
An Educational Note on Quasi-Equilibrium Dark Matter Halo

Physics

David J. Jeffery1

ABSTRACT

This note is naive theorizing to see how far it can go in understanding the

physics of the quasi-equilibrium dark matter halos. Many of the conundrums

that come up are probably resolved by a study a modern treatment of point-

mass gravitating bodies (e.g., Hamilton 2024). The presentation is likely to stay

fragmentary for some time.

Unified Astronomy Thesaurus concepts: Center of mass (216); Cosmology (343);

Cosmological constant (334); Dark energy (351); Dark matter (353); Dark matter

density (354); Dark matter distribution (356); Galaxy dark matter halos (1880);

Galaxy rotation curves (619) Gravitation (661); Gravitational fields (667); Isother-

mal sphere profile (866); Large-scale structure of the universe (902); Lambda

density (898); Matter density (1014); Navarro-Frenk-White profile (1091)

1. Drift Velocity

Over a mean free path in the radial direction a particle loses all the velocity it gains

from the acceleration due the gravitation of the interior mass.

ℓ =
1

2
at2 , (1)

and thus has drift velocity

v =
ℓ

√

2ℓ/a
=

√

1

2
ℓa , (2)

where

g =
GM(r)

r2
− Λ

3
r (3)
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is the graviational field due the interior mass M(r) and the cosmological constant force and

we have counted downward as positive.

A vague equipartition theorm tells us that the total average kinetic energy for the radial

and two perpendicular direction is

KE = 3

(

1

2
mv2

)

. (4)

The mean free path satisfies
1

ℓ
= nσ , (5)

where

n =
1

L3
and ρ =

m

L3
, (6)

and thus

L =

(

m

ρ

)1/3

, (7)

Now we estimate

σ = K−1L2

[

Q
(L/torbit)

v

]β

, (8)

where the velocity ratio (also the momentum ratio) is of order the amount of velocity (or

momentum) removed from an impacting particle of mass M , K is a parameter of order unity

that can be used to improve on simplifying assumptions in the choice of length and other

scales,

torbit =
2π

√

G(m1 + m)

(

L

2

)3/2

=
2−1/2π

√

G(m1 + m)
L3/2 (9)

is the Kepler 3rd law orbital period formula with L/2 being the semi-major axis of the

relative orbit, and

Q =
m

m1 + m
(10)

is the factor that corrects from the relative orbit length scales to center of mass frame of

frame length scales for the impacting particle with mass m1. The mean free path formula is

1

ℓ
= nσ = K−1

(

m

ρ

)−(1+β/2)/3
[

Q

(√
m

v

)

√

G(m1 + m)/m

2−1/2π

]β

(11)

and so

ℓ =
1

nσ
= Kvβρ−(1+β/2)/3m(1+β/2)/3−β/2

[

Q−1 2−1/2π
√

G(m1 + m)/m

]β
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=
1

nσ
= Kvβρ−(1+β/2)/3m(1+β/2)/3−β/2

[

√

m1 + m

m

(2−1/2π)√
G

]β

(12)

If the ℓ is not to depend on mass in the case where m1 = m as N-body simulations show, we

require

1) 0 =
(1 + β/2)

3
− β

2
2) β = 1 . (13)

which is the most natural choice since N-body simulations show the macroscopic properties

of dark matter halos are independent of the dark matter particle mass. Thus,

ℓ = 2−1/2πKv

(

√

m1 + m

m

)

1√
Gρ

(14)

For the case that m1 = mb = ρbL
3, we assume that m1 >> m and that the mean free path

for baryonic matter goes to infinity to 1st order and so to 1st order the baryonic matter just

responds to the bulk gravitational field of the dark matter. We now specialize to the case of

interest m1 = m: i.e., the impacting particle is a dark matter particle. Thus

ℓ = πKv

(

1√
Gρ

)

. (15)

Now

1) v =

√

1

2
ℓa ∝

√
v 2) v =

π

2
K

(

1√
Gρ

)[

GM(r)

r2
− Λ

3
r

]

. (16)

This is our most general result for the drift velocity in one direction (more exactly, drift

speed in one dimension). Using our vague energy equipartition assumption, the average

drift speed is
√

3v which can be used to find the kinetic energy of the particles.

2. Power-Law Density Profiles

Assuming

ρ = ρs

(

r

rs

)−α

= ρsx
−α , (17)
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we obtain interior mass

M(r) = 4πr3
sρs

∫ x

xin

x̄−αx̄2 dx̄ = 4πr3
s ρs



































x3−α

3 − α
for α = 3 and xin = 0;

ln

(

x

xin

)

for α = 3 and xin > 0;

x3−α − x3−α
in

3 − α
for α > 3 and xin > 0.

(18)

3. Drift Velocity for Power-Law Density Profiles

If we assume

ρ = ρs

(

r

rs

)−α

= ρsx
−α (19)

then

M(r) = 4πr3
sρs

∫ x

0

x̄−αx̄2 dx̄ = 4πr3
sρs

x3−α

(3 − α)
= Msx

3−α , (20)

where x 6= 3 and we require α < 3 to prevent divergence as x → 0 and α > 3 to prevent

divergence as x → ∞. When α = 3, there is logarithmic divergence both for x → 0 and

x → ∞. In the following, we assume halo cut-off radius R and negligible cosmological

constant force, and restrict our consideration cases of α < 3. For the halo acceleration (i.e.,

due to the bulk dark matter mass),

1) a = g =
GM(r)

r2
=

GMs

r2
s

x1−α 2) vcir =

√

GMs

rs
x1−α/2 , (21)

which is the circular orbit velocity of matter not subject to dark matter particle drag: i.e.,

baryonic matter. Thus

v =
π

2
K

(

1√
Gρ

)

GM(r)

r2
=

π

2
K

(

1√
Gρs

)

xα/2 GMs

r2
s

x1−α =
π

2
K

(

1√
Gρs

)

GMs

r2
s

x1−α/2

=
π

2
K

√

4π

3 − α

(

1
√

GMs/r3
s

)

xα/2 GMs

r2
s

x1−α = K

√

π3

3 − α

√

GMs

rs
x1−α/2

= = K

√

π3

3 − α
vcirx

1−α/2 . (22)

To have v constant and vcir constant requires α = 2.

Note that the drift velocity v and the circular velocity vcir have the same dependence

on x, but differ in scale. But this is not a problem. The drift velocity v is the velocity of
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particles going in random directions due to local particle interactions as well as the global

fields (i.e., gravitational and cosmological constant). On the other hand the circular velocity

vcir is for matter that is just responding to the global field at radius r and in a cirular orbit

by some initial condition. The circular velocity applies baryonic matter in circular orbits in

the ideal limit that the baryonic matter does not feel the dark matter drag force.

Note also that the drift velocity v goes to infinity as α → 3. However, this an unphysical

limit since it also implies a logarithmic divergence of the mass of the halo.

Now the empirical power index 2 for density profiles (i.e., ρ ∝ r−2 which is called singular

isothermal sphere profile: e.g., Wikipeda: Singular isothermal sphere profile) has long been

known to give a good fit to the large middle radius range of galaxy rotation curves where the

curve is flat since it yields a constant velocity for circular orbital speed for baryonic matter

in that range. Note the baryonic matter tends to orbit in circular orbits no matter how the

dark matter is orbiting and beyond the inner region of galaxies the baryonic matter is just a

small component of the matter. Our simple derivation is based on the idea that dark matter

is largely rising and sinking.

Also a vast N-body simulation study of dark matter halos has found the power index 2

holds over the large middle radius range for dark matter halo masses spanning 20 orders of

magnitude (Wang et al. 2020).

4. A Dark Matter Halo Profile from the Drift Velocity Result

We assume the dark matter acts like a classical gas with pressure which only coupled

to dark matter and neglect the cosmological constant force. Therefore

P =
2

3

[

1

2
ρ(3)v2

]

=
(π

2
K
)2
{(

1√
Gρ

)[

GM(r)

r2

]}2

(23)

We assume hydrostatic equilibrium on the gross scale for the dark matter halo

dP

dr
=

GM(r)

r2
ρ

(

d

dr

)

Wρ

{(

1√
Gρ

)[

GM(r)

r2

]}2

=
GM(r)

r2
ρ (24)

where

W = 2
(π

2
K
)2
(

ρ

ρs

)δ

. (25)



– 6 –

Then

(

d

dr

)

W

[

GM(r)

r2

]2

=
GM(r)

r2
ρ

(26)

5. Dark Matter Halo Profiles from the Expansion of Specific Volume

Hypothesize the specific volume Vsp = 1/ρ is a smooth function of the radius. Then it

can be expanded around r = 0 with some radius of convergence:

Vsp = Vsp,0 + rVsp,1 + r2Vsp,2 + r3Vsp,3 + . . . (27)

It then follows the density for that radius of convergence is

ρ(r) =
1

Vsp,0 + rVsp,1 + r2Vsp,2 + r3Vsp,3 + . . .

ρ(r) =
ρs

Vsp,0 + cr + br2 + ar3 + . . .
, (28)

where ρs is some scale density and the second set of expansion coefficients for the powers of r

have been given symbols that clairvoyance tells agree with those needed for common tables

of integrals, except Vsp,0 So smoothness of functions gives us a natural density profile form.

We argue Vsp,0 is zero for dark matter halos in the pure N-body simulation limit. Recall

a = g =
GM(r)

r2
=

GMs

r2
s

x1−α , (29)

where a → 0 as x → 0 if α = 0. But recall v ∝ a for the drift velocity. If a → 0, then v → 0

and this seems unlikely for the quasi-equilibrium case of pure dark matter since that suggests

dark matter can continuously accumulate near the origin preventing quasi-equilibrium from

occurring. It seems likely that dark matter falling to the center will not be able to get rid of

all its kinetic energy, and so will come to quasi-equilibrium with a(r = 0) 6= 0. Note N-body

simulations suggest asymptotically that the zeroth order coefficient is indeed zero.

The NFW profile terminates the coefficients at the 3rd order. Say that 3 coefficients

are sufficient to characterize the profile, then we need 3 contraints. Total mass provides

one constraint. The virial theorem provides a second contraint. But some extra physics is

needed for a third constraint.
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6. NFW Profile for Dark Matter Halos

The NFW profile was originally found by being good fit to quasi-equilibrium dark matter

halos based on N-body simulations (Navarro et al. 1996). It has been confirmed to be accurate

almost everywhere to within 10 % over 20 orders of dark halo mass (Wang et al. 2020). The

formula is

ρ(r) =















































4ρs

(r/rs)(1 + r/rs)2
=

4ρs

(r/rs) + 2(r/rs)2 + (r/rs)3
in general;

4ρs

(r/rs)
for r/rs << 1;

ρs for r/rs = 1;

4ρs

(r/rs)3
for r/rs >> 1,

(30)

where ρs and rs are scale values chosen so that the logarithmic slope of ρ(r) is −2 at r/rs = 1.

To confirm the logarithmic slope result using x = r/rs, note

d ln(ρ)

d ln(r)
=

d ln(ρ)

d ln(x)
=

x

ρ

dρ

dx
= −x

ρ

4ρs

(x + 2x2 + x3)2
(1 + 4x + 3x2)

= −x

(

1 + 4x + 3x2

x + 2x2 + x3

)

(31)

d ln(ρ)

d ln(r)

∣

∣

∣

x=1
= −2 . (32)

However, what is also needful is the NFW profile expressed in terms of y = r/R where

R is the cut-off radius of the atmosphere as determined either by the turnaround radius (i.e.,

zero-global-acceleration radius) or otherwise. To find this we first write the NFW profile in

the form

ρ(y) =
4ρs

cy + by2 + ay3
, (33)

where the particular coefficient symbols are chosen by clairvoyance to match the common

usage in tables of integrals. Now

d ln(ρ)

d ln(r)
=

d ln(ρ)

d ln(y)
=

y

ρ

dρ

dy
= −y

ρ

4ρs

(cy + by2 + ay3)2
(c + 2by + 3ay2)

= −y

(

c + 2by + 3ay2

cy + by2 + ay3

)

2 =
cy + 2by2 + 3ay3

cy + by2 + ay3
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2cy + 2by2 + 2ay3 = cy + 2by2 + 3ay3

cy = ay3

ys =
( c

a

)1/2

, (34)

where ys is the value of y with the logarithmic slope is −2. But what are a, b, and c? To

make the ρs the density at ys, we require

1) cys = 1 c = a1/3

2) by2
−2 = 2 b = 2

( c

a

)−1

= 2a2/3

3) ay3
−2 = 1 a

( c

a

)3/2

= 1 c = a1/3 (35)

We need now constrain the value of a. First we impose the total mass M constraint:

M = (4ρs)(4πR3)

∫ 1

0

y2

cy + by2 + ay3
dy

= (4ρs)(4πR3)

∫ 1

0

y

c + by + ay2
dy

= (4ρs)(4πR3)

[

1

2a
ln(ay2 + by + c) −

(

b

2a

)(

− 2

2ay + b

)]
∣

∣

∣

∣

1

0

= (4ρs)(4πR3)

[

1

2a
ln(ay2 + 2a2/3y + a1/3) +

(

1

a4/3y + a

)]
∣

∣

∣

∣

1

0

= (4ρs)(4πR3)

[

1

2a
ln(a2/3 + 2a1/3 + 1) − 1

a(1 + a−1/3)

]

ρave =
M

(4/3)πR3
= 12ρs

[

1

2a
ln(a2/3 + 2a1/3 + 1) − 1

a(1 + a−1/3)

]

. (36)

However, something becomes obvious now. Even if we know M and R or even just the

ration M/R3, we still have two parameters ρs and a to determine. Now those using the

NFW profile to fit N-body simulations or observed data have many data points and can to

a least-squares fit to the NFW profile. However, trying to fit it from pure physics requires

another constraint. That constraint is provided by the virial theorem, but that requires

a determination of the kinetic energy as a function of radius. But that is what our drift

velocity analysis provides. But can we impose the constraint analytically? In fact, it looks

impossible.
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However, say we have ρs = fρave, where f is some known factor. Then we can solve for

a from an iteration function:

a = 12f

[

1

2
ln(a2/3 + 2a1/3 + 1) − 1

(1 + a−1/3)

]

. (37)

The iteration with this iteration function will converge with a reasonable initial value since

the slope of the right-hand side is always less than 1 ???? for a > 0 which is the only allowed

case. As an example, for f = 3 is plausibly of the right order to within a factor of 3 and

using 18 digit precision, we find

a = 21.3543073 . . . b = 15.3940779 . . . c = 2.774353793 . . . ys = 0.3604442960 . . . .

(38)

7. The Virial Theorem

To prove the virial theorem, we first specify the scalar moment of inertia and take its

first and second time derivatives:

I =
∑

i

mi~ri · ~ri

dI

dt
= 2

∑

i

mi~vi · ~ri = 2
∑

i

~pi · ~ri

d2I

dt2
= 2

(

∑

i

~Fi · ~ri +
∑

i

~pi · ~vi

)

= 2

(

∑

i

~Fi · ~ri + 2
∑

i

Ti

)

= 2

(

∑

i

~Fi · ~ri + 2T

)

, (39)

where the sum is over all particles of a system and T is the total kinetic energy. If the system

is, in fact, stationary (i.e., in equilibrium) at the macroscopic level on average 〈I〉 is constant

all time-averaged derivatives of I are zero. Thus, the general virial theorem

〈T 〉 = −1

2

〈

∑

i

~Fi · ~ri

〉

, (40)

where the sum on the right hand side (which must always be negative or zero) is the virial

itself.

An important special case is when all the forces are derivable from potentials depending

on power-law interparticle forces: i.e., the force of particle j on particle i is given by

~Fji = −
∑

k

∇Uk,jir
k
ji = −

∑

k

kUk,jir
k−1
ji r̂ji . (41)
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In this case, we find
∑

i

~Fi · ~ri =
∑

j,i,j 6=i

~Fji · ~ri = −
∑

j,i,j 6=i

~Fij · ~ri = −
∑

j,i,j 6=i

~Fji · ~rj

=
1

2

[(

∑

j,i,j 6=i

~Fji · ~ri

)

−
(

∑

j,i,j 6=i

~Fji · ~rj

)]

=
1

2

∑

j,i,j 6=i

~Fji · ~rji = −1

2

∑

k,i,j,j 6=i

(kUk,jir
k−1
ji r̂ji) · ~rji = −1

2

∑

k,i,j,j 6=i

kUk,jir
k
ji

= −
∑

k

kUk (42)

where the 1/2 was introduced to avoid double counting on the indexes ij and disappeared

when we counted over all particles. Now the virial becomes

〈T 〉 =
1

2

∑

k

k 〈Uk〉 . (43)

In fact, a stationary system must be bound since otherwise some of the particles will

travel to infinity. Thus, the total energy must be negative and some of the potential energies

must be negative, but in order for the virial theorem to hold then some of the powers k

must be negative. In large-scale structure astronomy, the important cases are k = −1 for

gravitation and k = 2 for the cosmological constant force. In this case,

〈T 〉 = −1

2
〈U−1〉 + 〈U2〉 . (44)

Support for this work has been provided the Department of Physics & Astronomy of

the University of Nevada, Las Vegas and the Nevada Center for Astrophysics (NCfA).

REFERENCES

Hamilton, C., & Fouvry, J.-B. 2024, article for Physics of Plasmas, arXiv:2402.13322

Navarro, J.F., Frenk, C. S., & White, S.D.M. 1996, ApJ, 462, 564, arXiv:astro-ph/9508025

Wang, J., et al. 2020, Nature, 585, 39, arXiv:1911.09720

This preprint was prepared with the AAS LATEX macros v5.2.


