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ABSTRACT

In this educational note, we derive the Friedmann equation for the cosmic

scale factor a(t), the fluid equation and the acceleration equation of cosmology

from Newtonian physics plus conventional extra hypotheses. We then derive

elementary analytic solutions and approximate solutions for a(t) and t(a) Some

of the approximate solutions may be novel. The nearly exact full Λ-CDM model

scale factor is presented and some eras for it are derived.

Subject headings: supernovae: cosmology: theory — cosmological parameters —

dark energy

1. INTRODUCTION

To continue from the abstract, § 2 gives the Newtonian derivation of the Friedmann

equation with the fluid equation and accleration equation being derived, respectively, in §§ 3

and 4. General aspects of solving the Friedmann equation for the cosmic scale factor a(t)

are discussed in § 5. Note there is no exact general solution of the Friedmann equation.

Elementary families solutions are derived in § 6 (power-of-a solutions: i.e., single power-of-a

solutions) § 7 (single power-of-a plus Λ solutions) and § 8 (two-powers-of-a solutions). In

§ 10, we derive the radiation-matter era solution for t(a) and an approximation for a(t)

solution: these apply to the observable universe before Λ (i.e., the cosmological constant

or constant dark energy) becomes in important. The nearly exact Λ-CDM model solution

is presented § 13 along with an approximate solution. For historical interest and for their

continuing relevance in some cases to eras of viable universe models, we present the scale

factor solutions for the Einstein universe, the Lemâıtre universe, and the Lemâıtre-Eddington

universe in, respectively §§ 14, 15, and 16. Conclusions in § 17. § A gives a discussion of

behavior of 1st order autonomous ordinary differential equations. This discussion is relevant

to the Friedmann equation since it is a differential equation of this kind.
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Note that in this educational note, we refer to classic models of the universe that were

important historically at various times before the advent of the Λ-CDM model circa 1995

(e.g., Scott 2018, p. 10) as the standard model of cosmology as “universes”: e.g., the Einstein-

de Sitter universe (§ 7), the de Sitter universe (§ 7), the Einstein universe (§ 14), and the

Lemâıtre universe (§ 15).

??????

There is no simple exact analytic solution for a(t) for the Friedmann equation for the

flat cosmology model spanning radiation, matter, and Λ (or dark-energy) eras with zero

curvature: i.e., the Λ-CDM model. A complex exact solution does exist given by Steiner

(2008, p. 9). However, there is a simple exact analytic solution for a(t) for a model with

matter and Λ (e.g., Steiner 2008, p. 12; Sazhin 2011, p. 3) and numerical solutions for

a(t) for the Λ-CDM model for all eras are straightforward (Cahill 2016, e.g.,). This exact

analytic solution for the model with matter and Λ can be extended to include approximately

an early-time radiation era. The extended solution can be fitted to the Λ-CDM model

with 4 free parameters. The extended solution with the free parameters chosen to give a

fit is our analytic fit. The analytic fit is useful for understanding and visualization of the

Λ-CDM-model cosmic scale factor. If it transpires that the Λ-CDM model is only a good

approximation to the (observable) universe, the analytic fit may be a useful zeroth order

cosmic scale factor for fits to the actual universe cosmic scale factor.

In § 2, we present the exact solution to the Friedmann equation for models with Λ and

only one mass-energy form obeying an inverse power law. In § 3, we make use of the § 2

results to create our analytic fit. Conclusions are given in § 4. The appendices are given

for pedagogical use. Appendix A discusses the formula for the age universe for the Λ-CDM

model. Appendix B discusses the exact analytic solution for the closed positive-curvature

universe with only matter for mass-energy.

2. THE NEWTONIAN DERIVATION OF THE FRIEDMANN EQUATION

The Friedmann equation of general relativity (GR) cosmology in standard form (e.g.,

Wikipedia: Friedmann equations: Equations) is

H2 =

(

ȧ

a

)2

=
8πG

3
ρ − k

a2
, (1)

where H is the Hubble parameter (which at current cosmic time is the Hubble constant H0

and has fiducial value 70 (km/s)/Mpc), a is the cosmic scale factor, ȧ is the time derivative

of the cosmic scale factor with respect to cosmic time t, G = 6.67430(15) × 10−11 J m/kg2
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is the gravitational constant, ρ is the density of a uniform perfect fluid (in old-fashioned

jargon AKA the cosmological substratum: Bo-75–76) which is used to model the universal

mass distribution, k is called the curvature (Li-24,28) k/(c2a2) is called Gaussian curvature

(CL-12,29), and c = 2.99792458 × 108 m/s is the vacuum light speed as usual. Note k is

often defined with an unabsorbed c2: i.e., the shown k is replaced by kc2.

The Friedmann equation is, as one can see, a 1st order nonlinear ordinary differential

equation. The fact that is nonlinear means that linear combinations of solutions are not

in general solutions though they may be in special cases or approximately. The Friedmann

equation is also a homogeneous differential equation at least in the sense that it can be

written ȧ = g(a). The form ȧ = g(a) implies that a must be strictly increasing or decreasing

except possibly at ±∞ and possibly at points where the some order of derivative of g have

infinities. Both exceptions do occur for some solutions of the Friedmann equation. For

example, the latter exception occurs for the closed universe model (with only matter). The

closed universe model solution is closely related to throwing a ball into the air: the maximum

size of the closed universe model corresponds to the maximum height of the ball.

The Friedmann equation actually has an interesting nature in that its independent

variable is cosmic time t, but the solution the cosmic scale factor a(t) is the factor by which

all distances scale with time in expanding universe models.

Let’s derive the Friedmann equation from Newtonian physics with extra natural hy-

potheses as needed. A priori, it not clear that the Newtonian derivation must yield the

Friedmann equation with the extra natural hypotheses. But it can be shown that it should

(C.G. Wells 2014, ArXiv:1405.1656). Note that the Newtonian derivation can say nothing

about the curvature of space and assumes any curvature does not affect the derivation. We

will do a long preamble wherein, with any luck, the extra hyptheses are shown to be natural.

First, just as in the GR derivation, we assume for our universe model the cosmological

principle which states that the universe has a homogeneous, isotropic mass-energy distribu-

tion when averaged on a sufficiently large scale. The cosmological principle is what allows us

to approximate the observable universe in our model with a perfect fluid. Observationally,

the cosmological principle has been verified to a degree, but some tension remains. The ob-

servational scale for the validity of the cosmological principle is 100 Mpc or maybe a factor of

a few times that larger (Wikipedia: Cosmological principle: Observations). Note that well

beyond the observable universe, the cosmological principle may well fail, but, just as in the

GR derivation, we assume this has negligible effect for the observable universe.

As to the perfect fluid of our model, it has uniform rest-frame mass-energy density ρ

(uniform in space, not in time). The mass-energy gravitating mass-energy, of course. The
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perfect fluid has no viscosity and has an isotropic pressure p in its own rest frame (Ca-

34). The perfect fluid equation of state (EOS) is p = p(ρ). Actually, the perfect fluid can

have internal energy (i.e., thermal energy), but that is counted as part of ρ as follows from

E = mc2. Also note that we said “rest-frame mass-energy” which can be the energy of

massless particles. In fact, a photon gas is a good realization of the perfect fluid. The actual

cosmic background radiation since the recombination era approximates a perfect fluid to

high accuracy. Its photons do pass through gravitational wells, scatter off free electrons,

and sometime hit planets, etc., but to good approximation the photons act as if they never

interacted with anything except gravitationally.

Next, we note a corollory of Birkhoff’s theorem (a theorem in GR): a spherical cavity at

the center of spherical symmetric mass-energy distribution (static or not, finite or infinite)

is a flat Minkowski spacetime (CL-24; We-337–338, 474). The spherical symmetric mass

distribution can be, in fact, an unbounded homogeneous, isotropic mass-energy distribution:

it can be infinite or finite. Note that if the spherical symmetric mass distribution is finite, it

must have positive curvature and be a closed universe model. We assume, just as in the GR

derivation, that Birkhoff’s theorem applies to good approximation even if the cosmological

principle fails well beyond the observable universe. Inside the cavity, we can put mass-energy

and it should behave exactly as superimposed on a universe of flat Minkowski spacetime (CL-

24; We-337–338, 474) as long as it does not break spherical symmetry significantly, which

would cause a significant perturbation of the spherical symmetry of the surroundings. The

mass-energy we put in the cavity used for our derivation does not break spherical symmetry.

The situation for the Birkhoff-theorem cavity is analogous to a cavity in spherically

symmetric mass distribution in Newtonian physics. Inside the Newtonian cavity, the gravi-

tational field is zero: this is a corollory of the shell theorem first proven by Newton himself.

However, what happens if the mass distribution is infinite is not defined by pure Newtonian

physics. Analogous to the GR case, inside the cavity, we can put mass-energy and it should

behave exactly as superimposed a region where there is no external gravitational field as

long as it does not break spherical symmetry significantly which would cause a significant

perturbation of the spherical symmetry of the surroundings.

Now consider general relativistic space infinite or finite and unbounded (which would be

positive curvature space: Li-33). The space is filled with the aforementioned uniform perfect

fluid. The fluid density ρ is a function of cosmic time t in general. The fluid’s motions are

determined only by gravity (i.e., the geometry of spacetime) and initial conditions, and so

each element of the fluid moves along a geodesic in a GR interpretation and in free fall in the

Newtonian physics interpretation. Since we demand homogeneity and isotropy, we can only

have uniform expansion/contraction of the whole model. Note the fluid can have pressure
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(positive or negative), but uniformity means the pressure force cancels out everywhere locally.

The fluid can also have a formal pressure that does not have to push/pull on anything.

However, formal pressure does have a global effect as we will show below.

Now consider a Birkhoff-theorem cavity of radius r for our model which is also filled

with the perfect fluid with density ρ. Everything inside the cavity behaves just as everything

outside, and so the cosmological principle is maintained. The cavity fluid has total mass M .

We assume that gravitational field due to the cavity fluid is asymmptotically Newtonian.

This requires
RSch

r
=

2GM/c2

r
=

8π

3

Gρ

c2
r2 << 1 , (2)

where RSch = 2GM/c2 is the Schwarzschild radius (Wikipedia: Schwarzschild radius). So

we just assume r is small enough. Note that Newtonian gravitational field is actually the

classical limit of the left-hand side of the Einstein field equations (i.e., the spacetime geometry

structure side: We-152), and so it does not itself contribute mass-energy (which comes from

the right-hand side of the Einstein field equations and is described by the energy-momentum

tensor). So we do not have to worry about the mass-energy contribution of the gravitational

field to gravitating mass-energy since it does not contribute.

We also have to assume that r is small enough that the gravitational effects propagate

with negligible time delay. Really, they propagate at the vacuum light speed relative to their

local inertial frame.

We also have to assume that all relative velocities v of the fluid elements inside the

cavity satisfy v/c << 1 so that we can employ Newtonian physics. This assumption is also

asymptotically valid for small enough cavity radius r since the relative velocities between

fluid elements are proportional to their separation distances as shown by Hubble’s law which

we derive nonrigorously below.

Recall all fluid elements in the perfect fluid are in free fall as aforesaid. This raises

an interesting point. Special relativity gives the vacuum light speed c as the highest speed

relative to inertial frames, but not between inertial frames. And the strong equivalence

principle of GR shows that free-fall frames with uniform external gravity are exact inertial

frames. The strong equivalence principle has been verified to very high accuracy (Archibald

et al. 2018, arXiv:1807.02059). So the free-fall frames (which we will call comoving frames)

of our model can grow apart at faster than c. In fact, Hubble’s law shows that they must

for large enough separation distances. Note that a light signal between comoving frames

can only propagate at the vacuum speed light relative to the comoving frames it propagates

through. So the fact that space can grow faster than the vacuum light speed does not imply

there is faster-than-light signaling.
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To summarize our assumptions for the Newtonian derivation, we require Birkhoff’s

theorem and that r be sufficiently small so that all relativistic and time-delay effects are

small. If the aforesiad effects vanish in the differential limit as r →, then the Newtonian

derivation should be valid. Recall the Friedmann equation holds at every point in the universe

model according to the GR derivation. Perhaps, there is some way that the Newtonian proof

is still invalid, but it would have to be a very odd way.

Now we are ready to tear into the derivation of the Friedmann equation. We put a test

particle of mass m at the surface of our cavity (i.e., at radius r). Given our setup, we have

conservation of mechanical energy E:

E =
1

2
mv2 − GMm

r
=

1

2
mv2 − 4πG

3
ρr2m , (3)

where the first term to the right of the equal signs is the kinetic energy of our test particle

and the second is its gravitational potential energy which is also its gravitational field energy

in Newtonian physics which as discussed above does not itself contribute to gravitating mass-

energy. We now write

r = ar0 , (4)

where a is the dimensionless cosmic scale factor and r0 is a time-independent covoming

distance. By usual convention the scale factor for the current cosmic time t0 is defined to

be 1: i.e., a0 = a(t0) = 1. This means that the r0 are the proper distances for the current

cosmic time: i.e., distances that you could measure with a ruler at current instant in cosmic

time. Note v = ȧr0. Now defining the Hubble parameter H = ȧ/a, we get

v = Hr (5)

which is the general-time Hubble’s law. The current cosmic time Hubble’s law (with the

current Hubble parameter being Hubble’s constant) is

v0 = H0r0 . (6)

The validity of this derivation of Hubble’s law follows from the Friedmann equation itself,

and so is valid insofar as our Newtonian derivation of the Friedmann equation is valid. A

rigorous GR derivation is given by CL-13–14.

Re Hubble’s law: it is an exact law for recession velocities (which are velocities between

comoving frames: i.e., free-fall frames that are exact inertial frames) and proper distances

(which are true physical distances that can be measured at one instant in cosmic time with

a ruler). In fact, neither recession velocities nor proper distances are observables, except

asymptotically as r → 0. The exception allows Hubble’s constant to be measured from

cosmologically nearby galaxies.
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We divide the conservation of mechanical energy equation by −mr2
0/2 to get

− 2E

mr2
0

= −ȧ2 +
8πG

3
ρa2 . (7)

The right-hand side of the second to last equation is independent of E, m, and r0 and

depends only on universal quantities of the universe model, and therefore the constant on

the left-hand side must be a universal constant independent of the peculiarities of the test

particle: i.e., E, m, and r0. We use the symbol k for this universal constant: thus,

k = − 2E

mr2
0

. (8)

The constant k is called the curvature since GR tells us it describes the curvature of space

which we cannot know from Newtonian physics (Li-24, CL-12–13). Note k > 0 gives pos-

itive curvature (hyperspherical geometry), k < 0 gives negative curvature (hyperbolical

geometry), and k = 0 gives zero curvature (flat or Euclidean geometry): see Wikipedia:

Shape of the universe. (As noted above, k is often defined with an unabsorbed c2: i.e.,

kc2 = −2E/mr2
0.) Rearranging the second to last equation gives us the Friedmann equation

itself:

H2 =

(

ȧ

a

)2

=
8πG

3
ρ − k

a2
= H2

0

[

Ω + Ωk

(a0

a

)2
]

, (9)

(Li-24), where we have defined

Ω =
ρ

ρc
, ρc =

3H2
0

8πG
, Ωk = − k

a2
0H

2
0

(10)

(Li-51,56).

?????

H2 =

(

ȧ

a

)2

=
8πG

3
ρ +

Λ

3
− kc2

a2
=

8πG

3
(ρ + ρΛ) − kc2

a2
(11)

(e.g., Liddle 2015, p. 55–56). Note that ρΛ = Λ/(8πG) is either (a) a parameterization of

cosmological constant Λ as a density quantity or (b) is constant dark energy symbolized and

often called Λ since its effect in the Friedmann equation is the same case (a). In fact, the

concepts of cosmological constant and constant dark energy are often conflated in casual

discussion because of their common effect in the Friedmann equation. However, they are in

principle very different: the cosmological constant is a modification of gravity as manifested

in the Einstein field equations of relativity and constant dark energy is a form of mass-

energy with negative pressure. Constant dark energy may have other effects outside of the
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Friedmann equation but there is no established theory as to what those are and the simplest

hypothesis is that there are none.

?????

Note Ω is the density parameter (Li-51), ρc = 3H2
0/(8πG) is the critical density (Li-51),

and Ωk is the curvature density parameter (Li-56). If Ω = 1 at the current cosmic time (or

any other cosmic time defined as current cosmic time), one has

H2
0 = H2

0 (1 + Ωk) (12)

implying Ωk = 0. So a universe model that is exactly flat at any cosmic time is exactly flat

at all times.

There are several interesting points to be made about the Friedmann equation. First,

we demanded r be small enough so that we could neglect relativistic and time travel effects.

But we would derive the same Friedmann equation no matter what r we choose. So actually,

all the effects we have neglected must cancel out for any r due to the conditions we imposed

on the universe model: the cosmological principle and the perfect fluid.

A second interesting point is that Friedmann equation allows for mass-energy to appear

or disappear as function of a. To explicate, mass-energy that is conserved (which called mat-

ter in cosmology jargon) has ρm ∝ 1/a3. We show this below, but is in fact it is somewhat

obvious: if the volume of a fluid element scales of up as a3 and mass-energy is conserved,

then density must decrease as 1/a3. But we allow other kinds of mass-energy dependence

on a. For one example of mass-energy appearance/disappearance is that the cosmic back-

ground radiation and cosmic neutrino background (which in cosmology jargon is collectively

called radiation) has ρr ∝ 1/a4. The extra power of a is due to the cosmological redshift

of extreme relativistic mass-energy which just causes radiation mass-energy to vanish from

universe—it’s just gone as gravitating mass-energy. Note general relativity cosmology does

not have ordinary conservation of mass-energy: it just has the energy-momentum conserva-

tion equation ∇µTµµ = 0 (Carroll-120). Another point is that Noether’s theorem that gives

energy conservation when time invariance applies does not apply in an evolving universe

model that does not have time invariance (Carroll-120). Another example of mass-energy

appearance/disappearance is that constant dark energy (which is equivalent to the cosmo-

logical constant Λ in effect in the Friedmann equation if not otherwise) has ρΛ constant. The

appearing/disappearing mass-energy contributes both gravitational field energy and, by the

conservation of mechanical energy, the kinetic energy of the comoving frames which is sort of

energy of expansion. (The disappearance of radiation also removes the kinetic energy of the

comoving frames). To make more obvious the way mass-energy appearance/disappearance

balances the gravitational field energy and the kinetic energy of the comoving frames , con-
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sider the Friedmann equation version

ȧ2 =
8πG

3
ρa2 − k . (13)

Holding a and k fixed, and increasing ρ (mass-energy) proportionally increases ȧ2 (kinetic

energy of comoving frames). This balanced contribution of gravitational field energy and ki-

netic energy for appearing/disappearing mass-energy arises only from starting our derivation

from the conservation of mechanical energy equation. If we had started from Newton’s 2nd

law, we would have had no obvious path to include appearing/disappearing mass-energy.

You might ask what if k is a function of time or appearing/disappearing mass-energy is

an explicit function of time not merely a function of a which is a function time. We have no

guiding theory for these cases, and so far no observational or theoretical need for them.

3. DERIVATION OF THE FLUID EQUATION

We will now derive the fluid equation as it is called in cosmology jargon: i.e., the

equation for ρ̇. We assume that the perfect fluid obeys the 1st law of thermodynamices

(which is actually implicit in the energy-momentum tensor for a perfect fluid: C.G. Wells

2014, ArXiv:1405.1656, p. 4). The 1st law is

dE = T dS − p dV + µ dN , (14)

where here E is total mass-energy and not mechanical energy as above, T is temperature, S

is entropy, p is pressure, V is volume, µ is chemical potential, and N is number of particles.

The perfect fluid is adiabatic (i.e., dS = 0) and so the 1st law reduces to

dE = −p dV + µ dN , (15)

For simplicity, we allow change in number of particles only to a species that is spontaneously

created in such a way that N stays proportional to volume V . This means that N = nV

where n is the constant density of the spontaneously created particles. The spontaneously

created particles are created at rest in the comoving frames, and so their chemical potential

is just their rest-mass mass-energy. Given a volume V ∝ a3 for an amount of perfect fluid,

we have

E = ρc2V

Ė = (ρ̇V + ρV̇ )c2 = −pV̇ + µnV̇

ρ̇ = − V̇
V

(

ρ + p
c2
− µn

c2

)

and using V̇
V

= 3a2ȧ
a3 = 3 ȧ

a
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ρ̇ = −3 ȧ
a

(

ρ + p
c2
− µn

c2

)

(16)

(Li-26). At the expense of clutter, we can explicitly allow for different species in the fluid

equation:

ρ̇ = −3
ȧ

a

∑

i

(

ρi +
pi

c2
− µini

c2

)

, (17)

where µi = 0 for those species which are not the spontaneously created particles we allowed

for.

We note that in cosmology the equation of state is often parameterized thusly

p =







































wρc2 where w is constant parameter just called w;

0 for matter where w = 0;
1

3
ρc2 for radiation where w = 1/3;

−ρc2 for constant dark energy where w = −1;

−1

3
ρc2 for a non-accelerating universe where w = −1/3.

(18)

One might well ask what the heck is the negative pressure of constant dark energy.

Well for a hypothetical laboratory gas, its something with suction. So expanding it, requires

adding internal energy. But the constant dark energy negative pressure may be just formal.

There is no reason to require it to couple to anything except maybe itself, and so maybe

nothing feels negative pressure, except maybe dark energy itself. In any case, the dark energy

is uniform, and so there are no pressure gradients. Where does the mass-energy come from to

keep dark energy constant as the universe expands? Well in simplest theory, it just appears

as a fundamental fact. However, there are quantum field theory reasons for believing there

could be dark energy, but quantum field theory in its simplest prediction gets the size of

constant dark energy too big by more than 100 orders of magnitude. So maybe quantum

field theory does not know what its talking about.

Why do we allow for constant dark energy? The universal expansion is positively accel-

erating and constant dark energy supplies a cause. Of course, constant dark energy insofar

as it affects Friedmann equation (but perhaps not otherwise) can be replaced by Einstein’s

cosmological constant Λ with the appropriate positive value. The cosmological constant (if

it exists) is a fundamental aspect of gravity and not mass-energy form at all.

The negative pressure for the non-accelerating universe is just a fix to get a non-

accelerating universe which has been argued for by some (e.g., Melia 2015, arXiv:1411.5771).

So it’s just a formal pressure.
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Why did we allow for spontaneously created particles? They represent an alternative

idea to constant dark energy and the cosmological constant. In the Friedmann equation,

they have the same effect as constant dark energy and the cosmological constant Λ with the

appropriate positive value. What could such particles be? Very speculatively, dark matter

particles, nonrelativistic neutrinos (which can exist even if we have never detected them),

and/or baryonic matter (pairs of protons and electrons). All of these would have other effects

than just giving a positively accelerating universe. They could clump eventually and affect

large-scale structure evolution, and in the case of baryonic matter lead to new star formation.

The particles, by the way, certainly have only positive pressure, but to first approximation

that is negligible compared to their mass-energy contribution. The case of spontaneous

creation of baryonic matter leads to the unlikely hypothesis that the observable universe

started with a Big Bang, but is now evolving to the steady-state universe as hypothesized

by Bondi, Gold, and Hoyle in 1948. Actually, Einstein anticipated the steady-state universe

in unpublished work in 1931.

4. DERIVATION OF THE ACCELERATION EQUATION

5. SOLVING THE FRIEDMANN EQUATION

The Friedmann equation in the standard form that follows from the derivation is not

suitable for analytic nor numerical solutions. A suitable form is a scaled Friedmann equation:

i.e., one with scaled density, time, and scale factor itself. In § 5.1 below, we introduce the

scalings and present the Friedmann equation’s relationship to what we call the curvature

radius. In § 5.2, we give a general scaled Friedmann equation. There are also special case

scaled Friedmann equations which introduce as needed in this educational note.

5.1. Scaled Density, Time, and Scale Factor and the Curvature Radius

Recall the derived form of the Friedmann equation (i.e., eq. (11) in § 2)

H2 =

(

ȧ

a

)2

=
8πG

3
ρ +

Λ

3
− kc2

a2
=

8πG

3
(ρ + ρΛ) − kc2

a2
, (19)

where recall ρΛ = Λ/(8πG). We specify scaled density (usually called density parameter or

just Ω), time, and scale factor, respectively, as follows

Ω =
ρ + ρΛ

ρscale

, τ =
t

tscale
, and x =

a

a0

, (20)
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where

tscale =
1

√

(8πG/3)ρscale

, (21)

and subscript 0 means fiducial time which is not necessarily cosmic present though it usu-

ally that for currently viable models of the observable universe. Now ρscale itself is usually

specified as the critical density ρcrit for cosmic present (which we introduce below) for mod-

els viable for the observable universe. However, ρscale can be used as free parameter for

Friedmann equation solutions or left unspecified for scaled Friedmann equation solutions.

Why do we need to scale the scale factor a(t) itself. In many cases, a(t) is made

dimensionless and its fiducial time value is set by a0 = 1 for cosmic present of the observable

universe. In these cases,

r = a(t)r0 , (22)

r is physical (or proper) distance at cosmic time t, a(t) is the dimensionless scale factor

itself, and r0 is the physical distance at cosmic present and also the comoving distance (i.e.,

the time-factored-out distance for the expanding universe). However, a(t) can be made a

physical distance and for curved spaces this is the natural choice since the general relativity

derivation of the Friedmann equation incorporating the Robertson-Walker (RW) metric leads

to a physical disance a(t) for curved spaces which we will call the RW a(t) (e.g., Coles

& Lucchin 2002, p. 9–13). The RW metric version of the Friedmann equation makes the

curvature k a dimensionless quantity with just 3 possible values:

k =







1 for positive curvature or hyperspherical spaces;

0 for Euclidean or flat spaces;

−1 for negative curvature or hyperbolical spaces.

(23)

We now define the curvature density parameter Ωk (which subscript k for curvature) by

Ωk = − kc2

(8πG/3)ρscalea2
= − kc2

(8πG/3)ρscalea
2
0

x−2 . = Ωk,0x
−2 , (24)

where again the subscript 0 indicates fiducial time (which not in general cosmic present).

The negative sign in equation (24) is needed for Ω and Ωk to appear in a formally consistent

way in the general scaled Friedmann equation given below and in § 5.2. However, there is

the slight confusion that Ωk is negative/positive for positive/negative curvature.

We will call the RW a the curvature radius and the RW a0 the fiducial curvature radius.

What is the RW a curvature radius. For negative curvature (i.e., for k = −1), its too esoteric

to explain in this educational note except that it is characteristic length scale (e.g., Coles

& Lucchin 2002, p. 11) for infinite hyperbolic spaces. For positive curvature (i.e., for k = 1),

there is a simple meaning. An unbounded positive curvature space is finite and has the same
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geometry as the 3-dimensional surface of a 3-sphere (or hypersphere) which is a sphere in a

4-dimensional Euclidean space. In positive curvature space, the RW a times π is the physical

distance from any point along a geodesic in any direction to the antipodal point and the RW

a times 2π is the physical distance from any point along a geodesic in any direction back

to the point (e.g., Coles & Lucchin 2002, p. 11). That is enough to say in this educational

note. By the by, what is is called the Gaussian curvature radius is defined

RG =
a√
k

=







a for k = 1 and positive curvature;

undefined for k = 0 and flat space;

−ia for k = −1 and negative curvature

(25)

(e.g., Coles & Lucchin 2002, p. 12).

The scaled Friedmann equation so far is

h2 =

(

ẋ

x

)2

= Ω + Ωk,0x
−2 , (26)

where h is the scaled Hubble paramter (i.e., h = Htscale). Note







Ω = h2 at any time τ implies k = 0, and so flat space and Ωk = 0 at all times;

Ω > h2 implies Ωk < 0, and so k = 1 and positive curvature at all times;

Ω < h2 implies Ωk > 0, and so k = −1 and positive curvature at all times.

(27)

A formal solution for the RW a0 is

a0 =
c

√

(8πG/3)ρscale|Ωk,0|
=

c
√

(8πG/3)ρscale|Ω0 − h2
0|

. (28)

Note for Ωk,0 = 0 (implying Ω0 = h2
0), we have the RW a0 undefined at all times. In this case,

one usually chooses the dimensionless a0 = 1 and uses equation (22) above. In other cases,

the RW a0 is a defined real number as can be seen by comparing equations (28) and (24).

For viable cosmological models circa 2020, one usually chooses ρscale to be the critical

density ρcrit for cosmic present. The critical density ρcrit and the implied scale time tscale are

given by

ρcrit =
3H2

0

8πG
and tscale =

1
√

(8πG/3)ρscale

=
1

H0

= tH0
, (29)

where H0 is the cosmic present Hubble parameter (i.e., the Hubble constant) and tH0
is the
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Hubble time. In this case, the RW a0 specializes to

a0 =























































LH0
√

|Ωk,0|
=

LH0
√

|Ω0 − 1|
where LH0

= c/H0 = ctH0
is the Hubble length;

[(4.2827 . . .) Gpc]/h70
√

|Ωk,0|
where h70 = H0/[70 (km/s)/Mpc]

is the Hubble constant in units of

fiducial Hubble constant 70 (km/s)/Mpc;

(191.53 . . .) Gpc for |Ωk,0| = 0.0005;

(19.153 . . .) Gpc for |Ωk,0| = 0.05.

(30)

Now the Λ-CDM model formally sets Ωk,0 = 0 as an approximation to the prediction

of inflation cosmology that Ωk,0 should equal zero to high accuracy. Planck (2018, p. 68) in

extensions of the Λ-CDM model that allow for curvature find with all data included that

Ωk,0 = 0.0005(40) which is consistent with zero curvature. Note that taking Ωk,0 = 0.0005

gives RW a0 = (191.53 . . .) Gpc as shown in equation (30) above. On the other hand, some

analyses of observational data circa 2020 suggest that Ωk,0 could be of order −0.05 (e.g.,

Handley 2019, p. 4) which implies positive curvature and RW a0 = (19.153 . . .) Gpc as

shown in equation (30) above. It remains to be seen if this suggetion remains viable through

the 2020s. Note that the Λ-CDM model gives the radius of the observable universe (i.e.,

the particle horizon) to be ∼ 14.25 Gpc (e.g., Wikipedia: Observable universe). Since the

Λ-CDM model fits the observations so well even it needs revision or replacement, the radius

of observable universe not likely to be much different from 14.25 Gpc. Thus, even if universe

has positive curvature with RW a0 = (19.153 . . .) Gpc, the antipodal point to the Milky Way

is well outside of the observable universe, and so is not observable.

What of ρscale for non-viable cosmological models circa 2020? In fact, such models can

be conveniently left in scaled form since they primarily for educational purposes not for

fitting to the observed universe. So there is no need to specify ρscale and we do not do so in

our presentation of them unless ρscale = ρcrit. We note however, that many classic models

(e.g., positive-curvature-matter universe, the Einstein universe, the Lemâıtre universe, and

the Eddington Lemaitre) have there natural reference a0 when H = 0, and so one does not

have ρscale = ρcrit in these cases.

5.2. A General Scaled Friedmann Equation

The common hypothesis is that the density in the Friedmann equation just depends on

powers of the cosmic scale a or in our scaled form x. Following this common hypothesis and
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making use of equation (26) in § 5.1, a general scaled Friedmann equation is

h2 =

(

ẋ

x

)2

=
∑

p

Ωp,0x
−p , (31)

where the Ωp,0 are various density components including ρΛ (cosmological constant or con-

stant dark energy) treated as a density component plus the curvature Ωk,0 (from equation (24)

in § 5.1) treated as density component. We only consider commonly considered components

with powers p (not to be confused with pressure p) are as follows:


















































p = 0 for Λ (cosmological constant or constant dark energy);

p = 1 for quintessence (in some theories);

p = 2 for curvature, cosmic strings (in some theories), or the Rh = ct universe

p = 3 for matter (in the cosmological sense of matter at rest in comoving frames)

which includes baryonic matter and dark matter;

p = 4 for radiation (in the cosmological sense of mass-energy moving

at or nearly at the vacuum light speed

in comoving frames).
(32)

(e.g., Steiner 2008, p. 6–7; e.g., Melia 2014 for the Rh = ct universe).

From the form of equation (31) where τ only appears as dτ in ẋ = dx/dτ , it is obvious

that numerical solutions for τ(x) (i.e., t(a)) are much more straightforward than numerical

solutions for x(τ) (i.e., a(t)). One then inverts τ(x) numerically (e.g., from a table of τ(x))

to get τ(x). An appropriate rearangement of equation (31) for numerical solutions is

dτ =
x dx

√

∑4
p=0 Ωp,0x4−p

, (33)

which has the nice feature that no negative powers of x (i.e., a) appear. Equation (33) can

be solved by, e.g., the midpoint method (Wikipedia: Midpoint method) or the Runge-Kutta

method (Wikipedia: Runge-Kutta methods)

For analytic solutions from the equation (33) with a single nonzero Ωp,0 (i.e., a single

power of a or x), you solve for τ(x) from

dτ = xp/2−1 dx (34)

and inverts easily to get x(τ). We call such solutions power-of-a solutions and derive them

in § 6. Remarkably if you have only one Ωp 6=0,0 and Ωp=0,0 nonzero, solves for x(τ) directly

most easily and obtains τ(x) by inversion. We call such solutions power-of-a-Λ solutions and

derive them § 7.
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Other analytic solutions can be obtained in terms of what is called conformal time

symbolized by η and related to τ by dη = dτ/x. From equation (33), we see that

dη =
dx

√

∑4
p=0 Ωp,0x4−p

(35)

which because of it nice mathematical appearance is prima facie suggestive that analytic

solutions for multiple nonzero Ωp,0 are possible. In fact, equation (35) can be solve analyti-

cally for x(η) for all five Ωp,0 nonzero though with dependence (Steiner 2008, p. 7–9). on the

Weierstrass elliptic function (Wikipedia: Weierstrass elliptic function). We will not present

this solution in this educational note.

However, conformal time is not generally useful since physics generally evolves by ordi-

nary time τ . So one must solve for τ via

dτ = x(η) dη (36)

which cannot be done analytically in general and then invert to get η(τ) (which also cannot

be done analytically in general) in order to get x[η(τ)].

As an example of using conformal time, we will in § 9 we will solve for x(η) and τ(η)

for the positive-curvature-matter universe: i.e., the model with only ΩM,0 = Ω3,0 and Ωk,0 =

Ω2,0 < 0 being nonzerio in equation (35).

6. POWER-OF-a SOLUTIONS



– 17 –

Table 1. Power-Law Solutions to the Friedmann Equation

w\Quantity p =
2

γ
γ =

2

p
a(t) t0 =

γ

H0
q0 =

1

γ
− 1 ρ

{

w or

w 6= −1

}

3(1 + w)
2

[3(1 + w)]
a0

(

t

t0

)γ

γ

(

13.968 Gyr

h70

)











1

2
(1 + 3w)

=
p

2
− 1











ρ0

(

t0
t

)2

w = 0 p = 3 γ =
2

3
a0

(

t

t0

)2/3
2

3

1

H0

1

2
ρ0

(

t0
t

)2

w =
1

3
p = 4 γ =

1

2
a0

(

t

t0

)1/2
1

2

1

H0
1 ρ0

(

t0
t

)2

w = −1 p = 0 γ = ∞ a0e
H0(t−t0) ∞ −1 ρ0

w = −1

3
p = 2 γ = 1 a0

(

t

t0

)

1

H0
0 ρ0

(

t0
t

)2
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7. POWER-OF-a-Λ SOLUTIONS

8. TWO-POWERS-OF-a SOLUTIONS

9. POSITIVE-CURVATURE-MATTER UNIVERSE

10. THE RADIATION-MATTER ERA SOLUTION

11. MIXED POWER-LAW SOLUTIONS

12. POWER-LAW-LAMBDA SOLUTIONS

The Friedmann equation with one inverse-power dependence on cosmic scale factor a(t)

and a Lambda dependence is
(

ẋ

x

)2

= H2
0

(

ΩΛ + Ωp0
x−p
)

, (37)

where x = a/a0, the derivative is with respect to cosmic time t and p > 0 (so to have

inverse-power dependence on cosmic scale factor a(t)). We know from § 6, that the solutions

for with only one inverse power-law dependence on a (with inverse power p and no Lambda)

and only a Lambda dependence are, respectively, a power-law solution and an exponential

solution (i.e., the de Sitter solution): i.e.,

a = a0

(

t

t0

)γ

= a0

(

t

γ/H0

)γ

and a = a0e
H0(t−t0) = a0e

(t−t0)/te (38)

where t0 is the present cosmic time or any fiducial cosmic time, γ = 2/p and te = 1/H0 is

the e-folding time for the exponential solution. From equation (37), we expect its solution to

grow from a = 0 like the power-law solution just above for sufficiently small a and eventually

to asymptotically become like the exponential solution as a → ∞. Thus, we can guess that

the following interpolation solution should be a good approximate solution to equation (37):

a = aΛ sinhγ

(

t

γtΛ

)

, (39)

where aΛ is some constant such that a(t = 0) = a0 and here tΛ = 1/HΛ with HΛ ≡
√

ΩΛH0.

The tΛ is the asymptotic e-folding time for t → ∞ and tγ = γtΛ is the asymptotic power-law

scale time as t becomes small.

Recall sinh(x) is the hyperbolic sine function. Also recall the hyperbolic function defi-

nitions

sinh(x) =
ex − e−x

2
cosh(x) =

ex + e−x

2
tanh(x) =

sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
(40)
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and the hyperbolic function identities

cosh(x) ± sinh(x) = e±x cosh2(x) − sinh2(x) = 1 (41)

and the hyperbolic function derivatives

d sinh(x)

dx
= cosh(x)

d cosh(x)

dx
= sinh(x)

d tanh(x)

dx
=

1

cosh2(x)
. (42)

In fact, equation (39) is the exact solution to equation (37). We will prove this by

proving a more general solution of which equation (39) is a special case. Consider the three

identities






(1) sinh2(τ) − cosh2(τ) = −1

(2) cosh2(τ) − sinh2(τ) = 1

(3) sin2(τ) + cos2(τ) = 1 ,

(43)

where τ is a scaled time. The identities can be written as one identity which is, in fact, a

nonlinear 1st order differential equation with no explicit dependence on τ and three cases:

f 2 − gḟ 2 = −h







g = h = 1, gh = 1 for identity (1);

g = 1 h = −1, gh = −1 for identity (2);

g = h = −1, gh = 1 for identity (3),

(44)

where the derivative is with respect to scaled time τ . It ca be rewritten as

ḟ 2 = gf 2 + gh . (45)

The only exact solutions yours truly knows of are sinh(τ), cosh(τ), sin(τ) and cos(τ). The

cos(τ) solution is identical to the sin(τ) solution other than a shifted time zero and we will

not consider it further below.

Now consider the function y = f(τ)γ and the following differential equation constructed

from it:
ẏ

y
=

γfγ−1ḟ

fγ
= γ

ḟ

f
= ±γ

√

g + ghf−2 = ±γ
√

g + ghy−2/γ , (46)

where we have used that f ≥ 0 for all cases we are interested in. Clairvoyance tells us that

the cases γ = 0 and γ = ∞ are of no interest. The former yields to p = ∞ and the latter

p = 0 which is just the Lambda dependence case all over again.

Now equation (46) looks a lot like the Friedmann equation of interest equation (37).

In fact with appropriate scaling and identifications equation (37) can be reduced to equa-

tion (46)—or, and this is key for understanding, vice versa. First, we rewrite equation (37)

thusly
(

1

x

)

dx

dt
=

√

|ΩΛ|H0

γ

(

±γ

√

ℓ +
Ωp0

|ΩΛ|
x−p

)

, (47)
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where ℓ = 1 for ΩΛ > 0 and ℓ = −1 for ΩΛ < 0. Now defining

dτ =

√

|ΩΛ|H0

γ
dt , (48)

we see equations (37) and (46) are the same for ℓ = g and

Ωp0

|ΩΛ|
x−p = ghy−2/γ (49)

with p = 2/γ.

The upshot is that we have 3 exact solutions for equation (37) derivable from

a = a0

[(

Ωp0

ΩΛ

)

h

]γ/2

f

[

t

γ/(
√

gΩΛH0)

]γ

(50)

which correspond to the three cases of differential equation equation (44). Note that we have

the physical reality constraints

gΩΛ > 0 and

(

Ωp0

ΩΛ

)

h =

(

1 − ΩΛ

ΩΛ

)

h =

(

Ωp0

1 − Ωp0

)

h > 0 (51)

since a(t) and all powers of it must be real and positive and the sum of the Ωp0
parameters

must be 1.

The us briefly describe the three exact solutions:

1. The power-of-hyperbolic-sine solution with g = h = 1 (implying ΩΛ > 0 and Ωp0
> 0):

a = a0

(

Ωp0

ΩΛ

)γ/2

sinhγ

[

t

γtΛ

]

, (52)

where tΛ = 1/
√

ΩΛH0 = 1/HΛ is the asymptotic Hubble time as t → ∞ with HΛ being

the asymptotic Hubble constant. Reverting for the moment to the scaled variables, we

see

ẏ =























γ sinhγ−1(τ) cosh(τ) > 0 for τ > 0;

γτγ−1 to 1st order in small τ ;

0 for γ > 1 and τ = 0;

γ for γ = 1 and τ = 0;

∞ for γ < 1 and τ = 0.

(53)

From the above formulae, we see that a(t = 0) = 0 and that a(t) strictly increases for

t > 0 to a(t = ∞) = ∞. At t = 0, there is a minimun for γ > 1, a strict increasing
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for γ = 1, and an infinite slope for γ < 1. Recall from § 2 that behavior of a(t)

when a(t) = 0 is of interest only as limiting behavior since the Friedmann equation

becomes invalid as a(t) → 0 where quantum gravity must take over. Note that the

only solution with nonzero curvature requires Ωp0−2 = Ωk0
= −k/(a2

0H
2
0 ) > 0 (Li-52)

which means k < 0 and negative curvature or hyperbolic space (Li-33) and γ = 1. The

power-of-hyperbolic-sine solution has an important special case for γ = 2/3 (i.e., the

matter-Lambda case) which we discuss below.

2. The power-of-hyperbolic-cosine solution with g = 1 and h = −1 (implying ΩΛ > 0 and

Ωp0
< 0):

a = a0

( |Ωp0
|

ΩΛ

)γ/2

coshγ

[

t

γtΛ

]

, (54)

where tΛ = 1/
√

ΩΛH0 = 1/HΛ is the asymptotic Hubble time as t → ±∞ with

HΛ being the asymptotic Hubble constant. Reverting for the moment to the scaled

variables, we see

ẏ =















γ coshγ−1(τ) sinh(τ) > 0 for τ > 0;

γ coshγ−1(τ) sinh(τ) < 0 for τ < 0;

2γτ(1 + τ 2)γ−1 to 2nd order in small τ ;

0 for τ = 0.

(55)

From the above formulae, we see that a(t) strictly decreases from a(t = −∞) = ∞
to a minimum at t = 0, and then strictly increases to a(t = ∞) = ∞. Note that the

only physical case with Ωp0
< 0 is when Ωp0=2 = Ωk0

= −k/(a2
0H

2
0 ) < 0 (Li-52) which

means k > 0 and positive curvature or hyperspherical space (Li-33), and γ = 1. If

the hypersherical space extended without a boundary, the solution would be a closed

universe. At present, the observable universe does not require the power-of-hyperbolic-

cosine solution and we will not discuss it further.

3. The power-of-sine solution with g = −1 and h = −1 (implying ΩΛ < 0 and Ωp0
> 0):

a = a0

(

Ωp0

|ΩΛ|

)γ/2

sinγ

[

t

γtΛ

]

, (56)

where

H =
ȧ

a
=

1

tΛ

1

tan[t/(γtΛ)]
, (57)

and so tΛ = 1/
√

ΩΛH0 = 1/HΛ is the Hubble time and HΛ the Hubble constant only
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for t/(γtΛ) = π/2. Reverting for the moment to the scaled variables, we see

ẏ =











































γ sinγ−1(τ) cos(τ) > 0 for τ ∈ (0, π/2);

γ sinγ−1(τ) cos(τ) < 0 for τ ∈ (π/2, π);

0 for τ = π/2;

γτγ−1 to 1st order in small τ ;

0 for γ > 1 and τ = 0;

γ for γ = 1 and τ = 0;

∞ for γ < 1 and τ = 0.

(58)

From the above formulae, we see that a(t = 0) = 0 and that a(t) strictly increases for

t > 0 to a maximum at a[t = (π/2)γtΛ] and then strictly decreases for t > (π/2)γtΛ.

At t = 0 (t = πγtΛ using symmetry), there is a minimum for γ > 1, a strict increasing

(decreasing) for γ = 1, and an infinite slope for γ < 1. Recall again from § 2 that be-

havior of a(t) when a(t) = 0 is of interest only as limiting behavior since the Friedmann

equation becomes invalid as a(t) → 0 where quantum gravity must take over. Note

that the only solution with nonzero curvature requires Ωp0=2 = Ωk0
= −k/(a2

0H
2
0 ) > 0

(Li-52) which means k < 0 and negative curvature or hyperbolic space (Li-33), and

γ = 1. The power-of-sine solution for matter (i.e., p = 3 and γ = 2/3 and flat

space) has a similar functional behavior to the approximate power-of-sine behavior of

of the positive-curvature matter solution (see § POSITIVE-CURVATURE-MATTER

UNIVERSE). At present, the observable universe does not require the power-of-sine

solution and we will not discuss it further.

The power-of-hyperbolic-sine solution with γ = 2/3 (i.e., the matter-Lambda case with

p = 3 and flat space) is, in fact, the exact solution for the Λ-CDM model of the observable

universe not counting the relatively brief radiation era and earlier (e.g., Steiner 2008, p. 12;

Sazhin 2011, p. 3; Universe in Problems 2019, Standard Cosmological Model, Evolution of

Universe, problem 13). This fact is well known though apparently not much mentioned in

articles on the Λ-CDM model. Thus power-of-hyperbolic-sine solution is very important.

Because its importance, we present in Table 2 some power-law-Lambda-hyperbolic-sine

solution results and Λ-CDM model results.

To summarize:
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Table 2. Power-Law-Lambda-Hyperbolic-Sine Solution Results and Λ-CDM Model

Results

Formula/Quantity Description

a = a0

(

Ωp0

ΩΛ

)γ/2

sinhγ

[

t

γtΛ

]

cosmic scale factor a(t)

ȧ = a0

(

Ωp0

ΩΛ

)γ/2(
γ

γtΛ

)

sinhγ−1

[

t

γtΛ

]

cosh

[

t

γtΛ

]

1st derivative of a(t)

ä = a0

(

Ωp0

ΩΛ

)γ/2 [
γ

(γtΛ)2

]

sinhγ−2

[

t

γtΛ

]

×
[

γ cosh2

(

t

γtΛ

)

− 1

]

2nd derivative of a(t)

H =
ȧ

a
=

(

1

tΛ

)

1

tanh[t/(γtΛ)]
Hubble parameter

q = − ä

aH2
=

1

γ cosh2[t/(γtΛ)]
− 1 deceleration parameter (Li-53)
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13. THE Λ-CDM MODEL SOLUTION

14. THE EINSTEIN UNIVERSE

15. THE LEMAITRE UNIVERSE

16. THE LEMAITRE-EDDINGTON UNIVERSE

17. CONCLUSIONS

Reader, the conclusions are in the abstract and the introduction (i.e., § 1).

Support for this work was provided the Department of Physics & Astronomy of the

University of Nevada, Las Vegas. I thank Kevin Cahill for providing me with his numerical

solution for the scale factor a(t) for the Λ-CDM model.

A. FIRST-ORDER AUTONOMOUS ORDINARY DIFFERENTIAL

EQUATIONS

We will digress on a key point about the Friedmann equation. It is a 1st order differential

equation with no explicit dependence on the independent variable: i.e., it is of the form

x′ = g(x) where the solution is of the form x = x(t) , (A1)

where t is a general independent variable and not time unless it is time. Such differential

equations three cases for their stationary point values xi:

1. Constant solutions where every point is a stationary point.

2. If no order of derivative of g(x) has an infinity for a stationary point value (i.e., g(xi)),

then stationary point can only occur at t = ±∞

3. If some order of derivative of g(x) has an infinity for a stationary point value, than

that stationary point will occur at finite t usually.

We explicate the three cases in the subsections below.
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A.1. Constant Solutions

A constant solution x(t) = xi has every point a stationary point. This is easy to prove:

g(xi) = 0 implies x(t) = xi.

A.2. g(x) Has No Order of Derivative that is Infinite at xi

If g(x) has no order of derivative with an infinite value, then the only stationary points

are at infinity (meaning either plus or minus) infinity. To prove this expand g(x) around the

stationary point xi first assuming that there is a nonzero 1st order term. One obtains

x′ = ∆xg1 +
∆x2

2!
g2 + . . . , (A2)

where the gn are derivatives with respect to x evaluated at xi, g0 = 0 by the assumption that

xi is a stationary point, and ∆x = x − xi. For small ∆x, we approximate the differential

equation as

∆x′ = g0 + ∆xg1 (A3)

which has solution

∆x = ∆x0e
g1t (A4)

For g1 less/greater than zero, x converges/diverges toward the stationary value xi as t in-

creases. In the convergence case, x only gets to the stationary point at t = ∞. Since our

1st order approximation gets better for the convergence behavior, this result is established

for the exact g(x). The divergence behavior is to x = ∞ as t → ∞, but neglected higher

order terms may lead to other behavior as t increases, but, in any case, there never will be

convergences to xi for finite time. If you run the time backward, then for g1 less/greater

than zero, you get the inverse of the behavior just described.

Now what if expansion for g(x) has zero coefficients up to coefficient n ≥ 2? Alas, this

unimportant case is has a tricky discussion. But a human has to do what a human has to

do. However, the solution is for g(x) truncated to the nth order is easily found to be

∆x =
1

[(gnt/n!) + ∆x−n+1
0 ]1/(n−1)

. (A5)

The trickiness is because of complications due to number sign, but the solution’s general

behavior is easy to understand. At t advances in either positive or negative direction, the

solution converges to xi at t = ±∞ in one direction and diverges to ±∞ at finite time

t = −n!∆x−n+1
0 /gn in the other direction. Since our nth order approximation gets better
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for the convergence behavior, this result is established for the exact g(x). The divergence

behavior may be changed by neglected higher terms, but these terms will never lead to

convergence xi for finite or infinite time. If ∆x ever gets sufficiently small again for any

reason, divergence will resume.

What about the complications due to number sign. First assume ∆x0 > 0, then clearly

A = (gnt/n!) + ∆x−n+1
0 and ∆x =

1

[(gnt/n!) + ∆x−n+1
0 ]1/(n−1)

(A6)

will be greater than zero until time has advanced beyond the infinity where A < 0, and so

A1/(n−1) = |A|1/(n−1)eiπ(2m+1)/(n−1) , (A7)

where m can be any integer. If (n − 1) is odd (i.e., n is even), then for some m we have

(2m+1)/(n−1) = 1, but there is no m that can make (2m+1)/(n−1) an even integer since

the numerator has no even factor. So the solution going through point t = −n!∆x−n+1
0 /gn

flips from rising to positive infinity to rising from negative infinity and asymptotically goes

xi as time advances to infinity. If (n − 1) is even (i.e., n is odd), then (2m + 1)/(n − 1) can

never be an integer and there is no real solution.

Next assume ∆x0 < 0 and (n − 1) even, then clearly

A = (gnt/n!) + ∆x−n+1
0 (A8)

will be greater than zero until time has advance beyond the infinity. Now for the before-the-

infinity region

A1/(n−1) = |A|1/(n−1)eiπ[2m/(n−1)] (A9)

will be positive for m = n − 1 and negative m = (n − 1)/2. The latter choice matches the

initial condition of ∆x0 < 0, and so gives the right solution. Beyond the infinity

A1/(n−1) = |A|1/(n−1)eiπ(2m+1)/(n−1)] . (A10)

For no choice of m can (2m+1)/(n−1) can ever be an integer for (n−1) even, and so there

is no real solution.

Finally, ∆x0 < 0 and (n − 1) odd, then clearly

A = (gnt/n!) + ∆x−n+1
0 (A11)

will be less than zero until time has advance beyond the infinity. Now for the before-the-

infinity region

A1/(n−1) = |A|1/(n−1)eiπ(2m+1)/(n−1) (A12)
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will be negative for 2m + 1 = n − 1 and can never be positive since (2m + 1)/(n − 1) can

never be an even integer. So the only real choice allowed matches the initial condition of

∆x0 < 0 and so gives the right solution. Beyond the infinity,

A1/(n−1) = |A|1/(n−1)eiπ[2m/(n−1)] (A13)

and no choice of m makes 2m/(n−1) an odd integer, and so there is only a positive solution.

So the solution going through point t = −n!∆x−n+1
0 /gn flips from falling to negative infinity

to falling from positive infinity and asymptotically going xi as time advances to infinity.

A.3. g(x) Has an Order of Derivative that is Infinite at xi

If g(x) has some order of derivative with respect to x with an infinite value, then the

function x will have a stationary point at finite t. Note x = f(t) is smooth at this stationary

point by the assumption that it is a stationary point: i.e., g(x0) = 0. It’s g(x) at xi that has

some bad behavior.

To explicate, let’s assume the (n−1)th derivative g(n) with respect to x at the stationary

value xi is infinite. Now we differentiate the differential equation equation (A1) (n−1) times

to get

x(n) = (gn−1)(x′)n−1 + other terms = (gn−1)gn−1 , (A14)

where not that x is differentiate with respect to t and g with respect to x. The other terms

only include factors of the derivative of g(x) with order less than (n − 1) and factors of

derivatives of x of order less than n. By assumption, all the g(k) for k < (n− 1) are finite at

xi and, by an implicit proof by induction, all the x(ℓ) for ℓ < n are zero at xi. We now take

the limit as x → xi and we find that

x(n)(xi) = lim
x→xi

(gn−1)gn = finite value . (A15)

For an interesting case, we assume that the finite value is not itself zero. If we expand x(t)

around ti (the stationary point for stationary value xi), we find

x(t) =
∆tn

n!
xn(xi) + higher order terms . (A16)

Thus, equation (A15) gives the lowest order curvature of x(t) at the stationary point.

There is at least one common case where x has a stationary value at finite t. Consider

g(x) = h(x)p , (A17)

where p is not an integer. We now find

x(n) = {p(p − 1) . . . [p − (n − 2)]}hp−(n−1)(h′)n−1hp(n−1) (A18)
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FIGURE CAPTIONS

Fig. 1—The analytic fit to the cosmic scale factor a(t) for the Λ-CDM model (dashed line)

compared to the exact a(t) (solid line) for said model calculated using Planck 2015 parmaters

Cahill (2016).

Fig. 2—The analytic fit to the cosmic scale factor a(t) for the Λ-CDM model (dashed line)

compared to the exact a(t) (solid line) for said model calculated using Planck 2015 parmaters

Cahill (2016).
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