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1. INTRODUCTION

The Planck function

x =
1

n

∑

xi (1)

2. THE FREQUENCY GRID

Logarithmically equally spaced frequency points is probably best for the most general

treatment of radiative transfer frequency gridding per the following reasoning We want fre-

quency points equally spaced in some sense so that complete redistribution over the emissivity

(CRDE) can be implemented effectively (see § ??) and also for mental convenience. Now for

line-of-sight velocity width w (here in units of c) for a Gaussian line profile due to Doppler

broadening in the comoving frame, the equivalent frequency width ∆ν is given by

∆ν

ν
= −w , (2)

where we have used the 1st order Doppler shift formula (which is extremely adequate) and

the negative sign merely accords with the usual convention that a positive velocity between

source and receiver is a redshift. So in frequency space, the line widths are proportionl to

the line center frequency. Now d ln(ν) = dν/ν, and so equally revolving lines can be done

with equal logarithmic spacing: i.e., ∆ ln(ν) constant.
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Consider the frequency range ν0 to νn, where the index labels the frequency point and

n + 1 is the number of frequency points. The number of frequency bins for integration

purposes is then n and n follows from the following:

νn = ν0(1 + f)n

n =
ln(νn/ν0)

ln(1 + f)
≈ ln(νn/ν0)

f
(3)

Now the standard Doppler width w is

w =
√

2σ =

√

2kT

m
=

(12.895319 . . .)km/s

c

√

T4

A
= [(4.3014154 . . .) × 10−5] ×

√

T4

A
, (4)

where σ is the standard deviation of the Gaussian profile, A is the atomic weight of the

species, and T4 = T/(104 K) (e.g., ?, p. 279). Defining f = w/g where g is the number of

frequency points per line width, we have

n =
ln(νn/ν0)

ln(1 + w/g)
(5)

n ≈ [(5.35308699 . . .) × 105] × log

(

νn

ν0

)

( g

10

)

√

A

T4

(6)

n ≈ (5.35308699 . . .) × 105] × log

(

λn

λ0

)

( g

10

)

√

A

T4

(7)

where λn = 1/ν0 and λ0 = 1/νn and where we have chosen g to have fiducial value 10

for resolving a line profile. Since reasonable values for SNe Ia are T4 = 1, A = 30, and

wavelength range 300–30, 000 Å, we can expect n to be of order 5 × 106.

Can the frequency bin number be reduced. Maybe using g = 1 and replacing all line

profiles with square profiles and artificially centering all lines in each frequency bin. All con-

tinuous opacity could also be made flat in each frequency bin. This would reduce frequency

bin number by about 10 to of order 5 × 105. It would also simplify integrations for the

occupation numbers. This is a gross approximation in one sense, but one expects a lot of

cancellation of errors. A stronger argument can be given for SNe. In SNe, there are strong

velocity gradients and as beams propagate through space they propagate through frequency.

Now for isolated, the beams redshift through a whole line profile and only the integrated

effect of the line has an effect, not its shape: so Gaussian or square profile, the result is

the same. This effect is exploited by Sobolev method for radiative transfer in moving atmo-

spheres (e.g., ?, p. 471–490; ?, p. 149–194). Now actually lines and continuous opacity do

overlap everywhere, and so there are no exact isolated lines. But strong lines rarely overlap

strongly and dominate any continuous opacity in them. So they are approximately isolated

lines. As for weak lines, once again one can invoke a lot of cancellation of errors.

For continuous opacity, coarse gridding is fine, of course.
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3. VAGUE QUESTIONS, PLAUSIBLE ANSWERS

4. THE PLANCK-LIKE FUNCTIONS

4.1. The Endpoints of the Planck-Like Functions

4.2. The Maxima of the Planck-Like Functions

Do Planck-like functions (for domain x ∈ [0,∞]) have stationary points other than at

the endpoints of their domain (i.e., in the domain x ∈ (0,∞)? First, for the special case

z = 0, we find

f(x) =
1

ex − 1
df

dx
= − ex

(ex − 1)2
(8)

which is always less than 0 for domain x ∈ (0,∞). So the z = 0 case has no stationary

points and f(z) in domain x ∈ (0,∞) strictly decreases from infinity at x = 0 to 0 at x = ∞
(see § The Endpoints of the Planck-Like Functions).

Second, for z 6= 0, we find

f(x) =
xz

ex − 1
df

dx
=

zxz−1

ex − 1
− xzex

(ex − 1)2

df

dx
= xz−1

[

zex − z − xex

(ex − 1)2

]

df

dx
= xz−1ex

[

z(1 − e−x) − x

(ex − 1)2

]{

< 0 for x ∈ (0,∞) for z < 0;

= 0 ? for x ∈ (0,∞) for z > 0;

x = z(1 − e−x) , (9)

where the last equation is the stationary-point equation and it may have solutions for z > 0.

To see if the stationary-point equation x = z(1 − e−x) has solutions, consider functions

LHS(x) = x (10)

RHS(x) =







z(1 − e−x) In general;

zx For x << 1;

z For x → ∞;

(11)

dRHS

dx
=







ze−x In general;

z For x << 1;

0 For x → ∞;

, (12)
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where from the dRHS/dx expression, we see the slope of RHS(x) strictly decreases from z at

x = 0 to a minimum of 0 at x = ∞. In the graph in our minds of LHS(x) and RHS(x), there

is always a solution (i.e., an intersection of LHS(x) and RHS(x)) at the x = 0 In fact, We

already know the behavior of the Planck-like functions f(x) at x = 0 from § The Endpoints

of the Planck-Like Functions:

f(x) =







∞ For z < 1 and x = 0 is a maximum;

1 For z = 1 and x = 0 is not a stationary point;

0 For z > 1 and x = 0 is a minimum.

(13)

For z > 1 (z ≤ 1), there are is a solution (no solution) at x > 0 since the RHS(x) rises

faster (slower) than LHS(x) and its slope strictly decreases as x increases and it will (will

not) intersect LHS(x) before it asymptotically reaches a maximum of z at x = ∞.

So the Planck-like functions f(x) for z ≤ 1 have no stationary points between their

endpoints and strictly decrease in the domain x ∈ (0,∞). On the other hand, the Planck-

like functions f(x) for z > 1 have one stationary point in the domain x ∈ (0,∞) and it must

be a maximum since the endpoints are both minima.

The maximum-point equation x = z(1− e−x) (for z > 1) has no exact analytic solution.

However, we see that as maximum point xmax increases eventually we must have xmax ≈ z,

but with xmax a bit smaller than z. Actually, even for z = 2, the result xmax ≈ z is not so

bad: the actual xmax(z = 2) = 1.59362 . . . , in fact. Thus for xmax sufficiently large, we find

f(xmax) =
xz

max

exmax − 1
≈ zze−z = exp[z ln(z) − z] ≈ exp(z!) , (14)

where for the last expression we have used Stirling’s approximation (e.g., Arfken 1985,

p. 556). For better values of f(xmax), we need better values of xmax. We show how to

obtain those in the following subsections.

4.3. The Iteration Function Solution for Maximum Point of the Planck-Like

Functions

The maximum-point equation x = z(1 − e−x) (for z > 1) was derived in § 4.2. This

equation can be used as iteration function for the maximum point xmax. One inputs an

initial estimate for xmax into the right-hand side and the left-hand side result is a better

estimate and input that better estimate into the right-hand side, and so on to convergence

to the exact value to within machine precision. The maximum-point equation expressed as

in iteration function is

xi+1 = z(1 − e−xi) (15)
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where the initial iterate is x0. Convergence occurs when xi+1 = xi to within machine

precision. As we explicate below, there is always converge for any x0 > 0 and converge

is faster as z gets bigger and slower as z gets smaller. Recall there only are solutions for

z > 1. The Newton-Raphson iteration to the solution for xmax (see § 4.4) is much more rapid

than the iteration function solution. Of course, convergence for both the iteration function

and the Newton-Raphson solution converge faster the closer x0 is to xmax. Numerical tests

reported in § 4.9 quantify the rates of convergence just discussed.

Actually one would guess that the iteration should converge for sufficiently large values

of the maximum point since the right-hand side dependence on x is rather weak and the

insensitivity of iteration function to input values is a usual sign of good convergence. Zero

sensitivity is the ideal: every input to the iteration function gives the exact solution as an

output In fact, the iteration with x = z(1 − e−x) converges for all z > 1 as aforesaid. To

prove this, we need some general results.

First, imagine rotating the 4 quadrants of the Cartesian plane by 45◦ clockwise. For the

nonce, we call these rotated quadrants the convergence quadrants. Say we have interation

function f(x), where x = f(x) is satisfied by the exact solution xexact and there is only one

such solution. Center the convergence quandrants on xexact so that the quandrant boundaries

are lines with slopes 1 and −1 passing through xexact.

For mental clarity, define x′ = x − xexact and g(x′) = f(x) − xexact. Now the solution is

the origin. If g(x′) has a domain (including the origin) where g(x′) lies entirely in the 1st

and 3rd quadrants, then convergence is guaranteed for any inital iterate x′
0 in the domain.

Say iterate x′
i−1 > 0, then we have

−x′
i−1 < g(x′

i−1) < x′
i−1

|g(x′
i−1)| < |x′

i−1|
|x′

i| < |x′
i−1| (16)

and similarly if iterate x′
i−1 < 0, we have

x′
i−1 < g(x′

i−1) < −x′
i−1

|g(x′
i−1)| < |x′

i−1|
|x′

i| < |x′
i−1| . (17)

So either way the iterate x′
i is closer to 0 than the iterate x′

i−1 and convergence follows as

the iteration continues.

Note that since there is only one solution by hypothesis, g(x′) changes sign only once

and this is when it passes x′ = 0. If g(x′) is goes positive (negative) at x′ = 0 as x′ increases,
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then iterate x′
i has the same sign (opposite sign) as x′

i−1 and there is a non-alternating sign

(alternating sign) convergence for the iteration.

Now if g(x′) has a domain (including the origin) where where g(x′) lies entirely in the

2nd and 4th quadrants, then divergence is guaranteed for any inital iteration value x′
0 in the

domain. Say g(x′) goes positive through the origin as x′ increases. If the iterate x′
i−1 > 0

(x′
i−1 < 0), then we have x′

i = g(xi−1) > x′
i−1 (x′

i = g(xi−1) < x′
i−1) and we have a non-

alternating divergence. Say g(x′) goes negative through the origin as x′ increases. If the

iterate x′
i−1 > 0 (x′

i−1 < 0), then we have x′
i = g(xi−1) < −x′

i−1 (x′
i = g(xi−1) > −x′

i−1) and

we have an alternating divergence.

To return to our specific case. We showed in § 4.2, that iteration function x = f(x) =

z(1 − e−x) for x < xmax was entirely in the 3rd convergence quadrant and for x > xmax

was entirely in the 1st convergence quadrant for solution xmax. (Note we did not use the

convergence quadrant terms in § 4.2.) So convergence is guaranteed for the whole domain

x ∈ (0,∞). Since iteration function increases going through xmax, the convergence is a

non-alternating sign convergence.

Recall that x = 0 is also a solution to x = f(x) = z(1 − e−x). However, the iteration

function is the 2nd quandrant for the exact solution x = 0. Thus, an iteration for will diverge

from the x = 0 solution and, in fact, converge to the soltuion xmax as we already know.

How does convergence depend on z? Note (suppressing the subscript max for clarity for

the moment) that

x = z(1 − e−x)

z =
x

1 − e−x

∂z

∂x
=

1

1 − e−x
− xe−x

(1 − e−x)2

∂z

∂x
=

1 − (1 + x)e−x

(1 − e−x)2
>

1 − exe−x

(1 − e−x)2
= 0

∂x

∂z
=

(1 − e−x)2

1 − (1 + x)e−x
> 0

∂x

∂z
> 0 (18)

for x > 0. So xmax increases with z which is actually clear from the graphical picture we

considered in § 4.2.

Now as z goes small, xmax goes small and the curve f(x) = z(1 − e−x) comes closer to

the y = x line for x < xmax which is the boundary between convergence and divergence. If
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you imagine the f(x) = z(1 − e−x) as becoming coincident with the boundary, then input

xi−1 yields output xi = xi−1 and convergence stops. So having the curve approach the

divergence bounary should slow convergence. The numerical tests (see § 4.9) show this true

as aforementioned. As z decreases, convergence slows down. But as long as z > 1, there is

still convergence.

4.4. The Newton-Raphson Solution for Maximum Point of the Planck-Like

Functions

Much more efficient than the iteration function solution for the maximum point of the

Planck-Like Functions (see § 4.3) is the Newton-Raphson solution.

The Newton-Raphson iteration function is determined as follows:

f(x) = z(1 − e−x) − x

df

dx
(x) = ze−x − 1

0 = f(x) = f(xi) + (xi+1 − xi)
df

dx
(xi)

xi+1 = xi −
f(xi)

(df/dx)(xi)

xi+1 = xi +
z(1 − e−xi) − xi

1 − ze−xi

, (19)

where x0 is the initial iterate.

4.5. The Small z Series for the Maximum Point of Planck-Like Functions

The solution for maximum point for small z can be obtained in a power series in ∆z =

(z − 1). Behold:

z =
x

1 − e−x
=

x

1 − [1 − x + (1/2)x2 − (1/6)x3 + . . .]
=

1

1 − [(1/2)x − (1/6)x2 + . . .]

z = 1 +

[

1

2
x − 1

6
x2 + . . .

]

+

[

1

2
x − 1

6
x2 + . . .

]2

+ . . .

∆z = z − 1 =
1

2
x − 1

6
x2 +

1

4
x2 + . . . =

1

2
x +

1

12
x2 + . . .

xmax = 2∆z − 1

6
x2

max
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xmax = 2∆z − 1

6
[xmax,1st + O(∆z2) + . . .]2

xmax,1st = 2∆z

xmax,2nd = 2∆z − 2

3
∆z2 , (20)

where we used the geometric series expansion (e.g., Arfken 1985, p. 279) in the 2nd line.

To go beyond the 2nd order formula, one needs to be more systematic. First let’s try

just submitting a power series in ∆z (with 0th term zero as we already know) into the

maximum point equation:

x = z(1 − e−x)
∞
∑

ℓ=1

aℓ∆zℓ = (1 + ∆z)

[

1 − exp

(

∞
∑

ℓ=1

aℓ∆zℓ

)]

∞
∑

ℓ=1

aℓ∆zℓ = (1 + ∆z)

[(

∞
∑

ℓ=1

aℓ∆zℓ

)

− 1

2
(. . .)2 + . . .

]

0 = ∆z(. . .) + (1 + ∆z)

[

−1

2
(. . .)2 + . . .

]

. (21)

Well, equation (21) is rather hopeless for solving for the coefficients of the power series in

general. However, note that the first term gives a term aℓ∆zℓ+1 and the second term will give

terms with aℓ with factors ∆zℓ+1 or higher exponents. Similarly, aℓ+1 can only be in terms

with factors ∆zℓ+2 or higher exponents. So equation (21) does show that the coefficient aℓ

is solved for from a sum of coefficients times factors involving only coefficients ak≤ℓ times

∆zℓ+1. Thus, one must solve the coefficients in order of increasing order and the term with

∆z1 gives no solution for coefficients.

To actually solve for the coefficients, we can use the complete exponential Bell polyno-

mial expansion (Wikipedia: Bell polynomials: Generating function). Behold:

exp

[

∞
∑

ℓ=1

(yℓ = −aℓℓ!)
∆zℓ

ℓ!

]

=

∞
∑

ℓ=0

Bℓ(y1, . . . , yℓ)
∆zℓ

ℓ!
= 1 +

∞
∑

ℓ=1

Bℓ(y1, . . . , yℓ)
∆zℓ

ℓ!

∞
∑

ℓ=1

yℓ

∆zℓ

ℓ!
= (1 + ∆z)

[

1 − exp

(

∞
∑

ℓ=1

yℓ

∆zℓ

ℓ!

)]

∞
∑

ℓ=1

yℓ

∆zℓ

ℓ!
= (1 + ∆z)

[

1 −
∞
∑

ℓ=0

Bℓ(y1, . . . , yℓ)
∆zℓ

ℓ!

]

= (1 + ∆z)

[

−
∞
∑

ℓ=1

Bℓ(y1, . . . , yℓ)
∆zℓ

ℓ!

]
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= −
∞
∑

ℓ=1

Bℓ(y1, . . . , yℓ)
∆zℓ

ℓ!
−

∞
∑

ℓ=1

Bℓ(y1, . . . , yℓ)
∆zℓ+1

ℓ!

= −B1(y1)
∆z

1!
−

∞
∑

ℓ=2

[

Bℓ(y1, . . . , yℓ)

ℓ!
+

Bℓ−1(y1, . . . , yℓ−1)

(ℓ − 1)!

]

∆zℓ

a1∆z +
∞
∑

ℓ=2

yℓ

∆zℓ

ℓ!
= a1∆z −

∞
∑

ℓ=2

[

Bℓ(y1, . . . , yℓ)

ℓ!
+

Bℓ−1(y1, . . . , yℓ−1)

(ℓ − 1)!

]

∆zℓ

∞
∑

ℓ=2

yℓ

∆zℓ

ℓ!
= −

∞
∑

ℓ=2

[

Bℓ(y1, . . . , yℓ)

ℓ!
+

Bℓ−1(y1, . . . , yℓ−1)

(ℓ − 1)!

]

∆zℓ (22)

where we used −B1(y1) = −(−a1 × 1!) = a1 and where as expected from the discussion of

equation (21) the ∆z1 term gives no solution since it cancels out.

Using the expression for the 1st and 2nd complete Bell polynomials, we find

a2 = − 1

2!
(y2

1 + y2) −
y1

1!
= −1

2
(a2

1 − 2a2) + a1

0 = −1

2
a2

1 + a1

a1 = 2 (23)

confirming what we already knew. Likewise with more labor solving by hand, we find a2 =

−2/3 (which we also already knew) and a3 = 4/9 (which has been confirmed numerically).

Higher order coefficients can be determined with increasing labor.

To conclude this subsection, we find

xmax =

∞
∑

ℓ=1

aℓ∆zℓ (24)

xmax,1st = 2∆z (25)

xmax,2nd = 2∆z − 2

3
∆z2 (26)

xmax,3rd = 2∆z − 2

3
∆z2 +

4

9
∆z3 . (27)
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4.6. The Large z Series for the Maximum Point of Planck-Like Functions

4.7. A Good Interpolation Formula for the Maximum Point of Planck-Like

Functions

4.8. An Excellent Interpolation Formula for the Maximum Point of

Planck-Like Functions

The Newton-Raphson iteration formula evaluated with xi = z

f(z) = z − ze−z

1 − ze−z
(28)

is formally a 2nd order good in small ze−z series formula for xmax. It is actually a slight

improvement over the fiducial 2nd order small ze−z series formula (i.e., large z series formula:

see 4.6) for z less than about 2 and slightly worse for z greater than about 3.??? That it is

a slight improvement for z less than about 2 is explicable (though not predictable) since the

Newton-Raphson iteration formula is expected to work everywhere to some degree and the

fiducial 2nd order small ze−z series formula is expected to get worse as z gets small.

An interesting fact about the factor 1/(1− ze−z) equation (28) is that the denominator

is sum of an infinite geometric series (e.g., Arfken 1985, p. 279). This expansion suggests that

we create a geometric series sum formula that approximates the small ze−z series formula

for xmax to second order in ze−z and that also approximates the small ∆z series formula for

xmax in ∆z. This geometric series sum formula would have a smooth transition from the

small ∆z behavior to the large z behavior like the good interpolation formula given in § 4.7,

but the good formula only is 1st order goodness for small ze−z and small ∆z. It turns out

that the geometric series sum formula is an excellent interpolation formula.

This excellent interpolation formula is

xmax = z − ze−z

1 − [a + ∆z(b + c∆z)]e−z
, where (29)

∆z = z − 1 (30)

a = e1 − 1 = 1.7182817 . . . (31)

b = a − 1 = e1 − 1 = 0.7182817 . . . (32)

c =
e1

2
− 4

3
= 0.025807 . . . . (33)

In equation (33), we have written the expression [a+∆z(b+ c∆z)] in a numerically accurate

form and in terms of ∆z rather than z for simplicity in determining the expressions for the
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coefficients a, b, and c. The coefficients are chosen so that for small ∆z the small ∆z series

formula xmax = 2∆z − (2/3)∆z2 to 2nd order is recovered.

The excellent interpolation formula, of course, goes asymptotically to the exact solution

as ∆z → 0 and z → ∞, both to 2nd order goodness. It is a slight overestimate for z < 8

approximately and a slight underestimate for z ≥ 8 approximately. Its maximum error of

∼ 2.8/104 (or 0.028 %) occurs at z ≈ 1.8. This is much smaller than the good interpo-

lation formula’s maximum error ∼ 3 % which occurs at z ≈ 1.5. Obviously, the excellent

interpolation formula is an excellent interpolation formula.

Now for some details of getting the coefficients a, b, and c. To recover the small ∆z

series formula 0th order term, we need the coefficient a obtained by setting xmax(∆z = 0, z =

1) = 0. Behold:

0 = xmax(∆z = 0) = 1 − e−1

1 − ae−1

e−1

1 − ae−1
= 1

1 − ae−1 = e−1

a = e−1 − 1 . (34)

To recover the small ∆z series formula 1st order term, we need the coefficient b obtained by

setting (dxmax/dz)(∆z = 0, z = 1) = 2. Behold:

dxmax

dz
= 1 −

{

e−z

(. . .)
− ze−z

. . .)
− ze−z

(. . .)2
[−(b + 2c∆z) + (a + b∆z + c∆z2)]e−z

}

= 1 −
{

−x

z
+ 1 + x − z +

(x − z)

(. . .)
[a − b + (b − 2c)∆z + c∆z2]e−z

}

2 =
dxmax

dz
(∆z = 0, z = 1) = 1 −

[

0 + 1 + 0 − 1 +
1

e1
(a − b)e−1

]

= 1 − (a − b)

(a − b) = 1

b = a − 1 = e−1 − 2 (35)

To recover the small ∆z series formula 2nd order term, we need the coefficient c obtained

by setting (d2xmax/dz2)(∆z = 0, z = 1) = −4/3. Behold:

d2xmax

dz2
=

(dx/dz)

z
− x

z2
− dx

dz
+ 1 −

{

[(dx/dz) − 1]

(. . .)
[. . .]e−z − (x − z)

(. . .)2
[. . .]2e−2z

+
(x − z)

(. . .)
[b − 2c + 2c∆z − 1 − (b − 2c)∆z − c∆z2]e−z

}

=
(dx/dz)

z
− x

z2
− dx

dz
+ 1 −

{

[(dx/dz) − 1]

(. . .)
[. . .]e−z − (x − z)

(. . .)2
[. . .]2e−2z
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+
(x − z)

(. . .)
[b − 2c − 1 + (−b + 4c)∆z + ∆z2]e−z

}

−4

3
=

d2xmax

dz2
(∆z = 0, z = 1) = 2 − 0 − 2 + 1 −

{

1

e−1
[1 + 0 + 0]e−1 +

1

e−2
[1 + 0 + 0]2e−2

− 1

e−1
[b − 2c − 1]e−1

}

−4

3
= 1 − 1 − 1 + (b − 2c − 1) = −2 + b − 2c

2c = −2

3
+ b

c = −1

3
+

b

2
=

e1

2
− 4

3
. (36)

4.9. Summary of the Solutions for the Maximum Point of Planck-Like

Functions
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