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ABSTRACT

The central limit theorem (CLT) is a basic result of statistics. It is useful

for students not specialists in statistics (e.g., astronomy and physics students)

to consider some features of the theorem and see a non-rigorous proof of it that

gives insight. Rigorous general proofs are found elsewhere.2 Without experience

with the techniques involved, they give little insight. Here the goal is insight, not

rigor. Probably nothing in this note is novel: it is difficult to say anything novel

given the long history history of the central limit theorem with origins going back

Abraham de Moivre (1667–1754) in 1733 (e.g., Fischer 2011, p. 2).

Subject headings: methods: data analysis — methods: statistical

1. THE CENTRAL LIMIT THEOREM

The central limit theorem (CLT) has many versions all with their own special impor-

tances and limitations.3 Here, we will just consider a commonly-thought-of version which

we will just call the CLT without qualification for simplicity.

The CLT states

x =
1

n

∑

xi (1)

has a Gaussian distribution with mean

µ =
1

n

∑

i

µi and standard deviation σ =

√

1

n

∑

i

σ2
i , (2)
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where the sums are over n → ∞, the xi are independent random variables which have

arbitrary probability distributions, the µi are the means of the xi distributions, and the σi

are standard deviations of the xi distributions.4 The CLT holds approximately for finite n

(i.e., x has approximately a Gaussian distribtion), except that it is exact for finite n in the

special case that all the xi have Gaussian distributions.

There are some limiting conditions for the CLT. The most obvious is that the standard

deviations exist for the xi. There are probability distributions where the variance (i.e., the

square of the standard deviation) diverges to infinity: the best known one of these is probably

the Lorentzian distribution (e.g., Bevington 1969, p. 50–51). A second condition is that the

µi and σi are bounded, and so do not go infinity as n → ∞. We will also assume for our

non-rigorous proof that the xi that make non-zero contributions repeat infinitely often. This

assumption is not needed for the CLT in general. Given our assumption any probability

distributions that do not repeat infinitely make zero contribution as n → ∞. Of course, for

the approximate CLT for finite n, non-infinitely repeating xi do contribute to x. This is an

essential point since in real applications of the CLT n will usually be finite, albeit usually

large in some sense.

Why is the central limit theorem of interest? First, it makes sense of why many pro-

cesses, which are themselves compounded of many elementary random processes, have Gaus-

sian probability distributions at least approximately. Second, it allows us to trust the as-

signment of Gaussian errors to experimental results with confidence insofar as the results

follow from processes alluded to in the first point. Third—for those who are fascinated by

it—the history of the development of the central limit theorem is a significant part of the

history of mathematics (e.g., Fischer 2011).

One also has to say that central limit theorem seems to be a basic aspect of reality

that can be pondered on. One ponderation is that the CLT may or may not have a deep

connection to quantum mechanics. The Gaussian wave function (i.e., the wave function that

is a Gaussian) in quantum mechanics is the minimum uncertainty wave function: i.e., the

one and only one for which the Heisenberg uncertainty principle

σxσp ≥ ~/2 (3)

holds as an equality (e.g., Griffiths 2005, p. 111, 113). To elucidate briefly: σx is the

standard deviation in the x position of a particle, σp is the standard deviation in the x-

direction momentum of the particle, and ~ is Planck’s constant divided by 2π. The only

stationary state of quantum mechanics that is a Gaussian is the ground state of the harmonic

4e.g., Wolfram MathWorld: Central Limit Theorem; Wikipedia: Central limit theorem.
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oscillator potential (e.g., Griffiths 2005, p. 46, 113). The harmonic oscillator potential is one

the most fundamental in nature.

In this note, the goal is to gain insight into the central limit theorem by considerations

various features of it and by giving a non-rigorous proof: i.e., a proof with loopholes that

are in closed in some way by rigorous proofs. As remarked in the abstract, rigorous proofs

can be found elsewhere, but without experience with the techniques involved, they give little

insight.

In § 2, we consider some vague questions about the CLT. Section 3 proves the CLT

results given by equation (2). In § 4, we non-rigorously prove the CLT holds exactly for

finite n when the random variables xi have Gaussian probability distributions. In § 5, we

show the connection of the CLT to the binomial probability distribution. Section 6 gives the

non-rigorous proof of the CLT making use of results established in §§ 3, 4, and 5, and the

Hagen derivation of the Gaussian. The conclusion is in § 7.

2. VAGUE QUESTIONS, PLAUSIBLE ANSWERS

At first sight, four questions about the CLT for n → ∞ occur to the author:

1. Say all the xi had a common probability distribution which was not Gaussian. How

could the sum x have a Gaussian distribution and not the common distribution? Phras-

ing the question almost answers question: the particular xi values that go to into the

sum for the x come from different uncorrelated parts of the common distribution, and

so do not just reproduce the common distribution.

2. Gaussians are symmetric. So what if all the xi distributions are asymmetric with

an apparent bias to high or low? The means mean something even for asymmetric

distributions, and so it is plausible as n → ∞ that that will override the asymmetries.

3. Say one of the xi had a much larger scale (i.e., much larger µi and σi) than all the

others? Would it not dominate behavior of the sum and enforce its distribution on

the sum? No. When n → ∞, no one large-scale xi and, similarly, no finite number of

large-scale xi can dominate the sum. In fact, they would contribute nothing.

Note, however, that if n is finite then one probability distribution or a few of

the probability distributions can dominate the behavior of the sum x and prevent the

emergence of Gaussian behavior.
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4. Say a fixed fraction of identically-distributed xi dominated the sum x. Would this class

not enforce its distribution on the sum x? No. See the answer to question 1.

3. MEANS, VARIANCES, AND STANDARD DEVIATIONS

The CLT results of equation (2) are easy to prove. Average over

x =
∑

xi and (x − µ)2 =
∑

(xi − µi)
2 (4)

to obtain

µ =
∑

µi , and σ2 =
∑

σ2
I and σ =

√

∑

i

σ2
i . (5)

One can for simplicity use alternate form yi = xi −µi for the set of random variables. Thus,

one has

y =
∑

yi and σ and σ2 are unchanged. (6)

The results of this section hold for any n, and thus for n → ∞ provided the sums

converge. So the mean and standard deviation part of the CLT is proven generally.

4. GAUSSIAN RANDOM VARIABLES

Here we prove non-rigorously that the CLT holds exactly for both finite n and n → ∞
for Gaussian random variables xi.

Consider two independent random variables u and v both having Gaussian distributions

with variances σ2
u and σ2

v . For simplicity, we assume u and v are measured relative to their

respective means. We sum them: w = u + v. Somewhat abstractly (and choosing to use v

as the integration variable without loss of generality), we can write

P (w = u + v) = P (u|v)P (v) = P (w − v|v)P (v) (7)

and now integrate over all v to get the probability of w for any general outcome. To be less

abstract by using probability densities, we now write

g(u)h(v) dv du = g(w − v)h(v) dv dw , and so ρ(w) dw =

∫

∞

−∞

g(w − v)h(v) dv dw ,

(8)
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where ρ is the probability distribution for w,

g(u) =

(

1√
2π σu

)

exp

(

− u2

2σ2
u

)

and h(v) =

(

1√
2π σv

)

exp

(

− v2

2σ2
v

)

(9)

are, respectively, the properly normalized Gaussian probability distributions for u and v

(e.g., Bevington 1969, p. 53), and the integral over v is formally a convolution of the two

distributions.5 Defining

A =

(

1√
2π σu

)(

1√
2π σv

)

and B =
1

2σ2
u

+
1

2σ2
v

(10)

to simplify the algebra in evaluating ρ(w), we proceed thusly

ρ(w) =

∫

∞

−∞

g(w − v)h(v) dv

= A exp

(

− w2

2σ2
u

)
∫

∞

−∞

exp

[

−(−2wv + v2)

2σ2
u

− v2

2σ2
v

]

dv

= A exp

(

− w2

2σ2
u

)
∫

∞

−∞

exp

[

−B

(

v2 − wv

Bσ2
u

+
w2

4B2σ4
u

− w2

4B2σ4
u

)]

dv

= A exp

(

− w2

2σ2
u

)
∫

∞

−∞

exp

{

−B

[

(

v − w

2Bσ2
u

)2

− w2

4B2σ4
u

]}

dv

=

(

1√
2π σu

)(

1√
2π σv

)

exp

[

− w2

2σ2
u

(

1 − 1

2Bσ2
u

)]
√

π

B

=
1√

2π
√

σ2
u + σ2

v

exp

[

− w2

2(σ2
u + σ2

v)

]

(11)

We define σ2
w = σ2

u + σ2
v and, restoring explicit means to u and v, we define µw = µu + µv.

We now have

ρ(w) =
1√

2π σw

exp

[

−(w − µw)2

2σ2
w

]

. (12)

Thus, the convolution of two Gaussians is a Gaussian with the mean being sum of the

component means and the variance being the sum of the component variances. And thus w

has a Gaussian distribution.

Since the proof just given immediately generalizes to any number of component Gaus-

sians, we have proven what we said we would in the preamble.

Now any probability distribution with a mean and standard deviation can be approx-

imated by a Gaussian to some reasonable accuracy. One chooses the mean and standard

5e.g., Wikipedia: Convolution: Definition.
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deviation of a to-be-fit probability distribution to be that of the Gaussian replacement or,

if one has a continuous probability distribution, one can choose to fit a Gaussian to the

maximum of said continuous probability distribution and distort the wings of the Gaussian

to preserve normalization. Since one can always do this, it is clear that the finite-n CLT

must always be approximately accurate even for a single-member set of random variables xi

(or yi). Recall the CLT for general probability distributions (subject to some conditions) is

only proven to be exactly accurate in the limit that the number of random variables n → ∞.

5. A NON-RIGOROUS PROOF OF THE CENTRAL LIMIT THEOREM

PART I: THE BINOMIAL PROBABILITY DISTRIBUTION

First, note for any of the random variables xi with probability distribution ρ(xi) and

mean µi that

µi =

∫

∞

−∞

xiρ(xi) dxi and so 0 =

∫

∞

−∞

(xi − µi)ρ(xi) dxi (13)

and so

0 =

∫ µi

−∞

(xi − µi)ρ(xi) dxi +

∫

∞

µi

(xi − µi)ρ(xi) dxi (14)

and so

γi,L =

∫ µi

−∞
|xi − µi|ρ(xi) dxi

1/2
=

∫

∞

µi

|xi − µi|ρ(xi) dxi

1/2
= γi,R (15)

where γi,L and γi,R are mean (absolute) deviations, respectively, to the left and right of the

mean. Thus, the mean deviation itself satisfies

γi = γi,L = γi,R . (16)

Consider a trial with outcome xk which is the sum k values of the xi to the right of

their respective means (right steps) and (n−k) values of the xi to the left of their respective

means (left steps) as indicated by subscripts:

xk − µ =
∑

i,k

(xi − µi) +
∑

i,(n−k)

(xi − µi) . (17)

We now replace each xi but what it does on average (which is equal contributions from left

and right of its mean with equal probability) and then average over infinitely many trials for

xk (recalling that the xi are independent, and so uncorrelated) to obtain

µk − µ = kγn − (n − k)γn =
(

k − n

2

)

(2γn) , (18)
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where µk is the average of xk and we have defined

γn =
1

n

∑

i

γi (19)

which must be true since all the xi are treated equally in the averaging. The probability

distribution Pk of the means µk for infinitely many outcomes must be the (symmetric)

binomial probability distribution—the situation is analogous to flipping a true coin n times.

Explicitly,

Pk =

(

n

k

)(

1

2

)n

=
n!

k!(n − k)!

(

1

2

)n

(20)

with 〈k〉 = n/2 and k variance σ2
k = n/4 (e.g., Bevington 1969, p. 53).

Applying the binomial distribution to the (µk − µ) from equation (18), we obtain

µ = 〈µk〉 and σ2
µk

=
n

4
(2γn)

2 =
1

n

(

∑

i

γi

)2

6=
∑

i

σ2
i = σ2 . (21)

The fact that σ2
µk

6= σ2 is not surprising: σ2
µk

is the variance of averages of individual out-

comes and σ2 is the variance of the individual outcomes. The two variances are comparable.

To show this, we evaluate them replacing the individual values γi and σi (which for most

distributions will be comparable) by their respective means 〈γi〉 and 〈σi〉. We find

σ2
µk

∼ n〈γi〉2 ∼ n〈σi〉2 ∼ σ2 (22)

But note σ2
µk

and σ2 will never be equal except for very special cases. The easiest imagined

of the those special cases is where all xi have a common double-Dirac-function probability

distribution with all the γi and σi equal.

The analysis so far shows that the outcomes are grouped in groups that are proportional

to the binomial probabilities. But the µk are not adequate for predicting the average behavior

with k. The group of the outcomes that yield a specific µk actually have a large spread along

the x dimension.

A simple way to correct them to do so is to rescale the µk to what we will call the yk

which are given by

yk =
(

k − n

2

)

(2σn) , (23)

where have defined

σ2
n =

σ2

n
. (24)
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The yk are the rescaled mean outcomes for k right steps and (n−k) left steps by the random

variables xi. With the rescaled yk, we find

σ2
yk

=
n

4
(2σn)2 = σ2 (25)

which is the correct variance for the individual outcomes. It is reasonable to conclude that

the rescaling causes the yk to yield the average results of the individual outcomes for all

properties. It has to be said that the fact that we get right result for the CLT with the

rescaling is the rigorous justification for the rescaling.

We now rewrite equation (23) to get

1

k − (n/2)
=

1

fk

√
n/2

=
2σn

yk

, (26)

where fk is the number k standard deviations
√

n/2 by which k differs from its mean n/2.

When n → ∞ for fixed fk and the corresponding yk, σn becomes a infinitesimal provided it

does not grow. In fact, to derive a Gaussian from our binomial distribution for the yk (and

hence for x), we will let n → ∞, σn → 0, and hold
√

nσn = σ constant. Holding σ constant

means we are shrinking the σi and the size scale of the xi. This is just the alternative

perspective to letting σ grow asymptotically linearly with
√

n (as we specified in § 1), and

thus holding the σi and the size scale of the xi asymptotically constant. Our derivation

follows that of Gotthilf Hagen (Hagen 1837) in a version reconstructed from memory from

a long-ago book on experimental data analysis—which, memory notwithstanding, is not

Squires (1968).

The main trick of the derivation is to find a differential equation for Pk in terms of yk.

We note that

∆yk = 2σn , k =
n + yk/σn

2
, Pk+1 =

(

n − k

k + 1

)

Pk , (27)

and

∆Pk =

(

n − k

k + 1
− 1

)

Pk =

(

n − 2k − 1

k + 1

)

Pk =

[ −yk/σn − 1

n/2 + yk/(2σn) + 1

]

Pk . (28)

Now we write
∆Pk

∆yk

=
Pk

2σn

[ −yk/σn − 1

n/2 + yk/(2σn) + 1

]

Pk . (29)

And now we assume n >> yk/σn and yk/σn >> 1, and keep only leading terms to get

∆Pk

∆yk

= −Pkyk

nσ2
n

, (30)
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We now drop the k subscript, let n → ∞ and σn → 0 with nσ2
n = σ staying constant, and

take the limit as ∆y → 0. We obtain differential equation

dP

dy
= −Py

σ2
, (31)

The normalized solution of the differential equation with y replaced by (x − µ) is

P =
1

σ
√

2π
exp

[

−(x − µ)2

2σ2

]

(32)

which actually completes the proof of the CLT: QED.

The above proof is non-rigorous in that we have treated limiting processes cavalierly

and in that we buttressed our argument for the rescaling by saying it gives the right answer.

But the proof gives insight into why the central limit theorem is true at a level suitable for

astronomy and physics students.

6. CONCLUSION

Given its significance and just fame, it’s welcome that the central limit theorem can be

understood from simple considerations.
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