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ABSTRACT

An analytic solution for the cosmic scale factor a(t) for the Λ-CDM model

has been given by Galanti (2021) that is exact, except for the qualifcation that

early- and late-time have different formulae that agree with negligible error for

the bulk of the matter era. In this note, we elucidate some fine points of the

inverse solution t(a) and the solution a(t) and present an interpolation formula

for a(t) that approximates the exact solution to good accuracy and allows for

understanding of its overall behavior.

Subject headings: supernovae: cosmology: theory — cosmological parameters —

dark energy

1. INTRODUCTION

An analytic solution for the cosmic scale factor a(t) for the Λ-CDM model has been

given by Galanti (2021) (hereafter G&R) that is exact, except for the qualifcation that

early- and late-time have different formulae that agree with negligible error for the bulk of

the matter era. The solution spans the radiation era, the radiation, matter, and dark energy

eras. Note the term dark energy era is conventional. The acceleration of the universe can be

attributed to dark energy, but also a cosmological constant (a modification of the Einstein

field equations of general relativity), or even the spontaneous creation of matter (with some

particle spectrum) at a constant low rate uniformly over the observable universe as in the

steady-state universe. In call cases, the cosmological constant symbol Λ is used as shorthand.

Note that numerical solutions for a(t) for the Λ-CDM model for all eras are straightforward

(Cahill 2016, e.g.,).

In this note, we elucidate some fine points of the inverse solution t(a) and the solution

a(t) of Galanti (2021) and present an interpolation formula for a(t) that approximates the

exact solution to good accuracy and allows for understanding of its overall behavior.
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Vegas, Nevada 89154, U.S.A.
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We note in passing that an exact solution for a(η) (where η is conformal time: dt =

[a(η)/c] dt) for a density parameter with terms with any combination of inverse integer powers

0 through 4 is given by Steiner (2008, p. 9).

In § 2, we consider t(a) and in § 3 present the exact solution to the Friedmann equation

for models with Λ and only one mass-energy form obeying an inverse power law. In § 3,

we make use of the § 2 results to create our analytic fit. Conclusions are given in § 4. The

appendices are given for pedagogical use. Appendix A discusses the formula for the age

universe for the Λ-CDM model. Appendix B discusses the exact analytic solution for the

closed positive-curvature universe with only matter for mass-energy.

2. THE INVERSE t(a)

t, τ , t, ⊔, R, T.

(e.g., WolframAlpha: series: 1/sqrt1 + x)

3. THE EXACT ANALYTIC SOLUTION FOR FRIEDMANN EQUATION

FOR MODELS WITH Λ AND ONE OTHER MASS-ENERGY FORM

OBEYING AN INVERSE POWER LAW

The Friedmann equation can be written in the standard form

H =
ȧ

a
= H0

√

ΩΛ + Ωk

(a0

a

)2

+ Ωm,0

(a0

a

)3

+ Ωr,0

(a0

a

)4

, (1)

there H is the Hubble parameter, a is the cosmic scale factor, a0 is the cosmic scale factor

for the current universe (conventionally set to 1), ȧ is the time derivative of the cosmic scale

factor, H0 is the Hubble constant (i.e., the Hubble parameter for current universe), ΩΛ is the

density parameter for cosmological constant, Ωk is the curvature density parameter, Ωm,0 is

the density parameter for matter for the current universe, and Ωr,0 is the density parameter

for radiation for the current universe. Note that matter includes all non-relativistic mass-

energy (i.e., baryonic matter and dark matter) and radiation includes all extreme relativistic

mass-energy (i.e., cosmic backgroun radiation and cosmic neutrinos). The non-relativistic

mass-energy is the cold dark matter (CDM) of the Λ-CDM model.

The Friedmann equation is, as one can see, a 1st order nonlinear ordinary differential

equation. The fact that is nonlinear means that linear combinations of solutions are not

in general solutions though they may be in special cases or approximately. The Friedmann



– 3 –

equation is also a homogeneous differential equation at least in the sense that it can be

written ȧ = g(a). The form ȧ = g(a) implies that a must be strictly increasing or decreasing

except possibly at ±∞ and possibly at points where the some order of derivative of g have

infinities. Both exceptions do occur for some solutions of the Friedmann equation. The

latter exception occurs for the closed universe model with only matter (see App. B).

The Friedmann equation with Λ and only one mass-energy form obeying an inverse

power law is

H =
ȧ

a
= H0

√

ΩΛ + Ωγ

(a0

a

)γ

, (2)

where γ is integer greater than or equal to 1. The exact solution

a = aΛ

[

sinh

(

HΛt

p
+ C

)]p

, (3)

where

Hλ = ΩΛH0 , p =
2

γ
, aΛ =

a0

[sinh (HΛt0/p + C)]p
, (4)

where t0 is the current age of the universe and C is a constant. The exact solution is just

an obvious generalization of the solutions for γ = 3 (e.g., Steiner 2008, p. 12; Sazhin 2011,

p. 3). Note if ΩΛ → 0, the exact solution reduces to

a = a0

(

t

t0
+ C

)p

, (5)

which is the well know exact solution to Friedmann equation the only one mass-energy form

being one obeying an inverse power law.

The solution can be proven by direct substition. Note

ȧ = aΛ

[

sinh

(

HΛt

p
+ C

)]p

, (6)

As mentioned in § 1, a complex exact solution does exist given by Steiner (2008, p. 9)

For reference, we note that the radiation era is dominated by photons and neutrinos and

has approximately ρ ∝ 1/a4 and a(t) ∝ t1/2; the matter era is dominated by non-relativistic

matter (baryons and dark matter) and has approximately ρ ∝ 1/a3 and a(t) ∝ t2/3; the

dark-energy era is dominated by dark energy (alternatively a cosmological constant) and

has aysmptotically ρ = ρΛ; and a(t) ∝ exp(HΛt), where ρΛ = Λ/(8πG) is the dark-energy

density, and HΛ =
√

Λ/3 is cosmological-constant Hubble constant (e.g., p. 40–41, 56 Liddle

2015). Following Cahill (2016), we define the transition times to be when the densities of the
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relevant components are equal: i.e., the radiation era ends at the radiation-matter equality

(i.e., when ρr = ρm) and the matter era ends at the matter-dark-energy equality (i.e., when

ρm = ρΛ). For convenience, we label the three eras by 1, 2, and 3.

The early-time fit and ancillary formulae and remarks are as follows:2
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





aE(t) = a2∗

{(

t + bt1
t2∗

)

[

1 − exp
(

−(t/t1)
3/4

)]

}2/3

the general early-time analytic fit.

It is accurate to within 11 % from at least

t = 10−7 Gyr until after

∼ 10 Gyr when it begins diverging from

exact solution as the dark-energy era.

begins. It is displayed in Fig. 2.

aE(t)|r limit = a2∗

(

bt1
t2∗

) (

t

t1

)1/2

for t << t1 where t1 is the radiation-era

end time.

aE(t)|m limit = a2∗

(

t

t2∗

)2/3

for t >> t1 and t << t2∗

(7)














a2∗ = 0.764771404147 is a matter-era characteristic a value

defined below for the late-time fit.

t2∗ = 11.57533308010 Gyr is a matter-era characteristic time value

defined below for the late-time fit.

(8)

2We quote the numerical results of this note to 12 decimal places for consistent presentation and to allow

for checks of numerical reproducibility. Their physical accuracy is typically a few percent.
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t1 = 51, 391.05873817 yr is the radiation-matter equality time

determined by fitting the early-time fit

= 5.139105873817× 10−5 Gyr to the a and ȧ for that time.

It agrees with value 50,953(2,236) of

(Cahill (2016) to within his error.

b = 1.676437645262 is a radiation-matter equality parameter

determined by fitting the early-time fit

to the a and ȧ for that time.

a1 = a0

(

Ωr0

Ωm0

)

= 2.933182259631× 10−4 the cosmic scale factor at the

radiation-matter equality.

ȧ1 =

(

a1

tH0

)

√

2Ωm0

(

a0

a1

)3

the cosmic scale factor derivative at

=

(

a1

tH0

)

√

2Ωr0

(

a0

a1

)4

the radiation-matter equality.

tH0
= 14.434488067328 Gyr

= 3.179457626016 Gyr−1 is the Hubble time.
(9)
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b =

(

ȧ1t2∗/a2∗

2/3

) (

a1

a2∗

)1/2 (

1 − 1

4
e−1

)

−1

the formula for b obtained from equating

−3

4
e−1 the derivative of aE(t) to ȧ1.

t1 =
t2∗(a1/a2∗)

(1 − e−1)(1 + b)
the formula for t1 obtained from equating

aE(t) to a1.
(10)

4. THE LATE-TIME FIT

The late-time fit was given by Steiner (2008) though the present author independently

noticed it by analogy to an analytic fit to the closed postive-curvature Friedmann-Lemâıtre
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solution given in Appendix B. The fit and ancillary formulae and remarks are as follows:
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aL(t) = a2∗ sinh2/3

(

t

t2∗

)

the general late-time analytic fit.

It is accurate to within 4 % after

∼ 1 Gyr to at least 50 Gyr before

which going back in time

it diverges from exact solution.

It is displayed in Fig. 2.

aL(t)|m limit = a2∗

(

t

t2∗

)2/3

for t >> t1 and t << t2.

aL(t)|Λ limit = aΛ exp

(

t

tΛ

)

for t >> t2.

(11)
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tΛ =
1

HΛ

= 17.362999620152 Gyr is the dark-energy era asymptotic Hubble time:

i.e., the constant Hubble time the

Λ-CDM model is approaching as time goes by.

HΛ = 56.314706160907 (km/s)/Mpc is the dark-energy era asymptotic Hubble constan

t2∗ =
2

3
tΛ = 11.575333080101 Gyr is the characteristic matter-era time mentioned

above for the early-time fit.

That it is (2/3) of tΛ allows a fit to

dark-energy era. That is fortuitiously approximately

equal to t2, the end time of the matter era,

is the late-time fit to transition from matter era

to dark-energy era.

a2∗ =
a0

sinh2/3(t0/t2∗)
= 0.764771404147 is the characteristic matter-era a value mentioned

above for the early-time fit. The t0 = 13.799(21)

from Planck 2015.

aΛ =
a2∗

2
= 0.382385702073 is the characteristic dark-energy era a value.

a2 = a0

(

Ωm0

ΩΛ

)1/3

= 0.764584820798 is the a value for the end of the matter era.

That a2 ≈ a2∗ is because t2∗ ≈ t2
as we show below.

t2 = t2∗ ln(x +
√

x2 + 1) = 10.199197372819 Gyr is the end of the matter era and x = (a2/a2∗)
3/2

We have used the inverse of the hyperbolic sine function.

The t2 value agrees with 10.1928(375) Gyr of Cahill

within his error.

H0,L =
HΛ

tanh(t0/t2∗)
= 67.748625572218 (km/s)/Mpc which agrees the with Planck 2015

Hubble constant 67.74(46) within their error.

q0,L =
1

2
− 3

2
tanh2

(

t0
t2∗

)

= −0.536415562934 which agrees the with Planck 2015

deceleration parameter −0.5366(93) within their
(12)

One can see there is good agreement in results obtained from the analytic fit and the

2015 Planck results and the results of Cahill (2016). Why is this? First, the analytic fit does

embody the asymptotic behaviors for the matter and dark-energy dominated eras which

are those displayed for, respectively t/tΛb << 1 and t/tΛb >> 1 in equation ??? above.

The second part of the answer requires a short argument. The fiducial transition point

for the aysmptotic behaviors is when t/tΛb = 1. At later times, the power 2/3 of the sinh
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function asymptotically cancels the 2/3 factor in tΛb = (2/3)tΛb allowing the sinh function

to morph into the correct asymptotic behavior for the dark-energy era aΛ exp(t/tΛ). No

other other fiducial transition point is possible given the nature of the analytic fit. In order

for the analytic fit to give even fair agreement to the results cited above, tΛb = (2/3)tΛ
has to approximately equal the matter-to-dark-energy-era transition time. It does: tΛb =

(2/3)tΛb =??? and tmatter-to-dark-energy-era transition time =??? (Cahill 2016). Because

of this approximate agreement of times, fair agreement to the results could be expected.

That the agreement is better than fair seems to be just a fortuitous accident of the nature

of the analytic fit.

Another question is why (2/3)tΛ and tmatter-to-dark-energy-era transition time are ap-

proximately equal. In the context of Friedmann-Lemâıtre models this is also just a fortuitous

accident. Perhaps, there is a reason in dynamic dark energy theory or from the anthropic

principle.

Support for this work has been provided the Department of Physics & Astronomy of

the University of Nevada, Las Vegas and the Homer L. Dodge Department of Physics & As-

tronomy of the University of Oklahoma. I thank Kevin Cahill for answering a question.

A. Appendix A

There is an exact analytic solution for the age of the universe in this case:

t = H0tunscaled =


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



2

3

1√
1 − Ω0

ln

[

1 +
√

1 − Ω0√
Ω0

]

in general;

1

3
ln

(

1

Ω0

)

asymptotically as Ω0 → 0;

2

3
+

2

9
(1 − Ω0) for (1 − Ω0) << 1;

1

3
ln

(

1

Ω0

)

− 1

9
(1 − Ω0) +

2

3
which is an interpolation formula

accurate everywhere to <∼ 3 %
(A1)

(e.g., Liddle 2015).3

3Also, e.g., Universe in Problems: Characteristic Parameters and Scales: Problem 9.
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A. Appendix B

The Friedmann equations have an exact analytic solution for the closed postive-curvature

universe. The solution is in terms of parameter η:

a(η) =
1

2
[1−cos(η)] , t(η) =

1

2
[η−sin(η)] , t(a) =

1

2
{cos−1(1−2a)−sin[cos−1(1−2a)]} ,

(A1)

where η ∈ [0, 2π], a ∈ [0, 1], and t ∈ [0, π]. 4 The variables are scaled as follows:

k =
8πGρM

3
, t =

√
k tunscaled , a =

aunscaled

aM

, (A2)

where k is curvature, ρM is minimum density, and aM is the maximum cosmic scale factor.

There is no analytic formula for a(t). The form of the solution a(t) is a convex-up curve,

symmetric about a maximum at the mid-time t = π/2, and zero at the end points t = 0 and

t = π. The special case formulae for a(t) are:

a(t) =


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
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5

4
∆t2/3 for ∆t = t << π/2 and ∆t = (π/2 − t) << π/2;

1

2
for t = (1/2)(π/2 − 1) = 0.285398 . . .

and t = (1/2)(3π/2 − 1) = 2.856194 . . .

1 − 1

4

(

t − π

2

)2

for (t − π/2) << π/2.

(A3)

The simple analytic fit to the exact solution is

afit(t) =


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










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



sin2/3(t) in general;

∆t2/3 ∆t = t << π/2 and ∆t = (π − t) << π/2;

0.429562 . . . t = (1/2)(π/2 − 1) = 0.285398 . . .

and t = (1/2)(3π/2 − 1) = 2.856194 . . .

1 − 1

3

(

t − π

2

)2

for (t − π/2) << π/2.

(A4)

The form of the analytic fit is the same as for the exact solution. However, the analytic fit

is lower than the exact soltuion everywhere with maximum deviation ∼ 14 %???????. The

parameters of the analytic fit are natural choices, not adjusted free parameters.

4E.g., Universe in Problems: Solutions of Friedman equations in the Big Bang model: Problem 23: closed

dusty Universe, exact solution.
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FIGURE CAPTIONS

Fig. 1—The analytic fit to the cosmic scale factor a(t) for the Λ-CDM model (dashed line)

compared to the exact a(t) (solid line) for said model calculated using Planck 2015 parmaters

Cahill (2016).

Fig. 2—The analytic fit to the cosmic scale factor a(t) for the Λ-CDM model (dashed line)

compared to the exact a(t) (solid line) for said model calculated using Planck 2015 parmaters

Cahill (2016).
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