Peter: I'm noticeable.

Corin: (With a smile, a nice one.) So you are, Peter. Would like some coffee? A
bit long in the pot, I'm afraid.

Peter: Yes, please, I'm an addict.

Corin puts a cup and saucer on the table by Peter’s chair and pours from his
pot which has been simmering for awhile. He pours himself a cup and sits opposite
Peter. They’re not far apart.

Corin: So what favor can I do for you?

Peter: It’s just a whim that literally hit me yesterday sitting on my couch in The
Celt. I'd like to view The van Heck Nativity sometime if that could be arranged.
My friend Mary Hex was sitting with me and mentioned you were in her stats class
and after she ran off to that class, the connection connected in my brain.

Corin: Which class I skipped yesterday. Essay due for my Spanish lit course,
don’t you know. (He indicates his Spanish books.) Also, I'm lost in stats and,
probabilistically speaking, will stay that way.

In any case, I think we can have you over to Red House to see the old thing
just about any weekend, even this one. But why the special interest?

Peter: I'm interested in painting in a general way, but I read Peter Piper’s book
on The Nativity to learn about the artist, Ruprecht Paulus. In later life, he was
primarily an urban planner, one of the designers of the Garden Cities of Brussels.
I've been thinking of mathematically modeling the growth of cities and Paulus’
name came up. I'd like to go to Brussels to see Paulus’ urban development work,
but I can’t right now, but at least I could see his painting in Oxfordshire for a
physical connection to the man.

Corin: Old Paulus, the master forger.

Peter: The van Heck Nativity is not a forgery, we both know it. It’s a demonstration
of the forger’s art.

Corin: In fact, I've known “it” all my life. I once touched it all over just to be
bad, but just gently.

Peter: I wouldn’t do that. Just give it a good viewing, take some images if that is
permitted.

Corin: That’s fine absolutely. (Then with some slyness.) But I have favor to ask
of you if it is convenient.

Peter: At your service, Corin.

Corin: Could you explain Bayesian analysis to me right now?

Peter: How much do you know?

Corin: Let’s pretend I know nothing.

Peter now becomes Professor Courtney.

Peter: You understand it first as poetry. (Slight pause.) Do you have a pad of
writing paper? (Corin nods and picks it up to show.) Why not pull up your chair
beside me and let’s give it a shot.

Corin pulls his chair to the right of Peter’s. The writing pad bridges the arms
of the chairs. Peter’s green-ink pen writes “Universe.” We follow on the pad the
diagrams and equations as Peter explains them. The writing just appears more
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quickly than the hand can write like on the YouTube videos. Occasionally, there are
cuts to Peter and Corin as needed.

Peter: This is a Venn diagram. There are populations of events A and events B
represented by partially overlapping ovals. Surrounding those ovals is a large oval
containing events K, where K is a more general event. For key example, K may be
all knowledge that we have. And surrounding the K oval is the big oval representing
the universe of all events. The overlap region of A, B and K has a joint probablitiy
of occurring P(ABK), where here ABK is not a product, but means “A, B, and
K in hand at the same time” or, precisely mathematically, the intersection of A, B,
and K. We can expand P(ABK) using the frequentist conception of probability:
i.e., so many events out of so many trials. Behold:

Napxk  Naprx Npr Nk

P(ABK) = =
( ) N Npx Ng N

— P(A|BK)P(B|K)P(K),

where the N’s represent populations of events/trials taken to the limit of infinite
size, the multiplied fractions follow from a licit why not, and P(A|BK) etc. are
conditional probabilities: i.e., probability of A given BK etc. The equation we
have just derived is called the product rule in probability theory for obvious reasons.
Note that probabilities determined empirically from actual populations of trials and
events must always be less than exact since you cannot go to populations of infinite
size. Nearly exact probabilities can be obtained from sufficiently large populations.
Can exact probabilities ever be obtained? They can be obtained by assumption for
heuristic reasons: i.e., for education, example, or advancing discovery. They can
also be obtained from powerful theories you believe to be true. The example par
excellence of the latter case is quantum mechanics—which we will not digress on.

There are experts who say that Bayes’ theorem (which we will get to soon)
and Bayesian analysis are more general than the frequentist conception in that
probabilities can represent degrees of belief, not just frequencies. But that opinion
invites the question, what does one mean by degrees of belief? I think it must mean
“so many events out of so many trials” even if the events and trials are specified
in a very vague way and any measured populations are less than infinite, often far
less. In fact, in Bayesian analysis, they are often specified in a vague way and that
is not a problem at all as we will discuss.

Now symmetry gives a second version of the product rule starting from the

first one:
P(ABK) = P(B|AK)P(A|K)P(K) .

Equating the two versions and canceling the often only vaguely known P(K) gives
Bayes’ theorem in symmetrical form

P(A|BK)P(B|K)= P(B|AK)P(A|K) .
More often, such as at Wikipedia, one sees the asymmetric forms of Bayes’ theorem:

P(B|AK)P(A|K) P(A|BK)P(B|K)
P(B|K) P(A|K)

P(A|BK) = and  P(BJAK) =




The K is usually not seen in the derivation and the theorem. It’s just taken as
understood. But, in fact, we need the K to understand Bayesian analysis. So I
made the K explicit.

Now Bayes’ theorem is elementary both in being at the root of reality and
directly intelligible to all sufficiently sophisticated intelligences, I think, without
exception. It’s a relationship among conditional probabilities. I like to think of
Bayes’ theorem as a Platonic ideal, one of many actually.

Now to be more specific, Bayes’ theorem is general to all probability theory.
Bayesian analysis is a special branch of probability theory rooted in Bayes’ theorem,
but having a lot more formalism of which we’ll show only a little bit. By the by,
the term Bayesian analysis is I think to be preferred to the term Bayesian inference
which has a more restricted meaning which I will not explicate in the here and now.

But what is Bayesian analysis? First off, like evolution by natural selection,
Bayesian analysis is a form of learning, but unlike evolution, Bayesian analysis
requires intelligence in some sense. We humans and all biota to some degree have
done what can be called for the nonce qualitative Bayesian analysis with fair-to-
middling success since forever. In fact, in scientific matters, qualitative Bayesian
analysis is the scientific method in action.

To explicate qualitative Bayesian analysis, say some trial is coming up for
you with various possible outcomes which we often call events in the probability
jargon as, in fact, we already have. All your past experience allows you to
qualitatively estimate the probabilities of those events: certain, nearly certain, very
likely, likely, 50-50, unlikely, very unlikely, impossible. Those probabilities are your
prior probabilities or priors in Bayesian analysis jargon. After the trial, you have
new knowledge and using that new knowledge you update your probabilities: the
updated probabilities are your posterior probabilities or posteriors. The essence
of the qualitative Bayesian analysis procedure is the estimating of priors and the
updating to posteriors.

How do you calculate your probabilities for qualitative Bayesian analysis?
Ultimately, I think, as I’ve already indicated by “so many events out of so many
trials,” but your calculation is usually very approximate math without any explicit
numbers and usually there is no need to do better since the number of events
and trials in your past is far short of what is needed to establish nearly exact
probabilities which require, as aforesaid, large populations of events and trials and
your events and trials are only approximately alike in any case which makes your
whole calculation very vague. But you say now you have priors even for events that
occur in trials that you have never had before. But there are all kinds of events and
trials in life you have experienced including those you experience just vicariously in
reading or in oral stories or in imagination. Out of all those events and trials, you
are able to synthesize priors and, in fact, you almost always do and whether you
want to or not. Sometimes synthesized priors lead to bad outcomes, but often they
are useful.

Now what is Bayesian analysis without qualification? It quantifies the
procedure of qualitative Bayesian analysis making use of Bayes’ theorem and allows
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you to find truth at least in the limit of ideal Bayesian analysis—with the exception
of intractable cases which we will discuss eventually. We will, in fact, prove that ideal
Bayesian analysis allows you to find truth (except for aforementioned intractable
cases) which is the same as saying we will prove ideal Bayesian analysis which is
the same as saying we will prove Bayesian analysis without qualification is generally
useful.

However, we must note that Bayesian analysis is actually computationally
very intensive in practical cases because such cases usually involve large data sets
upon which elaborate calculations have to be done. Because of the computational
requirements, only in recent decades with the advent of vast computer power has
Bayesian analysis become generally useful. And it is very useful in many modern
sciences: e.g., epidemiology, economics, ecology, particle physics, and cosmology
all of which nowadays must analyze vast data sets. I hope to help make Bayesian
analysis more useful in cliodynamics, the mathematical modeling of history, which
is my own specialty of which I don’t know very much yet.

But for what kind of learning is Bayesian analysis used? Well, many kinds
in general. But most importantly, it is used to find the probability of the truth
of hypotheses or theories. Note the terms hypothesis and theory can be used as
synonyms, but, following usual understanding, a hypothesis is of limited application
in understanding some aspect of reality and a theory is of much more general
application in understanding some aspect of reality. Hereafter, I will usually just
use the word theory meaning both hypothesis and theory for brevity.

But now you say isn’t a theory just true or false setting aside the complication
of partially true theories for simplicity in discussion. In an absolute sense, one
theory has probability of truth 1 and all the others have probability of truth 0. But
the absolute sense is not the to-your-knowledge sense. To give a simple example of
the difference between the absolute probability of truth (which is 1 or 0) and the
probability of being true to your knowledge, say I have coin under my left hand
which in fact I do.

Peter’s left hand is now seen flat on on the arm of his chair away from Corin.

The coin can be only one of heads or tails. One theory about it has absolute
probability 1 and the other has absolute probability 0. But those probabilities are
known only in the mind of God. The probabilities to your knowledge, Corin, are
what?

Corin: 50-50.

Peter: Update your probabilities.

Peter takes away his hand.

Corin: Heads, 100 %.

Peter: (Peter catches Corin’s eye for a moment.) Tails, look again.

Corin: (Looking again.) Devil.

Peter: Right the first time, heads.

Corin: (Looking one more time.) Double devil. What’s the trick, Peter?

Peter: (Pocketing the coin.) Just power-of-suggestion trickery. The trickery hints
at how hard Bayesian analysis can actually be—which we know from qualitative
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Bayesian analysis which, as aforesaid, we’ve done forever. But forgetting the
trickery, your knowledge was correctly updated from 50-50 to 100 % for heads.

You'll note that my example was really about a hypothesis, not a theory. You
computed 50-50 for the two posssible hypotheses using the theory of probability of
coin tosses which is, of course, the familiar binomial probability distribution. See,
there’s the Wikipedia article on the binomial probability distribution on my phone.

However, similar examples can be given for theories. To take one such example,
say you have two plausible theories about time travel and they are the only two
plausible ones you can think of and you think of them about equally often. In
terms of the frequentist conception of probability, out of thinking trials there are
only two plausible theory events and you estimate the two plausible theory events to
have 50-50 probability for thinking trials. You have come up with many implausible
theories and you assign them all zero probability. This is a rather vague (i.e., poorly
specified) procedure and you could easily have assigned probabilities by some other
vague procedure, but still following the frequentist conception of probability. In
fact, practitioners of Bayesian analysis usually just assign equal initial probabilities
(i.e., equal initial priors) to theories they think plausible and zero to all the others
just as we’ve done for time travel. The assignment of equal probabilities to plausible
theories is grandly called the principle of indifference. Actually, except probably
in very well specified cases, there is no better way to assign initial probabilities to
plausible theories. If you try to do better, you are effectively doing Bayesian analysis
before you do Bayesian analysis rather than doing qualitative Bayesian analysis
before you do Bayesian analysis. In fact, reasonably good initial probabilities
are fine for practical Bayesian analysis and ideal Bayesian analysis can start with
completely wrong ones and still work as we will prove.

There is major fact about the modern sciences in which Bayesian analysis is
used which must be mentioned: their theories almost always have free parameters,
and so are not fully-specified. Free parameters are almost always continuous
variables that have to be set by the experimental/observational data itself. Thus,
a theory with free parameters is, in one perspective, a continuous family of
infinitely many theories, but that perspective is of no value, except that it must
be understood. If your first interest is determining the true theory and not its free
parameters, then Bayesian analysis makes use of marginalization. Marginalization
is a whole lesson in itself which we will not do today.

Now I’ve promised a proof that ideal Bayesian analysis: i.e., a proof that it is
a way to find truth (except for the aforementioned intractable cases). Note ideal
Bayesian analysis is the ideal limit of Bayesian analysis without qualification. Both
of forms of Bayesian analyis are, by the way, procedures. The proof of ideal Bayesian
analysis is mathematical and has the certainty of a mathematical proof. Of course,
we arn’t going to be rigorous because we don’t care about rigor—not today. We
will do the proof right now and it’s actually not so hard.

Say we have a set of theories T; (which could be just hypotheses) about some
aspect of reality, where 7 is an index that numbers the theories. For simplicity, we
assume the set of theories T; is finite. Actually, we can dispense with this assumption
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(by using marginalization or otherwise), but having finite time at the moment, we
won’t. The theories are derived from initial knowledge (i.e., past data) which we
now denote K, where the subscript 0 stands for step 0 of the procedure of ideal
Bayesian analysis. We also have the initial probabilities P(T;|K) for all theories
T; being true given our initial knowledge K. In more elaborate Bayesian analysis
jargon—which I won’t use—the initial knowledge K can be called the conditioning
information or context. In the first step of a Bayesian analyis, we aquire new data
and then we update our initial probabilities (i.e., our initial priors) to our initial
posteriors using the newly acquired data and an updating formula which we will
derive. The initial posteriors become the priors for the next step and so on until
you find the true theory—except for the thrice aforementioned intractable cases.

Note the set of theories are those we consider plausible and we could set them
have to equal initial probabilities by the principle of indifference. However, we
do not need to do that and we will leave the P(T;|K() values general. Theories
we consider implausible, we exclude from the set of theories which is the same as
saying we assign them inital probabilities of zero. The probabilities P(7;|Ky) only
need to have relative values: i.e., they do not have to sum to any particular number.
However, it simplifies our proof of ideal Bayesian analysis to normalize them: i.e.,
to scale them to sum to 1: i.e., to scale them so that

> P(Ti|Ko) =1.

(3

At face value, normalization means that theories not in the set absolutely definitely
have probability zero. However, ideal Bayesian analysis does not take that
normalization at face value. Some of excluded theories may actually have significant
nonzero probabilities and if so, they might re-enter the ideal Bayesian analysis and
we will show where in just a moment. What of the scaling of updated probabilities?
The ideal Bayesian analysis automatically normalizes all updated probabilities as
we will show.

I define the set of theories T; as adequate in a Bayesian analysis sense if it
contains the true theory. This is because the ideal Bayesian analysis will eventually
find that true theory. What if the set does not contain the true theory? Then
the ideal Bayesian analysis will eventually show that all theories in our set have
zero probability which occurs when the mean likelihood (which we define in due
course) goes to zero. In fact, whenever the mean likelihood goes to zero, the ideal
Bayesian analysis requires us to introduce new theories (which, as we indicated just
a moment ago, might include some theories we excluded initially) and eventually
we will introduce the true theory though we will not know it is the true theory
until the ideal Bayesian analysis is complete. Why are we guaranteed to introduce
the true theory? Somewhere as we approach the limit of having all data relevant
to the aspect of reality we are considering, we will be able to find the true theory
to introduce (except for intractable cases). So even if the true theory is not in our
original set of theories, ideal Bayesian analysis will find the true theory (except for
intractable cases).



Now to be a bit more mathematical, we label each step of the ideal Bayesian
analysis by index ¢. We start with step £ = 0 (i.e., no step done) and the first
step is step £ = 1. Now say we have completed to step £ — 1. The next step is
step £. Before we do step ¢, we have probabilities P(T;|Ky—_1), where our step ¢ — 1
knowledge Ky_1 = KoD1D>Ds...Dy_1, where again the “product” is interpreted
as the intersection and the D values are data acquisitions indexed by the step
number. To start step ¢, we acquire new data Dy. The new data doesn’t have to
be experimental /observational data in an obvious sense. It could be other kinds
of knowledge: for important example, a new theory about some aspect of reality
that impacts our knowledge about the set of theories T; about their different aspect
of reality. For the ideal Bayesian analysis, we will assume that data D, has no
uncertainty (i.e., it is exactly correct).

To obtain a preliminary version updating formula used to update the
probabilities from priors P(T;|Ky—1) to posteriors P(T;|K;), we apply Bayes’
theorem replacing A by T;, B by data Dy, and K by K, ;. Said formula is

Dy| T K1) P(T;| K¢—1)
P(Dy|Ky—1) ’

P(Tj|Ky) = P(Tj|DKy_y) = P(

where Ky = DyKy_; (with the “product” interpreted as the intersection, of course)
and P(Dy|T;Ky_1) is called the likelihood—it is the probability of the data given the
intersection T;Ky_; which includes knowledge about the experiment/observation
used to obtain D, which we need to calculate said likelihood P(Dy|T;K,—1). Note
likelihoods do not need to be normalized. All one needs is their relative sizes as we
will show. However, one can normalize them if one wants too. What P(Dy|K,_1)
is we will discuss in a bit.

The likelihood P(Dy|T;K,—1) takes some more explication. For this explication,
we will assume we have normalized the likelihoods so that summing them over i
gives 1. Say the data D, is exactly true, the past knowledge K,_; includes all
the particulars about experiment/observation that the theory T; requires for a full
prediction, and the theory T; is an fully-specified deterministic theory. There are
three cases. First case: if T; is true, P(Dy|T;K;—1) must be 1. Second case:
if T; is false, P(Dy|T;K;—1) could be 1 if the theory fortuitously predicts D,—it
can’t predict all possible true events or it would be true, but it can predict them
sometimes. In fact, the data Dy is not decisive between the first and second cases:
it does not tell us if the theory is true or false: it could be either. Third case: if
P(Dy|T; K1) = 0, then the theory T; is false and the data Dy is decisive. But what
if Dy has experimental /observational uncertainty and/or Ky_; does not include all
the particulars about experiment/observation that the theory requires for a full
prediction? There are ways of dealing with those cases, but those ways take us off
into the details of non-ideal Bayesian analysis, and so we won’t go into those cases.
But what if T; is a probabilistic theory? Then P(Dy|T;K,—1) could be anywhere
in the range [0,1] whether the theory T; is true or not. For example, say T; is
the theory of a perfect die: all it predicts is that the probability of throwing any
of 6 numbers is 1/6. Thus, for the perfect die theory, P(Dy|T;K¢—1) = 1/6 in all
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cases: i.e., for all throws and whether the theory is true or not for the die you
are actually using. Now probabilistic theories turn up all the time in the modern
sciences mentioned above (e.g., epidemiology, etc.) and others in which Bayesian
analysis is used. So normalized likelihoods that are neither 0 nor 1 turn up all the
time in Bayesian analysis, whether ideal or not. But that in itself is not a problem
for ideal Bayesian analysis, but you may have to go to infinite steps to reach the
true theory.

A finicky point must be mentioned here. Some authorities assert that
likelihoods are not actually probabilities. But they are. Likelihoods arise from
Bayes’ theorem which only has probabilities in it. Therefore, they are probabilities,
and therefore can be meaningfully summed (without multiplying them by any
factors, I mean) though one usually has no reason to do that. What likelihoods
are not is probability densities (including in cases where they are set up for
marginalization) and that is what those authorities mean I think: i.e., likelihoods
are not probability densities. That they are not probability densities means
likelihoods cannot be meaningfully integrated over just by themselves. In cases of
marginalization, a likelihood is multiplied by a probability density and the product
is a probablitiy density and that product is, in fact, what is meaningfully integrated
over in marginalization. I will not explicate further here and now.

Now that we have dealt with the likelihood P(Dy|T;K,—1) in the preliminary
version of the updating formula, what actually is the denominator P(Dy|Ky_1) in
the preliminary version of the updating formula? It is the probability of getting the
data D, given the knowledge K,_. However, in general, there might be many ways
of specifying P(Dy|K,—_1) depending on the purpose you use it for or how you think
of it. But for Bayesian analysis, there seems to be only one good specification: the
mean likelihood (P(Dy|T;K¢—1)), where the angle brackets mean mean. Of course,
we need a formula for the mean likelihood that leads to the ideal Bayesian analysis
being proven true and that, as becomes clear below, happens to be

(P(De|TyK 1)) = Y P(Dy|T; K1) P(TiK 1)

?

= P(DiT; K1) P(T)| K1) P(Ky-1)
= ZP(Dg|TiKg_1)P(Ti|K£—1)

where the likelihoods in the averaging process are weighted by their probabilities
of turning up in the ideal Bayesian analysis we are doing (i.e., are weighted by
P(T;Ky—_1): the probability of intersection T;Ky_; being true), where we have
used the product rule, and where P(K,_1) is suppressed in the third line since
P(Ky—1) = 1 since we actually have K,_; in hand. Note if the likelihoods
P(Dy|T;K;—1) are equal for all 4 and the probabilities P(T;|K,_1) are normalized,
then (P(Dy|T;K¢—1)) = P(D¢|T; K¢—1), of course.

Now if our set of theories T; were the only theories with nonzero probabilities,
our theory probabilities were known to be exactly true just before step ¢, and our
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likelihoods were calculated exactly, then
P(De|Ko-1) = (P(De|T; K¢-1))

is exactly correct since P(Dy|Ky_1) can then only be expanded in the complete
and exactly known terms P(D,|T;Ky_1)P(T;|K¢—1). However, since the first two
of those three conditions do not hold in general even in ideal Bayesian analysis,
all we can say is that specifying P(Dy¢|Ky—1) by (P(D¢|T;K;—1)) seems the only
good choice for Bayesian analysis, ideal or otherwise, since we have the ingredients
P(D¢|T;Ky¢—1) and P(T;|K¢—1) in hand. Moreover, if we chose our set of theories
T; very well (i.e., they were overwhelmingly the most probable theories by the
time we have knowledge Ky_1), then it is very likely that (P(D¢|T;K,—1)) by any
specification well approximates P(Dy|K,;—1). However, no matter what our set of
theories T;, we will soon see that using the mean likelihood (P(D/|T;K,—1)) as a
specification for P(Dy|Ky_1) allows the ideal Bayesian analysis.

Now in the preliminary version of the updating formula, we substitute for
P(Dy¢|K;—1) with mean likelihood (P(Dy|T;Ky—1)) and obtain the (final) updating
formula for ideal Bayesian analysis

P(D4|TiKg_1)
(P(De|TiKy-1))

P(T;|Ky) = P(T;|Ko—v) .

The updating formula shows that the overall scalings of the priors P(7T;|Ky—_1)
and the likelihoods P(Dy|T;Ky—1) have no effect since those scalings cancel out.
Thus, there is no need to normalize either of the probabilities P(7;|Ky—1) and the
likelihoods P(D,|T;K,—1). However, the posteriors are automatically normalized
since the sum over all 7 on both sides of the updating formula gives

" P(TK) = 2 P(D|TiKu 1) P(Ti| K1) _ (PDATiE)) _

(P(De|TiK-1)) (P(De|TiK-1))

unless all P(Dy|T;Ky—1) = 0 in which case the posteriors are, in fact, undefined
and all theories T; are falsified. The upshot is that only the initial probabilities
P(T;|Ky) are not automatically normalized by the ideal Bayesian analysis (unless
all P(Dy|T;Ke—1) =0).

However, we did normalize the initial probabilities P(T;|K() for simplicity
and that simplicity makes the following statement completely general to the
ideal Bayesian analysis. Statement: the updating formula shows that the
posterior P(T;|Ky) increases/decreases relative to the prior P(7T;|Ky—1) if likelihood
P(Dy|T;K;-1) exceeds/subceeds the mean likelihood. In other words, we see
explicitly mathematically how new data D, acts to update the priors P(T;|K,—1)
to the posteriors P(T;|K,). And since the posteriors are based on more data than
the priors (i.e., the new data D), the posteriors are more accurate probabilities
than the priors usually. Why only usually? The new data Dy, even it has no
uncertainty (which we explicitly assumed), may be accidently unrepresentative of
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the true theory, and so lead the ideal Bayesian analysis temporarily astray from the
path to the true theory. But only temporarily for reasons we are just now going to
give.

Say we keep doing updating steps in the ideal Bayesian analysis procedure (i.e.,
acquiring new data D, and updating from priors to posteriors using the updating
formula) and our set of theories T; is adequate (i.e., contains the true theory), are
we guaranteed to arrive at truth? The truth being one theory T; with probability
1 (i.e., P(T;|Ky) = 1) and the others with probability zero (i.e., P(T;|Ky) = 0).
The answer is yes (with a pure math qualification given below) if we can keep
doing steps until we reach K, which is all knowledge relevant to the aspect of
reality we are considering. However, /., may have to go to infinity to have all
relevant knowledge. Hypothetically, this could be the case for a theory that makes
absolutely only probabilistic predictions. In fact, it’s hard to think of such a theory
and we won’t try think of it now. In any case, we allow ideal Bayesian analysis
to have infinite (;,,x. But can we always reach Ky _, even with infinite {jpax. In
pure math, there may be cases where we can’t, but I will skip any discussion out
sheer ignorance. What about cases in physical reality? My current thinking is that
physical reality has enough features to interrogate about any aspect of reality that
we can ideally reach K, . for any aspect of reality and reach it with finite fyax
as long as our new data acquisitions do not become vanishingly small. Note the
word “ideally” in the last statement. The features are there to be interrogated, but
practically we may not be able to interrogate them. So in many practical cases, it
is impossible to have all relevant knowledge (i.e., K,

)

However, I'm not quite sure that even ideal Bayesian analysis can arrive at
truth for all cases in physical reality. So I’'m just going to call all cases (in pure
mathematic and physical reality) where ideal Bayesian analysis can’t reach truth
by the already-introduced term intractable cases which admittedly take a lot more
discussion to adequately define. And now I assert that we have proven that ideal
Bayesian analysis starting with an adequate set of theories is guaranteed to arrive
at truth, except for intractable cases which I won’t keep mentioning all the time
when they should be mentioned in order to not sound like a broken record.

What if our set of theories T; is inadequate (i.e., does not contain the true
theory)? At some step, all our theories fail to satisfy the new data Dy: i.e.,
P(Dy|T; K1) = 0 for all ¢, and thus (P(D;|T;K,—1)) = 0: i.e., the mean likelihood
is zero. At this point, as mentioned earlier, you must introduce new theories (i.e.,
a new set of theories) which ideally you can do by deduction from your knowledge
Ky, = DyKy_1. Then you restart the ideal Bayesian analysis using the new set of
theories. If your new set of theories turns out to be inadequate, you will eventually
have to introduce another new set of theories and so on. The conclusion is that
whether or not your initial set of theories is adequate, the ideal Bayesian analysis
will find a set that is adequate and then the ideal Bayesian analysis will find the
true theory at least after obtaining all relevant knowledge: i.e., Ky Except, to
sound like a broken record, for intractable cases.

Actually, in doing ideal Bayesian analysis you are always free to introduce new
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theories and discard old theories if your current knowledge K, = DyK,_1 suggests
the former are plausible and the latter are implausible. You do have to set new
probabilites for the updated set of theories. Probably setting them all equal (i.e.,
using the principle of indifference) and, for simplicity, normalizing them is the best
practice. Updating, your set of theories in this qualitative Bayesian analysis way is
likely to speed the ideal Bayesian analysis to finding the true theory.

Of course, in many practical cases as aforementioned, it is impossible to have all
relevant knowledge (i.e., Ky . ), but one can often have enough relevant knowledge
so that one theory is so probable that it can be accepted as true pending any future
failure. But there is better perspective. Instead of saying “true pending any future
failure,” we say the theory is true despite any failures to come, but its realm of
validity is just narrowed by those failures. Now you might say we are just lowering
the bar, but that is an inadequate perspective for powerful theories about reality
known to have vast realms of validity, that include the axiom that they hold in
an ideal limit that can be closely approached in practice, and that have expanded
our wisdom about reality. Examples of such theories are Newtonian physics, the
germ theory of disease, and the theory of evolution by natural selection. Aside
from absolute philosophical skepticism—which Bertrand Russell for one admitted
is logically viable if perfectly useless—proven mathematical theories (including ideal
Bayesian analysis itself—if you except intractable cases) are just true by logic and
other powerful theories are true I maintain by the argument just given, sans phrase.

Howsoever, returning to the Bayesian analysis steps, ideal or otherwise, where
truth is not yet in hand, we want to choose our data acquisitions D, judiciously.
What does that mean? To go way back, Ernest Rutherford (1871-1937), the
discoverer of the atomic nucleus in 1911, once said “If you need statistics, you
did the wrong experiment.” Of course, all aphorisms are both right and wrong
including this one. But the valid kernel of Rutherford’s aphorism is that if we can
do the experiment that minimizes the need for statistics, good and if we can do
the decisive experiment, better. But in many fields, such as those we mentioned
above (epidemiology, etc.) and others, statistics, including most especially Bayesian
analysis, can’t be avoided. Rutherford flourished in a simpler age when there were
more problems that didn’t need much statistics—but they usually needed some, in
fact. Now for Bayesian analysis, Rutherford’s aphorism and “judiciously” mean the
same thing: choose data acquisitions such that they decisively rule out theories as
fast as possible and rule in more plausible theories as you go along, and so rule in
the true/powerful theory pronto. Being judicious just saves a lot of kicking and
screaming.

I should emphasize the ideal Bayesian analysis procedure that I've outlined
is virtually impossible, except for trivial cases. In nontrivial cases, all kinds of
simplifications and approximations are needed. A major one is that the likelihoods
P(Dy|T; K;—1) and especially their marginalizable versions (which are the usual ones
needed) are often very hard to compute even with supercomputers. This is often
because data Dy, the innocent looking data Dy, is often in important cases petabytes
and getting worse as science takes up harder and harder problems. In nontrivial
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Bayesian analysis, there’s a bit of an art to finding the optimum simplifications
and /or approximations for any particular likelihood calculation. And there is even
more than a bit of an art to marginalization. All too often for same data, people
marginalize differently and come to very different conclusions.

Now a question for Corin. Given that the ideal Bayesian analysis procedure is
virtually impossible except for trivial cases, why should one bother with it at all?
Why not just describe non-ideal Bayesian analysis procedures?

Moment of thought.

Corin: The ideal Bayesian analysis procedure is the true limit of all the non-ideal
ones. It proves that they should work to some degree and you can always improve
how they work by getting closer to the true limit. You yourself implied as much
about true/powerful theories just a moment ago. Now you cannot trust a theory
which fails when you try applying it more exactly. In fact, such a theory is falsified.
But to half take back what I just said, some theories apply exactly only in such
ideal cases that they can only be approached closely in the imagination, but they
are still very useful in understanding reality. I learnt all this in high-school physics
and surprised I am to speak it ex tempore.

Peter: What is the relevance of ideal Bayesian analysis to the scientific method?
Corin: It is the ideal quantified scientific method, and thus is the proof of the
scientific method. At least that is so to my satisfaction at this moment. But I'm
still worried about those intractable cases.

Peter: A-plus, Corin.

Corin: Do you know anything about the Spanish novel from 1898 to 19757
Peter: Let’s pretend I don’t.

Corin: Right.

Peter: How about lunch and a pint?

Corin: Do we have to discuss Bayesian analysis?

Peter: Only as applied to the football pools.

Corin: (Thinking.) 1 guess that’s OK. (Thinking.) So going back to the beginning,
could you come with me this Saturday to see The van Heck Nativity and Red House?
You could stay the night. We’d come back Sunday morning, in my case, to drudgery.
Peter: Thank you very much. I'd be happy to do that.

Corin: The only family who’s there is my sister Serena. She has autism, but she
can talk. She’s really quite social.

Peter: I'd be glad to talk to Serena. I'm a little experienced with interacting with
people with autism. I've had students with that nature.

Corin: Of course, my older brother might make an appearance.

Peter: Isn’t he the Member of Parliament for Rydal?

Corin: It’s worse than that I'm afraid.

Peter: The stuff in the news?

Corin: Worse.

Peter: He’s pro-Brexit?

Scene 3
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