6
1

]

= − 2275

345600

√
2 = −(0.930942 . . .) × 10−2 for k = 5;

−
(

1

2ã2b1

)

[

ã2(2b2b5 + 2b3b4)

+ã3(3b
2
1b5 + 6b1b2b4

+3b2
2b3 + 3b1b

2
3)

+ã4(4b
3
1b4 + 12b2

1b2b3 + 4b1b
3
2)

+ã5(5b1b3 + 10b3
1b

2
2)

+ã6(6b
5
1b2) + ã7b

7
1

]

=
1

243
= (0.4115226 . . .) × 10−2 for k = 6;

(108)

The reader might wonder if the series solutions y(w) and w(y) (given by Equation (92)

in § 13) are needed since the exact formulae can be used for high accuracy for, respectively,

very small w and y by using extremely high machine precision. We argue that given the great

importance of the radiation-matter universe as the ideal limit for the behavior of the actual

early observable (given the Big Bang paradigm, of course), one desires the series solutions

for complete understanding of the radiation-matter universe. Also the series solutions allow

ordinary levels of machine precision to be used without excessive round-off error, and so

avoid coding complications in calculating sufficiently high accuracy values of y(w) and its

w(y). Sufficiently, high accuracy calculations of y(w) and w(y) from formulae (exact and

series) provide stringent comparison tests for any computer code that calculates general

cosmic scale factors and cosmic times by numerical integration.
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14.2. The Algorithm for the Coefficients for the Series Solution for y(w)

Heck:

subroutine sub_rad_mat_y_series_coefficients_numerical

use iprecision

use constants

use mod_rad_mat_data

include ’/homes/jeffery/jef/aalib/module_implicit.f’

real (kind=np) :: c(0:n_imax-2,2:n_imax)=0

Heck.

15. Conclusions

The conclusions are in the abstract and the introduction (i.e., § 1).
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A. One-Density-Component Exact Analytic Solutions of Strong Interest

The primary scaled Friedmann equation (Equation (4) in § 2) for a one density compo-

nent P is

h =
ẋ

x
= ±

√

ΩP,0x−P , (A1)

where 0 indicates the fiducial cosmic scale time t0 and recall the primary scaled time coor-

dinate is τ = t/tH0
. (see Equation (6) in § 2). If there were, in fact, a just one component,

ΩP,0 would be 1. However, we leave ΩP,0 general to allow for the case that there are other

nonzero components that are negligible until later times than the one we are considering.

We will only consider cases of strong interest. Therefore, we will only consider the growing

solutions (i.e., solutions to the upper case of Equation (A1)) and solutions with with simple

τ = 0 behavior. For P = 0 (which leads to an exponential solution), we set x(τ = 0) = x0.

For P > 0 (which leads to the power-law solutions), we set x(τ = 0) = 0.
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Solving Equation (A1): for P = 0,

1) dτ =
x−1 dx
√

ΩP,0

2) τ =
1

√

ΩP,0

ln

(

x

x0

)

3) x = x0 exp
(

√

ΩP,0 τ
)

(A2)

and for P 6= 0,

1) dτ =
xP/2−1 dx
√

ΩP,0

2) τ =
1

√

ΩP,0

(

2

P

)

xP/2

3) x =

[

√

ΩP,0

(

P

2

)

τ

]2/P

=

[

√

ΩP,0

(

P

2

)

τ

]γ

, (A3)

where we have defined γ = 2/P . The one-component solutions of strong interest are:

x =



























































































































































x0 exp
(

√

ΩP,0 τ
)

for P = 0:

a cosmological constant universe;
[

√

ΩP,0

(

P

2

)

τ

]2/P

=

[

√

ΩP,0

(

P

2

)

τ

]γ

in general for P > 0

with γ = 2/P ;
[

√

Ω1,0

(

1

2

)

τ

]2

for P = 1 and γ = 2:

some quintessence universes;
(

√

Ω2,0 τ
)

for P = 2 and γ = 1:

a pure negative curvature universe

(for which Ω2,0 > 0),

some cosmic-string universes,

and the Rh = ct universe;
[

√

Ω3,0

(

3

2

)

τ

]2/3

for P = 3 and γ = 2/3:

the matter universe;
[

√

Ω4,0 (2) τ
]1/2

for P = 4 and γ = 1/2:

the radiation universe

(A4)

(e.g., Steiner 2008, p. 6–7; e.g., Melia 2014 for the Rh = ct universe).

The density evolutions of the one-component solutions are

ΩP =











ΩP,0 for P = 0;

ΩP,0x
−P = ΩP,0

[

√

ΩP,0

(

P

2

)

τ

]−2

=

(

2

P

)2

τ−2 for P > 0.
(A5)
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Note that for P = 0, the density is constant and for P > 0, it scales as 1/τ 2 in all cases

which is a remarkable fact.

An interesting fact is that if you treat the density component as a perfect fluid in

adiabatic expansion, it obeys what is called the fluid equation which in unscaled quantities

is

ρ̇ = −3
ȧ

a

(

ρ +
p

c2

)

, (A6)

where p is pressure in this context (e.g., Liddle 2015, p. 26). In cosmology, the pressure for

one density component is often parameterized as linearly proportional to density and this

parameterization gives the equation of state

p = wρc2 , (A7)

where the constant w seems to be called simply the w parameter. Substituting Equation (A7)

into Equation (A6) and solving for ρ gives

ρ = ρ0

(

a

a0

)−3(1+w)

(A8)

and the following results:

1) P =
2

γ
= 3(1 + w) 2) γ =

2

P
=

2

3(1 + w)
3) w =

P

3
− 1 =

2

3γ
− 1 . (A9)

For reference, we present some of the details of the one-density-component solutions of

strong interest in unscaled form in Table 1 with ΩP,0 = 1. Note that for x0 = x(t0) = 1, we

must have cosmic present

t0 =







0 for P = 0;
(

2

P

)

tH0
=

γ

H0
= γ

(

13.968 Gyr

h70

)

for P > 0
(A10)

where 13.968 Gyr is the Hubble time for Hubble constant H0 = 70 (km/s)/Mpc and h70 =

H0/[70 (km/s)/Mpc]. Note also the deceleration parameter for one-density-component solu-

tions is

q0 = −a0ä0

ȧ2
0

= −(γ − 1)γ

γ2
=

1

γ
− 1 =

P

2
− 1 =

1

2
(1 + 3w) (A11)

(e.g., Liddle 2015, p. 53).
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Table 1. One-Density-Component Solutions to the Friedmann Equation

w P =
2

γ
γ =

2

P
a(t) t0 q0 =

1

γ
− 1 ρ

w = −1 P = 0 γ = ∞ a0e
H0t 0 −1 ρ0

w 6= −1 3(1 + w)
2

3(1 + w)
a0

(

t

t0

)γ















γ

H0

=

γ

(

13.968 Gyr

h70

)

























P

2
− 1 =

1

2
(1 + 3w)











ρ0

(

t0
t

)2

w = −2

3
P = 1 γ = 2 a0

(

t

t0

)2
2

H0

−1

2
ρ0

(

t0
t

)2

w = −1

3
P = 2 γ = 1 a0

(

t

t0

)

1

H0
0 ρ0

(

t0
t

)2

w = 0 P = 3 γ =
2

3
a0

(

t

t0

)2/3
2

3

1

H0

1

2
ρ0

(

t0
t

)2

w =
1

3
P = 4 γ =

1

2
a0

(

t

t0

)1/2
1

2

1

H0
1 ρ0

(

t0
t

)2
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B. Three-Density-Component Solutions

Can the techniques of generalized cosmic scale factor and generalized conformal time of

two-density-component cases of the Friedmann equation (see § 6) be generalized to three-

density-component cases? Only to a limited, but educationally useful, extent as we show be-

low. The generalization does give solutions that apply to the radiation-curvature-Λ universe

and the radiation-cosmic-string-Λ universe and these solutions may be of actual cosmological

interest for some versions of inflation. It is beyond the scope of this paper to consider the

significance for these solutions, but we do point out the one likeliest to be of cosmological

interest in Appendix B.1.

Rearranging Equation (4) in § 2, we can write the Friedmann equation in scaled cosmic

time and scaled cosmic scale factor for a three-density-component case:

dτ = ± dx

x
√

Ωp,0x−p + Ωq,0x−q + Ωr,0x−r
, (B1)

where recall the ΩP,0 quantities are the scale-time density parameters (capital P being the

general density component symbol) and without loss of generality p > q > r ≥ 0. Now

define a generalized cosmic scale factor by

x = zV , z = x1/V , dx = V zV −1dz , and
dx

x
=

V dz

z
, (B2)

where V is to be determined. Note we only consider the real positive solution for x = zV

since it is the only physically real one. We substitute for x with z in Equation (B1) and

multipy through by 1/zU/2 to obtain three-density-component case:

dτ

V zU/2
= ± dz

√

Ωp,0z−V p+2+U + Ωq,0z−V q+2+U + Ωr,0z−V r+2+U
, (B3)

Now, in fact, the only case of Equation (B3) where the radicand permits analytical integration

(at least in a simple way) is when the radicand is a quadratic. Since we are only interested

in exact solutions here, we choose U and V to give the z powers of 0 and 1 for, respectively,

the Ωp,0 and Ωq,0 in Equation (B3) and these fix what r must be for the z power for Ωr,0 to

be 2:

V =
1

p − q
, U =

−p + 2q

p − q
= (−p + 2q)V , and r =

U

V
= −p + 2q (B4)

Neither our formalism or anything else we can think of allows us to let r be general.

The upshot is as aforesaid the techniques of generalized cosmic scale factor and general-

ized conformal time of two-density-component cases of the Friedmann equation are limited
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for the generalization to three-density-component cases. But also aforesaid, these cases are

educationally useful. They allow us to obtain representative (exact analytical) three-density-

component solutions.

In fact, the main cases of educational interest are where r = 0: i.e., Ωr,0 = ΩΛ,0, where

recall in general ΩΛ,0 can be positive or negative. We only consider these cases below, and

so have

r = 0 , p = 2q , U = 0 , V =
1

q
=

2

p
. (B5)

In fact, there are only two cases r = 0 of strong interest: those having integer powers

P ∈ [0, 4] which recall from § 5 are the only widely considered powers. The two cases are

case (1) r = 0, q = 1, p = 2, U = 0, V = 1 (e.g., perhaps a curvature-(or cosmic-strings)-

quintessence-Λ universe solution) and case (2) r = 0, q = 2, p = 4, U = 0, V = 1/2 (e.g.,

perhaps a curvature-(or cosmic-strings)-radiation-Λ universe solution).

Case (2) is more interesting than case (1) since it might apply to universe models of

interest in modern cosmology: either some earlier phase of the actual universe or other

pocket universes than our own (if the observable universe is embedded in a pocket universe)

in the multiverse theory (Wikipedia: Multiverse; Wikipedia: Pocket universe). Case (2) can

be the radiation-curvature-Λ universe (where Ωq,0 can be positive or negative for curvature

cases) and also the radiation-cosmic-string-Λ universe (see § 4). We discuss the radiation-

curvature-Λ universe in Appendix B.1. It is the analogue to the Lemâıtre universe (i.e., a

positive-curvature-matter-Λ universe: see, e.g., Bondi 1961, p. 82,84–85,120–122,165,168–

170,175–176; McCrea 1984, p. 7–10; Peebles 1984, p. 23–30; North 1994, p. 528,530–531;

Kragh 1996, p. 23–60; Luminet 2011).

Note an analogue to the radiation-matter-Λ universe solution (with P value not in the

range [0, 4]) is case (3) r = 0, q = 3, p = 6, U = 0, V = 1/3. Case (3) does not a priori look

like a promising approximation for the radiation-matter-Λ universe solution (of which the

most interesting case is the Λ-CDM model solution), and so we will not explicitly consider

it further.

As aforesaid, we set r = 0 hereafter, but in his section, we leave leave q general and so

p = 2q and V = 1/q. However, for the x(τ) solutions we obtain in subsections below, we

always choose case (2) since case (2) has the strongest interest: i.e., the case with

r = 0 , q = 1, p = 2q = 2 , U = 0 , V =
1

q
=

1

2
. (B6)

Note with V = 2, we have x = z1/2 where we neglect the unphysical negative solution in the

subsections below. We also neglect any unphysical negative or complex solutions that arise

in any other way in the subsections below.
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To proceed, we will make a notational change since ΩP,0’s are klutzy-looking symbols

and are not the symbols used in tables of integrals, and so are hard to mentally keep track

of. To conform to common tables of integrals, we define

a = Ωr,0 = ΩP=0,0 = ΩΛ,0 , b = Ωq,0 , and c = Ωp,0 , (B7)

and so the Friedmann equation (with U = 0 and V = 1/q) becomes

dτ

V
= ± dz√

az2 + bz + c
, (B8)

where we refer to az2 + bz + c as the quadratic below. Note the quadratic must have a finite

positive region or there is no physical real solution. Note also that a = Ωr,0 should not be

confused with a(t) the cosmic scale factor.

We note that a = ΩΛ,0 can be greater than or less then zero or equal to zero. Of course,

a = 0 actually gives a two-density-component case (assuming b and c are not zero). The

b = Ωq,0 coefficient will only be negative for q = 2 with Ωq,0 representing positive curvature

and the c = Ωp,0 coefficient will only be negative for p = 2 with Ωp,0 representing positive

curvature.

The exact solutions to Equation (B8) with the constant of integration τoff (with subscript



– 51 –

off meaning offset) are

±(τ − τoff)

V
=







































































































































































































































































































































1√
a
arcsinh

(

2az + b√
4ac − b2

)

for a > 0 and discriminant

b2 − 4ac < 0

(i.e., the quadratic has

no real roots and c > 0);
1√
a

ln(|2az + b|) for a > 0 and discriminant

b2 − 4ac = 0

(i.e., the quadratic has

one real root). Note b

and c can both be 0;

1√
a

ln(|2
√

a
√

az2 + bz + c + 2az + b|) for a > 0 and discriminant

b2 − 4ac > 0

(i.e., the quadratic has

two real roots);

2
√

bz + c

b
for a = 0 which is actually

a two-density-component

case, but we include it here

for completeness. It cannot

be obtained easily from

the other cases since they

all have a factor a

in their denominators;

− 1√
−a

arcsin

(

2az + b√
b2 − 4ac

)

for a < 0, discriminant

b2 − 4ac > 0

(i.e., the quadratic has

two real roots), and

|2az + b| ≤
√

b2 − 4ac;

no physical real solution for a < 0 and discriminant

b2 − 4ac ≤ 0

since the quadratic opens

downward and there are no

no roots or one zero root

meaning no part of the

quadratic is positive;

indeterminate for a = b = c = 0 since

in this case z is constant.

(B9)
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For the table integrals used for the above solutions, see, e.g., Wikipedia: List of integrals

of irrational functions: Integrals involving R =
√

ax2 + bx + c ; Integrals involving S =√
ax + b .

All of τ(z) solutions (from which the t(a) solutions can be obtained) in Equation (B9)

can be inverted to obtain z(τ) solutions and then the x(τ) solutions (from which the a(t)

solutions can be obtained). We give all the x(τ) solutions for case (2) (i.e., for r = 0, q = 2,

p = 4, V = 1/2) in the subsections below (except for the case where a = b = c = 0 since

that solution is just constant x(τ)). These solutions seem hard to find in the literature and

are probably not given collectively elsewhere.

Note for case (a), a and b can be positive or zero or negative , but c = Ωp,0 can only be

positive or zero since physically it can only represent the density component radiation.

B.1. Solution for a > 0, b2 − 4ac < 0

Inverting the a > 0, b2 − 4ac < 0, c > 0 case of Equation (B9) in Appendix B, setting

V = 1/2 (for case (2) with r = 0, q = 2, p = 4, U = 0, V = 1/2, c > 0), and transforming
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from z to x, we find the solution

x =











































































































































































































































































































{−b +
√

4ac − b2 sinh[2
√

a(τ − τoff)]

2a

}1/2

in general with τoff chosen to give

x(τ = 0) = 0 to avoid pointless

generality. The τoff formula is

τoff = ± 1

2
√

a
arcsinh

(

√

|b|
4ac − b2

)

with upper/lower case

for b negative/positive

= ± 1

2
√

a
arcsinh









1
√

4ac

b2
− 1









(i.e., positive/negative curvature);

[√
4ac sinh(2

√
a τ)

2a

]1/2

for b = 0 with τoff = 0 to avoid

pointless generality;

(

2
√

c τ
)1/2

for b = 0 and a → 0 with

τoff = 0 to avoid pointless

generality. This is the pure

radiation universe solution;
(−b

2a

)1/2

for b < 0 with (4ac − b2) → 0.

This is a static positive-curvature

-radiation-Λ universe. It is

the analogue to the Einstein universe

(a static positive-curvature

-matter-Λ universe);
(

2
√

c τ
)1/2

for τ small for general a and b.

This is the pure radiation solution

again.
(
√

4ac − b2

2a

)1/2
e
√

a(τ−τoff )

2
for τ large. This is the

analogue to the de Sitter universe

solution (a pure exponentially

expanding universe solution).
(B10)
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For the Einstein universe, presented 1917, see, e.g., Bondi (1961, p. 84,98–99,117–121,158–

159,171); O’Raifeartaigh et al. (2017); O’Raifeartaigh (2019); Wikipedia: Einstein’s static

universe. For the de Sitter universe, presented 1917, see, e.g., Bondi (1961, p. 98–99,105,146–

147,154,159,166); Wikipedia: de Sitter universe.

For the derivation of the 2nd to last line in Equation (B10), note to 1st order in small

τ that

x1st =

{−b +
√

4ac − b2 sinh[2
√

a(τ − τoff)]

2a

}1/2 ∣
∣

∣

∣

1st

=

{
√

4ac − b2 cosh[2
√

a(−τoff)] (2
√

a τ)

2a

}1/2

=







√
4ac − b2

√

1 + sinh2[2
√

a(−τoff)] (2
√

a τ)

2a







1/2

=

[√
4ac − b2

√

1 + b2/(4ac − b2)(2
√

a τ)

2a

]1/2

=

[√
4ac (2

√
a τ)

2a

]1/2

=
(

2
√

c τ
)1/2

, (B11)

where we have used Equation (22) in § 6.1.

Equation (B10) (meaning the general case as we usually do hereafter) since it has a point

origin may be relevant to some eras of nonstandard inflation where curvature and radiation

are significant.

Two points can be made about the solution given by Equation (B10). First, the radiation

density parameter c/x4 goes to infinity faster than the curvature density parameter b/x2 as

τ becomes small and the Λ density parameter a is constant, and so the radiation density

parameter must dominate completely for small enough τ . Thus, it is expected the pure

radiation solution is the asymptotic form of the solution for τ small.

Second, the Λ density parameter a completely dominates for τ large as the other two

density parameters strictly decrease for finite τ and go to zero as τ → ∞. To be more

precise, the Λ density parameter a completely dominates the derivative of x, not its size. So

the relative growth for τ large is exponential as for the de Sitter universe and depends only

on a. However, the coefficient for τ large depends on all the density parameter scale values

a, b, and c as shown by the last line in Equation (B10). One can understand this in that

these values establish the amount of growth determined by all the density parameters before

the Λ density parameter became absolutely dominant in determining the derivative of x.
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Another two points about can be made about the solution given by Equation (B10)

(i.e., the general solution on the first line). First, for b > 0 (i.e., the negative curvature case)

with accompanying τoff < 0, the hyperbolic sine function (which depends on ∆τ = (τ −τoff))

in Equation (B10) is growing at least a little above the hyperbolic-sine-function linear region

even at τ = 0 and there be no significant linear region at all if |τoff | is sufficiently large:

i.e., the solution would growing at least somewhat exponentially at τ = 0 and if |τoff | is

sufficiently large fully exponentially.

Second, for b < 0 (i.e., the positive curvature case) with accompanying τoff > 0, the

hyperbolic sine function must start with a negative value and is toward the hyperbolic-sine-

function linear region from below. Thus, for ∆τ = (τ −τoff) sufficiently small, the hyperbolic

sine function and the solution overall will be in a linear growth region.

Equation (B10) with b < 0 is, in fact, the radiation analogue of Lemâıtre universe

solution (a positive-curvature-matter-Λ universe solution). We will call this analogue the

radiation Lemâıtre universe solution. The Lemâıtre universe itself is usually considered to

have the slope of linear-growth region sufficiently small that there is a long nearly static

phase (i.e., an Einstein universe phase). In brief description, Lemâıtre universe (as usually

considered) begins from a point origin (which recall is the old-fashioned name for Big Bang

singularity: Bondi e.g., 1961, p. 117), has a decelerating phase (which is the matter domi-

nated phase), then a nearly static phase (i.e., an Einstein universe phase) which is the small

slope linear-growth region of the solution, and finally grows exponentially (the Λ phase).

There is no exact solution for the Lemâıtre universe.

We can show that Equation (B10) is the analogue solution to the Lemâıtre universe
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solution (as usually considered) explicitly by writing it thusly

x =



















































































































(−b

2a

)1/2
[

1 +

(

4ac

b2
− 1

)1/2

sinh
(

2
√

a∆τ
)

]1/2

in general with

∆τ = (τ − τoff)

and recall b < 0

and τoff > 0;
(−b

2a

)1/2
[

1 +

(

4ac

b2
− 1

)1/2
(√

a∆τ
)

]

for ∆τ small;

(−b

2a

)1/2

for all time ∆τ with

4ac/b2 = 1. This static

solution is the

radiation analogue

of the static

Einstein universe.

(B12)

Note for fixed ∆τ , one can make the solution as close to the Einstein universe x =
√

−b/(2a)

as you like by making 4ac/b2 sufficiently close to 1 which, of course, also makes τoff very large

(see the formulae for τoff in Equation (B10) above). Thus, you can make the Einstein phase

as long as required for the radiation Lemâıtre universe solution.

Can Equation (B10) be interpreted as an approximate radiation-matter-Λ universe so-

lution by taking b > 0 to be the scale-time density parameter for matter? Probably yes, but

only for cases where matter is never the dominant form of mass-energy since Equation (B10)

does not explicitly show that there is any time period where x ∼ τ 2/3 as required for matter

dominance (see, e.g., the solution for the matter-Λ universe Equation (46) in § 12.1.1 and the

solution for the radiation-matter universe Equation (82) in § 12.4). Matter since it scales as

x−3 in the Friedmann equation must eventually dominate radiation which scales as x−4, but

for Equation (B10) to be interpreted as an approximate radiation-matter-Λ universe solution

this would have to be after Λ has become the dominant density component. To conclude,

Equation (B10) as an approximate radiation-matter-Λ universe solution might be the case

when matter is never dominant. However, when matter never dominates is probably not an

interesting case and so the approximation to it is probably not interesting either.

Can Equation (B10) be morphed into an approximate Lemâıtre universe solution (i.e.,

positive-curvature-matter-Λ universe solution for which no exact solution exist) that is edu-

cationally useful? Yes. First, we interpret c as the scale-time matter density parameter and

then change appropriate factors of 1/2 into factors of 2/3 in Equation (B10) guided by the
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matter-Λ universe solution (Equation (46) in § 12.1.1) and we obtain

x =























































































































































{−b +
√

4ac − b2 sinh[(3/2)
√

a(τ − τoff)]

2a

}2/3

in general,

where recall

τoff > 0 for b < 0

(i.e., the positive

curvature case);

(−b

2a

)2/3
[

1 +

(

4ac

b2
− 1

)1/2

sinh
[

(3/2)
√

a∆τ
]

]2/3

in general with

∆τ = (τ − τoff)

and τoff > 0;
(

3

2

√
c τ

)2/3

for τ small,

where we have

followed similar

steps to those in

Equation (B11);
(
√

4ac − b2

2a

)2/3
e
√

a(τ−τoff )

2
for τ large.

(B13)

For small τ , morphed solution does the matter solution behavior with recall c interpreted

at the scale-time matter density parameter (see Equation (46) in § 12.1.1; Equation (A4)

in Appendix A). For large τ , the exponential factor e
√

a τ/2 is correct for the asymptotic

de Sitter universe, but the coefficient cannot be correct. The error in the coefficient can only

be determined numerically.

In fact, the approximate morphed solution the Lemâıtre universe solution does not have

the actual Einstein universe phase behavior. We can show this explicitly by solving for the

actual Einstein universe phase in the notation of this appendix. We rewrite Equation (B1)

in Appendix B and its derivative for Lemâıtre universe:
(

dx

dτ

)2

= cx−3 + bx−2 + a and 2
d2x

dτ 2
= −3cx−4 − 2bx−3 . (B14)

Ths inflection point of the x(τ) is the center of the Einstein universe phase of the Lemâıtre

universe and solving for inflection point x value and applying the contraint that at this x

value (cx−3 + bx−2 + a) ≥ 0 yields

x =
3

2

c

(−b)
and

ac2

(−b)3
≥ 4

27
(B15)



– 58 –

When the equality holds for the inequality in Equation (B15), we have the static Einstein

solution itself. So the size of the Einstein universe phase x = (3/2)[c/(−b)] is quite different

in behavior than the size of the radiation Einstein phase x = −b/(2a) and the condition

relating the scale-time coefficients is quite different than the radiation Lemâıtre universe

relation 4ac/b2 ≥ 1. Recall the time-scale coefficients a, b, and c are independent parameters,

and so can be varied independently.

The upshot of the foregoing discussion is that the approximate morphed Lemâıtre uni-

verse solution Equation (B13) is not a good approximation to the actual Lemâıtre universe

solution. However, it is educationally interesting. Could we use the results of Equation (B15)

to further morph Equation (B13) and and get a better approximation to the Lemâıtre uni-

verse solution? Perhaps, but it may not be a useful exercise.

Since it is of historical interest, we will digress on the Lemâıtre universe and its accompa-

ning theory the primeval atom (e.g., Bondi 1961, p. 82,84–85,120–122,165,168–170,175–176;

North 1994, p. 528,530–531; McCrea 1984, p. 7–10; Peebles 1984, p. 23–30; Kragh 1996,

p. 23–60,105–106; Luminet 2011). Georges Lemâıtre (1894–1966: e.g., Wikipedia: Georges

Lemâıtre) first presented in 1931 the Lemâıtre universe (as it was later called) to satisfy four

main desiderata. First, although the point origin of the Lemâıtre universe was not considered

real, starting the real evolution from a high density state at time just a bit after the point

origin time in the first universe phase (i.e., the expanding decelerating matter dominated

phase) was necessary for the primeval atom which we discuss below and which gave an origin

for the elements, radiation, and heat energy of the observable universe. Second, the second

universe phase (i.e., the static Einstein universe phase) was thought necessary to give a pause

to the expansion of the matter dominated phase sufficient for local gravitational collapses of

matter to form the galaxies (e.g., Bondi 1961, p. 120). Third, the Einstein universe phase

was used to solve the time-scale problem of 1931 (e.g., Bondi 1961, p. 120–122). To explicate

this time-scale problem, the age of the Earth from radiometric dating was believed in circa

1931 to be of order 1.6 to 3 gigayears (e.g., Wikipedia: Age of Earth: Arthur Holmes estab-

lishes radiometric dating) and the Hubble time circa 1931 was believed to be only of order

2 gigayears. If one takes the Hubble time as a characteristic of age of the universe from a

point origin, there seemed at most barely enough time for Earth to form and that was the

time-scale problem of circa 1931 (e.g., Bondi 1961, p. 116). The Einstein universe phase

could be adjusted to be as long as needed to solve the time-scale problem. The adjustment

is done analogously to the adjustment discussed above (just after Equation (B12)) needed

to make the radiation Einstein universe phase of the radiation Lemâıtre universe as long as

one would like. Fourth, the third and current universe phase (i.e., exponentially expanding

Λ dominated phase) explained the observed expansion of the universe.
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The earliest part of the matter dominated phase of the Lemâıtre universe was hypoth-

esized to be the aforementioned primeval atom (in French, L’atome primitive) (Bondi 1961,

p. 120,175–176; Kragh 1996, p. 23–60,105–106; Luminet 2011). The primeval atom is a giant

atom that occupied all of the initially small positive-curvature (and therefore finite) Lemâıtre

universe and consisted of matter quanta which Lemâıtre may thought of as being somehow

just protons and electrons in 1931 (Luminet 2011, p. 5) since the neutron was discovered

in 1932 (e.g., Wikipedia: Neutron: Discovery). However, by 1933, Lemâıtre described the

primeval atom as an “isotope of the neutron” (McCrea 1984, p. 9). The primeval atom (of

neutrons) was highly unstable and rapidly fragmented and underwent beta decays to pro-

duce protons and electrons during the matter dominated phase of the Lemâıtre universe to

make the hydrogen and helium gas out of which the galaxies later formed. However, many

larger fragments persisted to become the familiar elements we observe including long-lived

radioactive species and maybe heavier elements not observed, and some fragments became

the cosmic rays (Kragh 1996, p. 50; Luminet 2011, p. 10). Although Lemâıtre thought some

of fragmentation as occuring by the then-known alpha decay process (Kragh 1996, p. 55;

Luminet 2011, p. 10), he vaguely anticipated the idea of fission (discovered 1938: Wikipedia:

Nuclear Fission: Discovery of nuclear fission) by suggesting that there was fragmentation

into much larger fragments of the primeval atom than alpha particles at least earlier in

cosmic time than the present (Luminet 2011, p. 11). The long-lived radioactive species left

by the fragmentation were the energy source for stars and the radiogenic heat of the Earth

and other planets (Luminet 2011, p. 11). The primeval atom had a high density as afore-

mentioned, but the expansion of the universe led to the low density of the Λ dominated

phase.

The primeval atom and its fragmentation might characterized as a cold big bang in

which matter dominates the mass-energy contents of the universe from the primeval atom

until the Λ dominated phase unlike the (Hot) Big Bang theory in which radiation dominates

mass-energy until the end of the radiation era at cosmic time ∼ 50 kyr (e.g., Cahill 2016,

p. 5).

By the way, Lemâıtre did not view the primeval atom as arising from a religious creation

event though many people seem to have thought he did because he was a Jesuit priest (Kragh

1996, p. 59–60; Luminet 2011, p. 5,12–13). Rather, he thought of primeval atom as being as

far back as speculative science could reach in the early 1930s (Kragh 1996, p. 60; Luminet

2011, p. 4).

The primeval atom was an ingenious theory and it was a precursor of the Big Bang

cosmology, but, in fact, it never attracted much interest in the 1930s (Kragh 1996, p. 56).

Rapid developments in nuclear physics and stellar nuclear physics made the primeval atom an
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obsolete theory by the late 1930s as regards to energy generation in stars (see, e.g., Wikipedia:

Hans Bethe: United States). However, the original thinking on Big Bang cosmology of

George Gamow (1904–1968: e.g., Wikipedia: George Gamow) was along the lines of primeval

super-dense nuclear matter that fragmented to make the elements (Kragh 1996, p. 105–106).

Clearly, Gamow’s starting point was similar to the primeval atom and he did know of the

primeval atom (Kragh 1996, p. 80), but it is not clear how much it influenced him. There

was significant development in Gamow’s thinking before he and his colleagues described the

Big Bang as hot in 1948 (Kragh 1996, p. 113). At this point the primeval atom became

definitively obsolete.

Although the primeval atom was completely obsolete by 1948, the Lemâıtre universe

continued to be considered a viable model for the cosmic scale factor evolution at least by

some astronomers to circa 1961 and maybe later (Bondi 1961, p. 165). Lemâıtre himself

never significantly developed the primeval atom nor the Lemâıtre universe after circa 1933

(Kragh 1996, p. 57).

B.2. Solution for a > 0, b2 − 4ac = 0

Inverting the a > 0, b2 −4ac = 0 case of Equation (B9) in Appendix B, setting V = 1/2

(for case (2) with r = 0, q = 2, p = 4, U = 0, V = 1/2, c ≥ 0), and transforming from z to

x, we find the solution

x =

√

−b ± e±2
√

a(τ−τoff )

2a
. (B16)

Note if b > 0 (i.e., meaning there is a negative curvature term), then the negative case

solution is an unphysical complex solution.

B.3. Solution for a > 0, b2 − 4ac > 0

The a > 0, b2 − 4ac > 0 case of Equation (B9) in Appendix B takes several steps to

invert unlike all the other cases. Recall we set V = 1/2 (for case (2) with r = 0, q = 2,

p = 4, U = 0, V = 1/2, c ≥ 0). Note since a > 0, c ≥ 0, and b2 − 4ac > 0, we must have

|b| >
√

b2 − 4ac for the solution.

As a first step, we rewrite the a > 0, b2 − 4ac > 0 case in the form

f = ±Ce±V −1
√

a(τ−τoff ) = 2
√

a
√

az2 + bz + c + 2az + b , (B17)

where we have introduced the simplifying variable f and have partitioned the original con-
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stant of integration τoff into two constants of integration for convenience (i.e., a new τoff

which is left undetermined in the solution and C which we determine below) and where the

two ± cases are not the same case. Note the f < 0 case can occur if b is negative and |b|
sufficiently large.

In order to find the solution x, we need the roots of the quadratic equation g = az2 +

bz + c = 0. They are

zg± =
−b ±

√
b2 − 4ac

2a
, (B18)

where the midpoint between the two roots is, of course, −b/(2a). Since a > 0, the quadratic

function g = az2 + bz + c < 0 between the roots, and there is no physical real solution

between the roots for z, and so for x. So between the roots is a forbidden zone which in a

Newtonian physics sense corresponds to a zone of negative kinetic energy.

Note at the roots

fg± = ±Ce±V −1
√

a(τg±−τoff ) = f(zg±) = 2azg± + b = ±
√

b2 − 4ac . (B19)

For a simple form for the solution for x, we require that τg± = τoff (i.e., both roots of g(z)

occur at toff) and this fixes C =
√

b2 − 4ac , and so gives

f = ±
(√

b2 − 4ac
)

e±V −1
√

a(τ−τoff ) , (B20)

where as aforesaid the two ± cases are not the same case.

Now we solve for x:

f = 2
√

a
√

az2 + bz + c + 2az + b

f − 2az − b = 2
√

a
√

az2 + bz + c

f 2 + 4a2z2 + b2 − 4afz − 2bf + 4abz = 4a2z2 + 4abz + 4ac

4afz = −2bf + f 2 + b2 − 4ac

z = − b

2a
+

f 2 + b2 − 4ac

4af

z = − b

2a
+

f + (b2 − 4ac)f−1

4a

z = − b

2a
±

√
b2 − 4ac

2a

[

e±V −1
√

a(τ−τoff ) + e∓V −1
√

a(τ−τoff )

2

]

z =
−b ±

√
b2 − 4ac cosh [V −1

√
a(τ − τoff)]

2a

x =

{−b ±
√

b2 − 4ac cosh [V −1
√

a(τ − τoff)]

2a

}V
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and specializing to V = 1/2

x =

√

−b ±
√

b2 − 4ac cosh [2
√

a(τ − τoff)]

2a
. (B21)

We explicate the x solution in Equation (B21) as follows. If b < 0 (i.e., there is a

positive curvature density component), then there are upper and lower hyperbolic-cosine-

containing solutions separated by a forbidden zone in both z and x which is identified as

the forbidden zone we noted above and which in z has width (2
√

b2 − 4ac)/(2a) and center

−b/(2a). By our choice of τg± = τoff above, the solutions touch the forbidden zone when the

hyperbolic cosine function has argument 0 and value 1: the touch point is a minimum for

the upper solution and a maximum for the lower solution. The upper/lower solution opens

upward/down downward. The lower one is only a physical real solution for

|τ − τoff | ≤
arcosh

(

−b/
√

b2 − 4ac
)

2
√

a
. (B22)

If b > 0, then there is only a physical real upper solution for x which is exists in two

physically disconnected branches. The branches require

|τ − τoff | ≥
arcosh

(

b/
√

b2 − 4ac
)

2
√

a
. (B23)

B.4. Solution for a = 0

Inverting the a = 0 case of Equation (B9) in Appendix B, setting V = 1/2 (for case (2)

with r = 0, q = 2, p = 4, U = 0, V = 1/2, c ≥ 0), and transforming from z to x, we find the

solution

x =



























√

[b(τ − τoff)]2 − c

|b| for b > 0;

√

−[b(τ − τoff)]2 + c

|b| for b < 0.

(B24)

Recall that the a = 0 case is actually a two-density-component Friedmann equation

case included for completeness in the solutions of the Friedmann equation depending on the

quadratic az2 + bz + c (see Equation (B8)). in Appendix B.
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B.5. Solution for a < 0, b2 − 4ac > 0

Inverting the a < 0, b2 −4ac > 0 case of Equation (B9) in Appendix B, setting V = 1/2

(for case (2) with r = 0, q = 2, p = 4, U = 0, V = 1/2, c ≥ 0), and transforming from z to

x, we find the solution

x =

√

b ±
√

b2 − 4ac sin[2
√
−a(τ − τoff)]

2|a| , (B25)

where note that
√

b2 − 4ac ≥ b in all cases since ac ≤ 0.

Equation (B25) is actually an obscure formulation of the solution. The sine function in

Equation (B25) shows that solution formally has periodic behavior, but each period has a

forbidden zone where solution becomes imaginary, except for the case where ac = 0 (which

only occurs for c = 0 given that a < 0). Thus, only the physically real part of a single period

is the (entire) physically real solution, except for case where ac = 0 (which consider below).

To make physically real solution clear, we simply choose τoff such that −2
√

a τoff = ±π/2

which gives the solution form

x =

√

b +
√

b2 − 4ac cos(2
√
−a τ)

2|a| . (B26)

The zeros of x (which mark the start and end times of the physically real solution) occur at

τzero = ± 1

2
√
−a

arccos

( −b√
b2 − 4ac

)

, (B27)

where the lower/upper case is the start/end time. Note if b is greater-than/equal-to/less-

than 0, the domain of the physically real solution is greater-than/equal-to/less-than π in

2
√
−a τ .

C. First Order Autonomous Ordinary Differential Equations: Stationary

Points and Constant Solutions

The Friedmann equation is, in fact, a 1st order autonomous ordinary differential equa-

tion (e.g., Wikipedia: Autonomous system (mathematics)). Autonomous differential equa-

tions do not depend explicitly on the independent variable and 1st order ones do not in most

cases have solutions with stationary points, except at infinity of the independent variable

(i.e., either positive or negative infinity) where all orders of derivatives of the solutions are

zero and the solutions approach horizontal asymptotes. A horizontal asymptote is actually
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a constant solution of the 1st order autonomous ordinary differential equation. Constant

solutions always accompany solutions with solutions that approach horizontal asymptotes.

Hereafter we will refer the stationary points at infinity as asymptotic stationary points to

differentiate them from ordinary stationary points. That 1st order autonomous ordinary

differential equations usually do not have ordinary stationary points we call the no-ordinary

stationary point rule.

But there are exceptions to the no-ordinary stationary point rule as we have hinted

above. The Friedmann equation is, in fact, one of the exceptions. Below, we derive the

no-ordinary stationary point rule in § C.1 and determine the most obvious exceptions to the

no-ordinary stationary point rule in § C.2.

C.1. The No-Ordinary Stationary Point Rule

Let us prove the rule that there are no ordinary stationary points for 1st order au-

tonomous ordinary differential equations. Consider the 1st order autonomous ordinary dif-

ferential equation

x′ =

{

f(x) in general;

f(x0) = 0 for x = x0,
(C1)

where t is the independent variable, x is assumed to be infinitely differential with respect to

t, x′ = dx/dt, x = x0 is a stationary point value (meaning dependent variable value here and

hereafter), and f(x) is assumed to be infinitely differentiable with respect to x. Now note

x′ = f(x)

x′′ =
df

dx
x′ =

df

dx
f(x) = f2(x)

x(k−1) =
dfk−2

dx
x′ =

dfk−2

dx
f(x) = fk−1(x)

x(k) =
dfk−1

dx
x′ =

dfk−1

dx
f(x) (C2)

where the fk(x) functions are defined iteratively as shown in Equation (C2).

Clearly from Equation (C2), if x0 is stationary point value at stationary point t0 giving

x′(t0) = 0, then all orders of derivative of x(t) are zero at t0. Where can the stationary point

be? Any finite t0 implies a constant solution x = x0 rather than a stationary point in an

ordinary sense. So the strictly increasing/decreasing x(t) (i.e., strictly before reaching the

stationary point) can only have stationary point value x0 asymptotically as t → ±∞ (i.e., at

t0 = ±∞) since at any finite t, x(t) will have nonzero derivatives of some order. Of course,

in general x(t) can have multiple stationary points or no stationary points.
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What if there are somehow nonzero derivatives for x(k>1) for x = x0? In this case, the

strictly increasing/decreasing x(t) at some point will get sufficiently close to x = x0 that in

a finite change in t, it will reach x = x0. So there will be a stationary point not at infinity

in this case, and so an exception to the no-ordinary stationary point rule. As aforesaid in

Appendix C, we consider the most obvious exceptions in § C.2.

A question that now arises is are the constant solutions stable: i.e., does an infinitesimal

displacement of x from x0 cause asymptotic evolution back to x0 as t increases or eternally

diverging evolution? We take up this question in general in Appendix D.

C.2. The Exceptions to the No-Ordinary Stationary Point Rule

How can one have exceptions to the no-ordinary stationary point rule. There may be

exotic exceptions, but the most obvious ones are where x is infinitely differential with respect

to t, but f(x) is not infinitely differentiable with respect to x at stationary points and you

have zero over zero cancellations arising from zeros in the denominators of derivatives of

f(x) being canceled by zeros in x′ factors produced by the chain rule. To see how these

cancellations arise, consider the 1st order autonomous ordinary differential equation

x′ =

{

G(x)[H(x)]P in general;

G(x)[H(x)]P = 0 for H(x = x0) = 0,
(C3)

where the independent variable is t, x is assumed to be infinitely differential with respect to

t, x′ = dx/dt, G(x) and H(x) are an infinitely differential functions with respect to x, x0 is a

zero of H(x), but not necessarily a stationary point value, and we have P > 0 Suppressing all

explicit dependence on x for simplicity and defining and redefining Gk,ℓ functions as needed,

we note

x′ = GHP

x′′ = PGH (P−1)dH

dx
x′ +

dG

dx
x′HP = PGH (P−1)dH

dx
GHP +

dG

dx
GH2P

x′′ = G2,1H
(2P−1) + G2,0H

2P

x(3) = G3,2H
(3P−2) + G3,1H

3P−1 + G3,0H
3P

x(k−1) =
0
∑

ℓ=k−2

Gk−1,ℓH
[(k−1)P−ℓ]

x(k) =
0
∑

ℓ=k−2

{

[(k − 1)P − ℓ]Gk−1,ℓH
[(k−1)P−ℓ−1]GHP +

dGk−1,ℓ

dx
GH (kP−ℓ)

}
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=

0
∑

ℓ=k−2

(. . .)H [kP−ℓ−1] +

0
∑

ℓ=k−2

(. . .)H(kP−ℓ)

=

1
∑

ℓ=k−1

(. . .)H(kP−ℓ) +

0
∑

ℓ=k−2

(. . .)H(kP−ℓ)

x(k) =
0
∑

ℓ=k−1

Gk,ℓH
(kP−ℓ) (C4)

In Equation (C4), the lowest power of H is always the first term (i.e., the term ℓ = k − 1).

Now note that if

P ≥ 1

kP ≥ k

kP − (k − 1) ≥ k − (k − 1) = 1 , (C5)

and so no singularities occur at x = x0 where H = 0. In fact, every x(k) at x0 is zero since

all powers of H are zero there, and so x0 is a stationary point value at infinity and the

no-ordinary stationary point rule holds for all P ≥ 1 cases. Also note

d

dk
[kP − (k − 1))] =















P − 1 in general;

P − 1 = 0 for P = 1;

P − 1 > 0 for P > 1;

P − 1 < 0 for P < 1.

(C6)

So for P > 1, the lowest power of H in Equation (C4) grows as k increases and for P = 1,

lowest power stays constant at value 1.

The situation is different for P < 1. In this case, the lowest power H decreases in

general as k grows. Thus in general, the lowest power of H will go negative and x0 will lead

to singularities in the higher order derivatives and not to ordinary nor asymptotic stationary

point for x(t). These singularities would in general lead to large and complex oscillations of

x(t) as H(x) approached H(x0) and a singularity in x(t), not a stationary point value. (Note

our notation is a bit defective here in that in this case x0 is never a value of x(t).) However,

if the lowest power itself goes to exactly zero at some k, then the power term will in general

be finite and nonzero. What is happened is the negative powers of H have been canceled by

positive powers of H produced x′ factors that arose from the chain rule (which is the result

we aimed at in this derivation: see above). In this case, there will be ordinary stationary

point. When can the lowest power of H reach zero? Say when k = n, we nP − (n − 1) = 0.
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Thus, a stopping P value for the decreasing power of lowest power term is given by

Pstop =















































n − 1

n
= 1 − 1

n
in general;

0 for n = 1 which will not give a stationary point

since P > 0 is required for a stationary point.

1

2
,
2

3
,
3

4
, . . . for n = 2, 3, 4, . . . < ∞;

1 for n = ∞ will not give a ordinary stationary point

as discussed above.

(C7)

What is x(k=n)? It is

x(k=n) =
0
∑

ℓ=n−1

Gn,ℓH
(n−1−ℓ) =

n−1
∑

ℓ=0

Gn,ℓH
ℓ = Gn,0 +

n−1
∑

ℓ=1

Gn,ℓH
ℓ = Gn,0 . (C8)

Note that all the terms in the last summation of the equation above have integer powers of

H greater than or equal to 1, and so by the argument after Equation (C6) above they and

all higher derivatives of them are zero at the stationary point value x = x0. They can all be

disregarded for determining the nonzero values of x(k). But the term

Gn,0 = {[(n − 1)P − (n − 2)] . . . P}G
(

dH

dx

)(n−1)

(C9)

is not zero at the stationary point value x = x0 in general although it might be that coin-

cidentally. Thus, when you have a stopping power Pstop, the will be a nonzero a value for a

derivative of x(t) a the stationary point and thus that point will not be at infinity. So we

have proven that there are exceptions to the no-ordinary stationary point rule for 1st order

autonomous equations.

Actually, in general there will be infinitely many nonzero derivatives for the exceptions

since the derivavitive Gn,0 function in Equation (C9) gives the next higher derivative equation

x(k=n+1) = Gn,0x
′ = Gn,0GHP + . . . (C10)

where Gn,0GHP has the same functional behavior as GHP in Equation (C3). So there will

in general be nonzero higher order derivatives for (k = n, 2n, 3n, . . .) although some of them

might be zero coincidentally. There is, in fact, a cycle of nonzero derivatives of x at the

stationary point value x = x0.

The most important case exception to the no-ordinary stationary point rule is very

likely for n = 2, and so Pstop = 1/2 since this case is the most likely one to occur in physics.
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This important case obviously occurs for the Friedmann equation since it has ẋ equal to the

square root of a function of x: see, e.g., Equation (4) in § 2. We will discuss the case of

the Friedmann equation in § 3.1. However, we can mention the elementary and important

case of vertical motion in a constant gravity field g that is pointed down. This case is that

for objects in ballistic motion near the Earth’s surface and actually has a close relation to

the Friedmann equation as seen from the Newtonian physics derivation of the Friedmann

equation. (e.g., Liddle 2015, p. 22–24). Using y for the vertical coordinate, the conservation

of mechanical energy gives

E =
1

2
mv2 + mgy

dy

dt
= v =

√

2

(

E

m
− gy

)

. (C11)

which last equation can be regarded as a 1st order autonomous equation. Obviously, there

is a stationary point at the maximum of the trajectory where ymax = E/(mg). The solution

to Equation (C11) is

y =
1

2
g(t − t0)

2 + ymax , (C12)

where t starts below t0 for the rising phase, reaches t0 at the maximum, and then increases

above t0 for the falling phase.

D. Stability of Constant Solutions of First Order Autonomous Ordinary

Differential Equations
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