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AN INTRODUCTION TO THE INTERNATIONAL SYMPOSIUM GEORGES LEMAITRE 

A. Berger 

Institut d'Astronomie et de G~ophysique G. Lemattre 
Universit~ Catholique de Louvain-Ia-Neuve, Belgium 

The wor ld has proceeded from the condense 
to the diffuse... The atom-world was broken 
into fragments, each fragment into still 
smaller pieces... We can conceive of space 
beginning with the primeval atom and the 
beginning of space being marked by the 
beginning of time ••• But it is quite possible 
that the expansion has already passed the 
equilibrium radius, and will not be followed 
by a contraction. In this case, ••• the suns 
will become colder, the nebulae will recede, 
the cinders and smoke of the original 
fireworks will cool off and disperse ••• 

from "The Primeval Atom, An Essay on 
Cosmogony" by G. Lemattre, D. Van Nostrand 
Company, Inc. New York, 1950. 

Georges Lemattre was born in Charleroi on the 17 July, 1894. 
It was in the thirties that the Abbe Lemattre proposed for the 
first time what became ultimately the theory of the Primeval 
Atom. In fact, the most important ideas in the work of Lemattre 
took shape between 1927 and 1933. Three fundamental 
publications during this period were followed by further works 
on the expansion of the Universe and on the primeval atom. The 
first of these seminal papers dates from 1927: "un Univers 
homogene de masse constante et de rayon croissant". The second 
paper - "The beginning of the world from the point of view of 
quantum theory" - was presented as a communication to the Royal 
Society and contained the seeds of a later publication having 
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viii A.BERGER 

the title "Hypothese de l' Atome Primitif". This theory is now 
known generally as the Big-Bang model. 

Physical cosmology was born. 

The ideas presented in these two publications of 1927 and 
1931 were subsequently synthesized by Lemattre in his 1933 
paper which indicated how the theory of the expanding universe 
relates to the idea of a primeval atom. 

It thus seemed appropriate to celebrate in 1983 the fiftieth 
anniversary of this work. In fact, the idea of organizing a 
symposium was conceived in Belgrade in October 1979, during the 
international scientific assembly organized by the Serbian 
Academy of Sciences and Arts for the celebration of the 
hundredth anniversary of the birth of Milutin Milankovitch 
(1879-1958). This idea became more definite during the 
commemoration of the hundredth anniversary of the birth of 
Alfred Wegener (1880-1930). The organization of such a 
symposium became all the more urgent as we wanted not only to 
invite the scientific community working in the fields embraced 
by the work of Lemattre, but also to ask the participation of 
as many of his early collaborators and friends as possible: 
among others, Professors J. Oort, W.H. McCrea, o. Godart, L. 
Bouckaert and P. Ledoux. 

Iuunediately on my return to Louvain-1a-Neuve, the idea was 
put forward to those who would play a fundamental role in such 
a symposium. Their reaction was most encouraging and in 1981 an 
organlzlng committee was formed, which comprised former 
students of Lemattre: O. Godart, L. Bossy, P. PAquet, 
J. Henrard, A. Berger together with J. Demaret. The organizing 
committee soon enlisted the help of an advisory panel of 
well-known Belgian cosmologists. An International Scientific 
Committee was also formed of scientists working in topics dear 
to Lemattre: cosmology, celestial mechanics and cosmic rays. It 
was also decided to invite Andre Deprit to occupy the Chair 
Georges Lemattre of the Sciences Faculty at the Catholic 
University of Louvain. Professor Deprit, first a student, then 
a collaborator of Lemattre, formerly a Belgian citizen, now a 
naturalized citizen of the U.S.A., whose wife, Andree 
Bartholome was an assistant of Lemattre, was indeed a most 
appropriate person to participate actively in the project. 

This is how the International Symposium organized by the 
Institute of Astronomy and Geophysics Georges Lemattre from 10 
to 13 October, 1983, in Louvain-la-Neuve was realised in order 
to commemorate its renowned student, professor, and eponym. 
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Fully aware of the work accomplished by Mgr. Lemattre, His 
Majesty King Baudouin enhanced this occasion by placing it 
under His High Patronage. His Holiness the Pope Jean-Paul II 
accepted to testify his paternel solicitude for the work of the 
scientists participating in the symposium. The President of the 
pontifical Academy of Sciences and the Director of the Vatican 
Observatory transmitted their fervent wishes for the full 
success of the symposium. Numerous other eminent people graced 
the ceremony with their patronage. 

The academic opening, the addresses of which are pub*lished 
by the Revue des Questions Scientifiques de Bruxelles , was 
presided over by Mgr. E. Massaux, Rector of the Catholic 
University of Louvain who spoke about Lemattre, the University 
professor. Professor Ch. de Duve, Nobel Prize winner in 
Medicine, called to mind the role of Lemattre as President of 
the Pontifical Academy of Sciences; the Emeritus Professor O. 
Godart, founder of the Institute, recalled the life and work of 
Mgr. Lemattre; Professor A. Deprit, Senior Mathematician at the 
National Bureau of Standards, spoke about Lemattre' s work in 
celestial mechanics and his keen interest for computers; 
Professor J. Peebles, Professor of Physics at Princeton 
University, summarized the fundamental contributions of 
Lemattre to modern cosmology. 

The attendance of more than three hundred people was 
enhanced by the presence of Mgr. A. Pedroni, Papal Nuncio, Mr 
Ph. Maystadt, Minister of Research Policy, Mr E. Knoops, 
Secretary of State, Mr Y. de Wasseige, Senator, Professor E. 
Boulpaep, President of the Belgian American Educational 
Foundation, Mr P. Lienardy, Principal Private Secretary to the 
Ministry of Education, His Lordship Y. du Monceau, 
Senator-Burgomaster. In addition, Professors M. Woitrin, 
General Administrator, H. Buyse, Scientific Advisor, P. Macq, 
Dean of the Sciences Faculty, G. de Ghellinck Vaernewycke, Dean 
of the Faculty of Applied Sciences, and A. Bruylants, Director 
of the Classe des Sciences de l' Academie Royale de Belgique, 
were accompanied by their University colleagues. The family of 
Lemattre and former students and collaborators of Mgr Lemattre 
were also present to witness this homage of the whole 
university community to the memory of G. Lemattre and in 
recognition of his work. 

The symposium supported by the Commission of Celestial Me­
chanics and Cosmology of the International Astronomical Union, 

(*) fasc. 2, 1984. Inquire to 61, rue de Bruxelles, B-5000 
Namur. 
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has drawn attention to the contributions of Lemattre in cosmo­
logy, but also to celes tial mechanics and numerical analysis, 
subjects in which he was passionately fond. Thirty-four papers, 
presented during plenary sessions or workshops recall the 
importance of Lemattre' s works in the development of Astronomy 
and Geophysics. About a hundred scientists coming from fourteen 
different countries participated in the discussions and have 
contributed to this volume, which is intended to commemorate 
the Symposium. 

Today, all facets of Lemattre's cosmology remain the 
preoccupation of active researchers. His discussion of the 
meaning of the zero-point of the radius of the Universe lies at 
the origin of modern, highly mathematicial, work on 
cosmological singularities. Also, his hypothesis of the 
primeval atom has stimulated further studies concerning 
cosmological nucfeosynthesis and works on the physics of the 
primordial universe, which have experienced great development 
owing to the considerable progress of high energy physics and 
the recent ideas about the quantification of the gravitational 
field. The problems relating' to the formation of Galaxies and 
to the possible existence of a cosmological constant were also 
part of Lemattre's work. These problems are still very much 
under active study and have possible bearings on recent gauge 
theories of physical interactions. These speculations, related, 
on the one hand, to the idea of an extremely early physical 
origin of the fluctuations leading to the birth of the galaxies 
and, on the other hand, to the development of inflationary 
models, promise to help considerably in the resolution of the 
enigmas related to the isotropic and quasi-flat character of 
the present universe. 

This Symposium was organized to commemorate this crucial 
period of G. Lemattre' s scientific career and also to give 
testimony to the results of his research in celestial mechanics 
and cosmic particles. Lemattre' s works in celestial mechanics 
were mainly concerned with the Three Body Problem. He managed 
to regularize their equations in the case of binary encounters 
by a transformation of coordinates which maintained the 
Hamiltonian formalism. Moreover, he applied improved methods in 
celestial mechanics to problems in mechanics; in particular to 
the motion of charged particles in the field of a magnetic 
dipole in connection with the geophysical study of cosmic 
radiation. 

ACKNOWLEDGMENTS 

We are greatly indebted to the members of the following 
{'nmmittpp~ 



INTRODUCTION xi 

Patronage Committee 

HIS MAJESTY KING BAUDOUIN THE FIRST 

S. Em. Ie Cardinal G. Danneels, Grand Chancelier de l'Univer-
site Catholique de Louvain. 

Mgr E. Massaux, Recteur de l'Universite Catholique de Louvain. 
S. Exc. Mgr A. Pedroni, Nonce Apostolique. 
S. Exc. M. C.H. Price II, Ambassadeur des Etats-Unis d'Amerique 

S. Exc. M.E. Jackson, Ambassadeur de Grande Bretagne. 
M. H. De Croo, Ministre des Communications et des Postes, Tele­

graphes et Telephones. 
M. Ph. Maystadt, Ministre du Budget, de la Politique Scientifi­

que et du Plan. 
M. A. Bertouille, Ministre de l'Education Nationale. 
M. Ph. Moureaux, Ministre-President de l'Executif de la Commu­

naute FranCaise. 
M. J.M. Dehousse, Ministre de l'Economie Wallonne, President de 

l'Executif Regional Wallon. 
M. E. Knoops, Secretaire d'Etat A l'Energie. 
Mme P. D'Hondt-van Opdenbosch, Secretaire d'Etat aux Postes, 

Telegraphes et Telephones. 
M. F. Aerts, Secretaire d'Etat A la Sante Publique et A l'Envi­

ronnement. 
M. F.X. de Donne a , Secretaire d'Etat A la Cooperation au Deve­

loppement. 
M. M. Wathelet, Ministre des Techniques Nouvelles et des PME, 

de l'Amenagement du Territoire et de la For~t pour la Region 
Wallonne. 

M. V. Feaux, Ministre de la Region Wallonne pour l'Eau, l'Envi­
ronnement et la Vie Rurale. 

Mme J. Mayence-Goossens, Ministre du Logement pour la Region 
Wallonne. 

Prof. A. Molitor, President de la Fondation Roi Baudouin et 
Chef de Cabinet Honoraire du Roi. 

M. I. Roggen, Gouverneur de la Province de Brabant. 
M. M. Tromont, Gouverneur de la Province du Hainaut. 

M. J. Hallet, President du Conseil d'Administration de l'Uni­
versite Catholique de Louvain. 

Prof. M. Woitrin, Administrateur General de l'Universite Catho-
lique de Louvain. • 

M. Y. du Monceau de Bergendael, Bourgmestre d' Ottignies-Lou-
vain-la-Neuve. 

M. G. Deprez, President du Parti Social Chretien. 
M. L. Michel, President du Parti du Renouveau et de la Liberte. 
M. J.C. Van Cauwenberg, Bourgmestre de Charleroi. 
M. A. Stenmans, Secretaire General du Conseil National de la 

Politique Scientifique. 



xii A. BERGER 

M. Max Wasterlain, Secretaire General du Ministere de la Commu­
naute Francaise. 

Cdt M. Renson, Chef de Cabinet Adjoint du Secretaire d'Etat A 
la Sante Publique et A l'Environnement. 

Prof. Ch. de Duve, Prix Nobel, Universite Catholique de Louvain 
Prof. I. Prigogine, Prix Nobel, Universite Libre de Bruxelles. 
Prof. H. Buyse, Conseiller Scientifique, Universite Catholique 

de Louvain. 
Prof. P. Macq, Doyen de la Faculte des Sciences, Universite 

Catholique de Louvain. 
Prof. G. de Ghellinck Vaernewijck, Doyen de la Faculte des 

Sciences Appliquees, Universite Catholique de Louvain. 
Prof. F. Brouillard, President du Departement de Physique, Uni­

versite Catholique de Louvain. 
Prof. M. Leroy, Secretaire Perpetuel de l'Academie Royale des 

Sciences, des Lettres et des Beaux-Arts de Belgique. 
Prof. G. Verbeke, Vast Secretaris van de Koninklijke Academie 

voor Wetenschappen, Letteren en Schone Kunsten van Belgie. 
Prof. A. Bruylants, Directeur de la Classe des Sciences, de 

l' Academie Royale des Sciences, des Lettres et des Beaux­
Arts de Belgique. 

Prof. C. Chagas, President de l'Academie Pontificale des 
Sciences. 

M. P. Levaux, Secretaire General du Fonds National de la 
Recherche Scientifique. 

Prof. P. Melchior, Directeur de l'Observatoire Royal de 
Belgique. 

Prof. P. PAquet, President de la Societe BeIge d'Astronomie, de 
Meteorologie et de Physique du Globe. 

Prof. A.J. De Ruytter, President de la Societe BeIge de Physi­
que. 

Prof. J'. De Cuyper, President de l' Association des Amis de 
l'Universite de Louvain. 

Prof. M. Clairbois, Secretaire National de l'Association des 
Amis de l'Universite de Louvain. 

M. R. Novis, President de l'Association des Ingenieurs Civils 
sortis de l'U.C.L. 

Mgr L. Gillon, President de la Societe Scientifique de 
Bruxelles. 

Prof. P. de Bethune, Secretaire General de la Societe Scient i­
fique de Bruxelles. 

Prof. C. Courtoy, Secretaire de la Societe Scientifique de 
Bruxelles. 

M. E.L. Boulpaep, President de la Belgian American Educational 
Foundation. 

Prof. F. Bingen, President du Cercle des Alumni de la Fondation 
Universitaire. 



INTRODUCTION xiii 

Prof. G. Muraille, President du Centre d'Histoire des Sciences 
et des Techniques, Universite Catholique de Louvain. 

Prof. A. D'Haenens, President du Centre de Documentation sur 
l'Histoire de l'Universite Catholique de Louvain. 

Scientific International Committee 

Prof. J. Audouze, CNRS, Institut d'Astrophysique, Paris, 
France. 

Prof. A. Deprit, Center for Applied Mathematics, National 
Bureau of Standards, Washington, USA. 

Prof. J. Kovalevsky, Directeur du CERGA, Grasse, France. 
Prof. P. Ledoux, Institut d'Astrophysique, Universite de Liege, 

Belgium. 
Prof. J. Lequeux, Observatoire de Paris, Section d'Astrophysi­

que, France. 
Prof. M.S. Longair, Royal Observatory, Edinburgh, Scotland. 
Prof. P. Melchior, Secretaire General de l'Union Geodesique et 

Geophysique Internationale, Directeur de l'Observatoire 
Royal de Belgique and Universite Catholique de Louvain-la­
Neuve. 

Prof. P.J.E. Peebles, Institute for Advanced Study, Princeton 
University, USA. 

Prof. D.W. Sciama, Dept. of Astrophysics, University of Oxford, 
U.K. 

Prof. J.A. Wheeler, Center for Theoretical Physics, The Univer­
sity of Texas at Austin, USA. 

Advisory Committee 

Prof. Emerite L. Bouckaert, Universite Catholique de Louvain­
la-Neuve and Katholieke Universiteit te Leuven. 

Prof. D. Callebaut, Dept. Natuurkunde, Universiteit Instelling 
Antwerpen. 

Prof. R. Debever, Dept. de Mathematiques, Universite Libre de 
Bruxelles. 

Prof. C. De Loor, Astrophysisch Instituut, Vrije Universiteit 
Brussel. 

Dr. J. Demaret, Institut d'Astrophysique, Universite de Liege. 
Prof. P. Dingens, Observatorium Meteorologie-Geofisica, Rijks­

universiteit te Gent. 
Prof. P. Smeyers, Astronomisch Instituut, Katholieke Universi­

teit te Leuven. 
Prof. D. Speiser, Institut de Physique Theorique, Universite 

Catholique de Louvain-la-Neuve. 



xiv A.BERGER 

Our colleagues from the Department of Physics have supported 
our effort and, more specifically, all the members of the Insti­
tute of Astronomy and Geophysics Georges Lemattre, whose devo­
tion was instrumental in assuring the success of this 
Symposium. We particularly wish to thank Professor Abbe M. 
Clairbois, Professor A. Deprit, Mrs A. Deprit-Bartholome, Dr J. 
Steyaert and Mrs L. Moens for their very effective help. 

We thank very much the Societe Scientifique de Bruxelles for 
having agreed to publish all the Addresses delivered during the 
Opening Ceremony on 10 October, 1983, in commemoration of 
Lemattre who published a great number of his papers in the 
"Annales" and "Revue des Questions Scientifiques". 

Many thanks also to Dr D. J. Larner, of the Reidel 
Publishing Company, who welcomed the idea of publishing these 
proceedings and helped us with his advice. 

These academic manifestation could not be held without the 
generous help of the Association des Ingenieurs Civils Sortis 
de l'UCL, Banque Nationale de Belgique, Bell Telephon, British 
Council, Caisse Generale d'Epargne et de Retraite, Commissariat 
General aux Relations Internationales de la Communaute 
Francaise, Commission des Communautes Europeennes, Conseil de 
I' Europe, Digital Equipment, Fabrique Nationale de Herstal, 
Faculte des Sciences de l'UCL, Fonds National de la Recherche 
Scientifique, Kredietbank, Lion's Club d' Ottignies - Louvain­
la-Neuve, Ministere de l'Education Nationale et de la Culture 
Francaise, Troisieme Cycle en Physique de l'Universite Catholi­
que de Louvain, the members of the Support Committee and Les 
Amis de l'UCL to whom the Organizing Committee is particularly 
grateful for their unceasing help. 



Some participants to the International Symposium Georges Lemaitre, 
Universite Catholique de Louvain-la-Neuve, October 1983. 

Former students and/or collaborators of Lemaitre, Institut 
d'Astronomie et de Geophysique Georges Lemaitre, Louvain-la-Neuve, 
October 1983. 
From left to right: First row: P. Paquet, L. Bossy, O. Godart, 
A. Berger. Second row: J. Steyaert, R. Van der Borght, J. Henrard, 
R. De Vogelaere, A. Deprit, J. Roels, R. Broucke, So Szucs. 

(Photo G. Schayes) 



LIST OF PARTICIPANTS 

AUDOUZE J. 
Institut d'Astrophysique 
C.N.R.S. CP 165 
Bd Arago 98 bis 
F - 75014 Paris 
France 

BARBERIS B. 
Istituto di Fisica Matematica 
"J.L. Lagrande" 
Via Carlo Alberto 10 
I - 10123 Torino 
Italy 

BERGER A. 
Univ. Catholique de Louvain 
Institut d'Astronomie et de 
Geophysique G. Lemattre 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

BERNARD E. 
LR.M. 
Av. Circulaire 3 
B - 1180 Bruxe1les 
Belgium 

BOSSY L. 
Univ. Catholique de Louvain 
Institut d'Astronomie et de 
Geophysique G. Lemattre 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

BRICMONT J. 
Univ. Catholique de Louvain 
Unite de Physique Theorique et 
de Physique Mathematique 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

xvi 

BROUCKE R. 
University of Texas 
WRW - 414 
78712 Austin (Texas) 
U. S .A. 

BRYANT J.G. 
Universite de Paris VI 
Av. Felix Favre 47 
F - 75015 Paris 
France 

CALLEBAUT D.K. 
U. LA. 
univesiteitsp1ein 1 
B - 2610 Wi1rijk (Antwerpen) 
Belgium 

CERULUS F. 
K.U.L. 
Departement Natuurkunde 
Celestijnenlaan 200D 
B - 3030 Heverlee 
Belgium 

CHALANTON A. 

COLOMBO S. 
Rue G. Roannet 6 
F - 75018 Paris 
France 

COOPER A. 
The Open University 
Physics Discipline 
Walton Hall 
Milton Keynes MK7 6AA 
England 



LIST OF PARTICIPANTS 

CRILLY A. 
The Open University 
Physics Discipline 
Walton Hall 
Milton Keynes MK7 6AA 
England 

DE BECKER M. 
Observatoire Royal de Belgique 
Av. Circulaire 3 
B - 1180 Bruxelles 
Belgium 

DEHANT V. 
Univ. Catholique de Louvain 
Institut d'Astronomie et de 
Geophysique G. Lemattre 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

DELVA M.A. I. 
Institut fur Astronomie 
Universitatsplatz 5 
A - 8010 Graz 
Austria 

DEMARET J. 
Univ. de Li~ge 
Institut d'Astrophysique 
Parc de Cointe 
Av. de Cointe 5 
B - 4200 Cointe-Ougree 
Belgium 

DEPRIT A. 
u.s. Dept of Commerce 
National Bureau of Standards 
Washington D.C. 20234 
U. S .A. 

DEPRIT-BARTHOLOME A. 
19119 Roman Way 
Gaithersburg, MD 20879 
U. S.A. 

DEVIRON Fr. 
Univ. Catholique de Louvain 
Unite de Physique Theorique et 
de Physique Mathematique 
Chemin du Cyclotron 2 

B - 1348 Louvain-la-Neuve 
Belgium 

DE VOGELAERE R. 
Dept of Mathematics 
University of California 
Evans Hall 970 
Berkely, Ca. 94708 
U.S.A. 

DUCARME B. 

xvii 

Observatoire Royal de Belgique 
Av. Circulaire 3 
B - 1180 Bruxelles 
Belgium 

GALLEE H. 
Institut d'Astronomie et de 
Geophysique G. Lemattre 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

GALLETTO D. 
Istituto di Fisica Matematica 
"J.L. Lagrange" 
Via Carlo Alberto 10 
I - 10123 Torino 
Italy 

GASPAR PH. 
Institut d'Astronomie et de 
Geophysique G. Lemattre 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

GILSON H. 
Univ. Catholique de Louvain 
Unite de Physique Theorique et 
de Physique Mathematique 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

GODART O. 
Institut d'Astronomie et de 
Geophysique G. Lemattre 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 



xviii 

GOOSSENS CHR. 
Institut d'Astronomie et de 
Geophysique G. Lemaitre 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

GREVESSE N. 
Univ. de Liege 
Institut d'Astrophysique 
Parc de Cointe 
Av. de Cointe 5 
B - 4200 Cointe-Ougree 
Belgium 

GUSBIN D. 
Univ. Catholique de Louvain 
Unite de Physique Theorique et 
de Physique Mathematique 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

LAMBERT G. 
Univ. Catholique de Louvain 
Unite de Physique Theorique et 
de Physique Mathematique 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

HANQUIN J .L. 
Univ. de Liege 
Institut d'Astrophysique 
Parc de Cointe 
Av. de Cointe 5 
B - 4200 Cointe-Ougree 
Belgium 

HENRARD J. 
Faculte N.D. de la Paix 
Dept. de Mathematiques 
Rempart de la Vierge 8 
B - 5000 Namur 
Belgium 

HOUZIAUX L. 
Uni v. de Liege 
Av. des Tilleuls 15 
B - 4000 Liege 
Belgium 

LIST OF PARTICIPANTS 

HUT P. 
Institute for Advanced Study 
Building E 
Olden Lane 
Princeton, New Jersey 08540 
U.S.A. 

IMBRIE J. 
Brown University 
Dept of Geological Sciences 
Providence 
Rhode Islaand 02912 
U.S.A. 

IONNI G. 
Univ. Catholique de Louvain 
Unite de Physique Theorique et 
de Physique Mathematique 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

KOCH-MIRAMOND L. 
CEN Sac1ay 
Bat. 28 
F - 91191 Gif-sur-Yvette 
France 

KOVALEVSKY J. 
CERGA 
Avenue Copernic 
F - 06130 Grasse 
France 

KOZAI Y. 
Tokyo Astronomical Observatory 
Osawa Mitaka 
J - 181 Tokyo 
Japan 

KRASINSKI A.P. 
Fak. fur Physik 
Universitat Konstanz 
Postfach 5560 
D - 7750 Konstanz 1 
R.F.A. 



LIST OF PARTICIPANTS 

LAUSBERG A. 
Univ. de Liege 
lnstitut d'Astrophysique 
Parc de Cointe 
Av. de Cointe 5 
B - 4200 Cointe-Ougree 
Belgium 

LEDOUX P. 
Uni v. de Liege 
lnstitut d'Astrophysique 
Parc de Cointe 5 
B - 4200 Cointe-Ougree 
Belgium 

LEMAITRE A. 
Fac. Univ. N.D. de la Paix 
Rempart de la Vierge 8 
B - 5000 Namur 
Belgium 

LEMAITRE J. 
Rue R. Christiaens 20 
B - 1160 Bruxelles 
Belgium 

MARTINEZ-BENJAMIN J.S. 

Espagna 

MASHHOON B. 
lnst. fur Theoretische Physik 
Universitat zu Koln 
Zulpicher Strasse 7 
D - 5000 Koln 
R.F.A. 

McCREA W.H. 
Astronomy Centre 
University of Sussex 
Sussex BNI 9QH Brighton 
England 

MELCHIOR P. 
Observatoire Royal de Belgique 
Av.Circulaire 3 
B - 1180 Bruxelles 
Belgium 

xix 

MEURlCE Y. 
Univ. Catholique de Louvain 
Unite de Physique Theorique et 
de Physique Mathematique 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

MOONS M. 
Fac. Univ. N.D. de la Paix 
Dept. de Mathematique 
Rempart de la Vierge 8 
B - 5000 Namur 
Belgium 

MURIGANDE Chr. 
Fac. Univ. N.D. de la Paix 
Dept. de Mathematique 
Rempart de la Vierge 8 
B - 5000 Namur 
Belgium 

NGOlE R. 
Univ. Catholique de Louvain 
Unite de Physique Theorique et 
de Physique Mathematique 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

NOBILl A.M. 
Department of Astronomy 
The University of Glasgow 
Glasgow Gl2 8QQ 
U.K. 

OORT J.H. 
Sterrewacht 
P.O. Box 9513 
NL - 2300 RA Leiden 
The Netherlands 

PAQUET P. 
Observatoire Royal de Belgique 
Av. Circulaire 3 
B - 1180 Bruxelles 
Belgium 



xx 

PAUWELS TH. 
Sterrenkundig Observatorium 
Rijksuniversiteit te Gent 
Krijgslaan 281 
B - 9000 Gent 
Belgium 

PEEBLES P.J.E. 
Joseph Henry Labs. 
Princeton University 
Princeton N.J.08544 
U. S. A. 

PESTIAUX P 
Institut d'Astronomie et de 
Geophysique G. Lemattre 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

PLETZER 
C/O Dent 
Rue Basse 84 
B - 1180 Bruxelles 
Belgium 

RADELET P. 
Univ. Catholique de Louvain 
Unite de Physique Theorique et 
de Physique Mathematique 
Chemin du Cyclotron 2 
B - 1348 Louvain-1a-Neuve 
Belgium 

RONVEAUX A. 
Fac. Univ. N.D. de 1a Paix 
Rue de Bruxel1es 61 
B - 5000 Namur 
Belgium 

SALVADOR-DELBOURGO P. 
Institut d'Astrophysique 
C.N.R.S. 
Bd Arago 98 bis 
F - 75014 Paris 
France 

SATO K. 
Dept. od Physics 
Fac. Sc. Univ. of Tokyo 
Hongo 7-3-1 

J - 113 Tokyo 
Japan 

SAUVAL A.J. 

LIST OF PARTICIPANTS 

Observatoire Royal de Belgique 
Av. Circulaire 3 
B - 1180 Bruxelles 
Belgium 

SCHAYES G. 
Univ. Catho1ique de Louvain 
Institut d'Astronomie et de 
Geophysique G. Lemattre 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

SCHMIDT M. 
Dept. of Astronomy 105-24 
California Institute of Technology 
Pasadena, California 91125 
U. S. A. 

SCIAMA D.W. 
Dept. of Astrophysics 
University of Oxford 
South Parks Road 
Oxford OX1 3RQ 
U.K. 

SERGIJSELS R. 
Univ. Libre de Bruxe1les 
Institut d'Astrophysique 
Av. F.D. Roosevelt 50 
B - 1050 Bruxe11es 
Belgium 

SILK J.1. 
Astronomy Dept. 
University of California 
Berkeley, Ca. 94720 
U.S.A. 

SIMPSON J.A. 
The Enrico Fermi Institute 
The University of Chicago 
933 East 56th street 
Chicago, Illinois 60637 
U. S .A. 



LIST OF PARTICIPANTS 

SMETS E. 
Lange Lozanastraat 134 
B - 2018 Antwerpen 
Belgium 

SMEYERS P. 
Astronomisch Instituut 
K.U.L. 
Naamsestraat 61 
B - 3000 Leuven 
Belgium 

SPEISER D. 
Univ. Catholique de Louvain 
Unite de Physique Theorique et 
de Physique Mathematique 
Chemin du Cyclotron 2 
B - 1348 Louvain-1a-Neuve 
Belgium 

STASSART M. 
Univ. Catho1ique de Louvain 
Unite de Physique Theorique et 
de Physique Mathematique 
Chemin du Cyclotron 2 
B - 1348 Louvain-1a-Neuve 
Belgium 

STEYAERT J. 
Institut de Physique Nuc1eaire 
Chemin du Cyclotron 2 
B-1348 Louvain-1a-Neuve 
Belgium 

SWINGS P. 
Univ. de Liege 
Parc de Cointe 
Av. de Cointe 5 
B - 4200 Cointe-Ougree 
Belgium 

SZEBEHELY V. 
Dept. of Aerospace Engineer. 
The University of Texas at Austin 
Area code 512, 471-7593 
Austin, Texas 78712-1085 
U. S.A. 

TASIAUX B. 
Univ. Ca~ho1ique de Louvain 
Unite de Physique Nuc1eaire 

Sc. 1 
Chemin du Cyclotron 2 
B - 1348 Louvain-1a-Neuve 
Belgium 

THIRION D. 
Univ. Catho1ique de Louvain 
Institut d'Astronomie et de 
Geophysique G. Lemattre 
Chemin du Cyclotron 2 
B - 1348 Louvain-1a-Neuve 
Belgium 

TRICOT CHR. 
Univ. Catho1ique de Louvain 
Institut d' Astronomie et- ,1,~ 
Geophysique G. Lemattre 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

VAN DEN BERGH N. 
Physics Dept. 
U.I.A. 
Universiteitsp1ein 1 
B - 2610 Antwerpen 
Belgium 

VAN DEN BORGHT R. 
Dept. of Mathematics 
Monash University 
Wellington Road 
Clayton (Vic.) 3168 
Australia 

VERSTEGEN D. 

xxi 

Univ. Catho1ique de Louvain 
Unite de Physique Theorique et 
de Physique Mathematique 
Chemin du Cyclotron 2 
B - 1348 Louvain-la-Neuve 
Belgium 

VERVIER J. 
Univ. Catho1ique de Louvain 
Unite de Physique Nucleaire 
Sc. 1 
Chemin du Cyclotron 2 
B - 1348 Louvain-1a-Neuve 
Belgium 



xxii 

VlGNERON G. 
Konink1ijke Baan 252 
B - 8460 Kosijde 
Belgium 

WELSCH J.P. 
Univ. Catho1ique de Louvain 
Fac. de Theo1ogie et de Droit canonique 
College A. Descamps 
Grand'P1ace 45 
B - 1348 Louvain-1a-Neuve 
Belgium 

WEYVERBERGH R. 
Rue de Gaesbecq 4 
B - 1460 lttre 
Belgium 

LIST OF PARTICIPANTS 



Part I 
Cosmology 



PHYSICS AND COSMOLOGY: SOME INTERACTIONS 

W.H. McCrea 
Astronomy Centre, University of Sussex, U.K. 

Introduction 

Georges Lemaitre (1894-1966) was one of the founders of 
modern cosmology - expanding universe cosmology, as it may be 
called. He was the founder of modern physical cosmology - big 
bang cosmology, as it has come to be called. His ideas in this 
field seem to have become well-defined by 1933, although any 
date for their inception is harder to identify, and now, 50 years 
later, we are invited to commemorate this historic scientific 
adventure. Particularly for those of us who knew Lemaitre, it 
is a high privilege to participate and to do so in Lemaitre's 
own University in the Institute that bears his name. 

After half-a-century of enormous developments in physics 
and astronomy, most of the particulars of Lemaitre's model have 
been superceded. Probably he expected this to happen, and he 
did not in fact pursue them in much detail. Nevertheless the 
clarity and sureness with which he recognized the basic 
problems and the general lines along which they should be 
approached remain astonishing. The purpose of this paper is to 
sketch in some of the background to Lemaitre's cosmology, to 
recall its main features, briefly to review the development of 
observational cosmology since the time when Lemaitre proposed 
his model, and then to note some sequels to his ideas in some of 
the most recent models. Finally, since Lemaitre sought to relate 
the physics and the cosmology of his day, it seems appropriate to 
end with some attempt to assess the present-day state of the 
relationship. 

3 

A. Berger (ed.), The Big Bang and Georges Lemaitre, 3-22. 
© 1984 by D. Reidel Publishing Company. 
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Lemaitre's lifetime 

Lemaitre published his now famous first paper on the 
expanding universe in 1927 in Belgium. At the time he did 
not know that the Russian mathematician and meteorologist 
Alexander A. Friedman (1888-1925) had published similar work in 
1922 in Germany. The names of these two men will evermore be 
together linked with one of the most audacious developments in 
physical thought. They were near contemporaries, but each lived 
as though the other had never been. 

To notice when that was, it may help if we remember that 
one of the great founders of astrophysics - who must seem to most 
people a figure in the distant past - E. Arthur Milne (1896-1950) 
was actually about two years younger than Lemaitre. By contrast, 
one of the great founders of geophysics, Harold Jeffreys (b.1891), 
was three years older than Lemaitre, and he is still an active 
scientist! 

Natural philosophy 

The general procedure of natural philosophy seems 
inevitable. Observations of something recognized as being 
observable suggest a mathematical model of that something; the 
model serves to predict the outcome of further observations; 
the actual outcome suggests an improved model, and so forth. 

In the Newtonian approach, a model consistsof the (model) 
system being studied + a reference frame (which models the rest 
of the Universe) + universal time + laws (of motion, of electro­
magnetism, ...•• ) obeyed by the (model) system and regarded as 
unchanging with time. 

Cosmology is the study of the Universe as a whole. It 
is therefore not amenable to the Newtonian approach. The aim of 
cosmology must be to construct cosmological models, not to 
'discover' laws. This is the Einsteinian approach, as realized 
in general relativity (GR). Every GR model is a universe of its 
own; there is no 'rest of the universe'. 

In GR any completely defined Riemann 4-space (of 
suitable signature) is a universe. It can be interpreted as a 
conceivable system of mass and stress under self-gravitation, 
again with no 'rest of the Universe'. This is what Einstein 
himself appears first to have appreciated when he wrote his 
paper 'Cosmological considerations on the general theory of 
relativity' (Einstein 1917). Of course, in general the mass and 
stress in such a model could not be reproduced by any real matter. 
There is no way of ensuring a priori that the contents are real 
in this sense. 
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status of GR in cosmology 

The comparison between the Newtonian and Einsteinian 
approaches in the preceding section shows that the latter must be 
preferred for use in cosmology. But GR presents problems and 
limitations that have to be recognized. To start with, a GR model 
is the whole history of the 'universe' concerned all laid out before 
us. It is a frozen picture; nothing happens in four dimensions; 
an observer in the model gets the illusion of things happening 
because he is supposed to experience a succession of spatial 
sections in a certain sequence. Such a model cannot, in particular, 
depict itself coming into existence; that would require another 
time-dimension, and soon. 

If a model has simple topology, it is possible self­
consistently to admit an arrow of time and an associated 
causaZity concept. But it is difficult to see how it can admit 
thermodynamic irreversibiZity or quantum theory uncertainty. 

It appears to be a recommendation for GR that according 
to the well-known work of Hawking and Penrose (1970) (See also 
Hawking and Ellis 1973), every GR spacetime of physical interest 
has at least one singularity. The case of one singularity is 
that of a big-bang cosmological model. Penrose (1982) quotes an 
example for which the big-bang singularity has 'degree of 

• , • 10 123 • speclalness of general order one part ln 10 , suggestlng, as 
he says, "very precise physical laws in operation at the big-bang 
itself. The new physics involved is necessarily time-asymmetric." 
This is a difficult concept since any such laws could themselves 
have originated only from the big-bang along with whatever is 
assumed to obey them. 

We must in fact think of there coming into existence 
from the big-bang 

the content of the Universe 
physics 
mathematics and logic 
existence itself 

but ,if we do entertain the notion of existence coming into 
existence, we seem to be embarking upon an infinite regress. 

It is at any rate the plain fact that current 
cosmological models are in general based upon GR. 

GR and cosmology 

It is interesting to examine the extent to which cosmology 
has tested specifically Einstein's theory of gravitation. Some 
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predictions of relativistic cosmology depend only upon the 
postulation of a Robertson-Walker metric without saying anything 
about gravitation. This is involved only if the predictions 
concern energy and stress in the cosmological model. In that 
case relations of these to the expansion factor R(t) of the 
metric are needed. If the relations are those given by 
Einstein's theory, the Friedman-Lemaitre cosmological models 
result. The simplest of these is the well-known Einstein-de 
Sitter (ES) model. This is commonly employed as a standard of 
comparison. In particular, for any other model the density 
parameter n(t) is defined as the ratio of the density of that 
model at cosmic epoch t to the density at the same epoch in an ES' 
universe having the same Hubble constant at that epoch. 

Barrow & Ottewill (1983) have shown that Friedman­
Lemaitre type universes exist for gravitation theories derived 
from a Lagrangian of a form more general than Einstein's. This 
may be significant because, if we do not regard Einstein's 
form of general relativity as the only one to be considered, 
then we need not assign special status to the ES model, i.e. 
that having n = 1 for all t. 

It is known that, on Einstein's theory, unless in the 
very early big-bang universe the value of n is unity to fantastic 
accuracy, the model would explode or collapse within the 'very 
early' time and never reach the state that we observe. This is 
the same as saying that the spatial section of the very early 
Universe must be fZat to fantastic accuracy. The problem of how 
this comes about is the well-known 'flatness' problem. The 
solution is generally sought in a combination of particle physics 
and Einsteinian gravitation. But maybe it is the use of 
Einsteinian gravitation that creates the problem. 

One recent suggestion is Adler's (1983) that 
Einstein's theory should be regarded as a 'long-wavelength 
effective field theory' arising from a 'fundamental theory' more 
like other quantum field theories. The difference from Einstein 
would be significant only in the very early universe. It is not 
yet known, so far as I am aware, whether this would have any 
immediate bearing upon the flatness problem. But it certainly has 
bearing upon the fundamental problem of gravity in the very early 
Universe - that of quantization. Physicists conclude that 
quantization must occur then, even if it is significant only 
before cosmic time of the order.o'£'the Planck time, that is t 
~ lO-~3s. There is no accepted scheme for this. At any rate in 
part this must be owing to the basic feature of relativistic 
treatments of gravitation that it and space-time itself are 
inextricably interrelated. So quantization of gravitation 
presumably requires quantization of space-time. This has often 
been mentioned, but never achieved. 
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To return to the question at the beginning of this 
section: Going back to the work of Friedman and of Lemaitre, it 
was a tremendous triumph for GR to predict the expansion of the 
Universe. But the success was and remains essentially qualitative. 
No relativistic cosmological model has ever been tested in a way 
that a physicst could regard as quantitatively crucial. Also for 
the reasons mentioned we expect GR to demand modification 
sufficiently near to the big-bang singularity. There are, too, 
the conceptual difficulties to which allusion has been made. 
Most of these perplexities should be resolved before long; none 
of them calls in question any of the 'confirmation' of quantitative 
predictions of GR on the scale of, say, the Solar System or a 
binary pulsar. 

Cosmology of G. Lemaitre 

In the paper already quoted Einstein (1917) introduced 
his cosmical constant A that enabled him to formulate his static 
model universe (assuming A > 0). In the same year de Sitter 
(1917) produced his model, which is properly regarded as the 
first non-static model. Then Friedman (1922) and Lemaitre (1927) 
produced their more general non-static models. Friedman pointed 
out that if a non-static model be regarded as acceptable, the 
need for a non-zero A has disappeared; in due course Einstein 
agreed, .and thenceforth dropped A from his theory. Using 
Lemaitre'~ treatment, Eddington showed that the original 
Einstein model is unstable; if disturbed so that expansion 
commences, it goes on expanding forever, and this was the model 
adopted by Eddington. Lemaitre took the commonsense attitude for 
a mathematical physicist; in effect, he said, keep A in the 
equations until we find observations that contradict some two of 
the hypotheses A < 0, A = 0, A > 0. 

Lemaltre identified three basic problems for the 
expanding universe which he discussed for homogeneous, isotropic 
relativistic models: 

A. Age of the Universe 

Let t be cosmic time at the observer, i.e. the age of 
the universe a~ the observer; let T be the Hubble time as 

o measured by the observer at t. If A = 0 then for the model 
t < T. The value of T inf~rred by Hubble was smaller than 

o cur~ent values of geo~ogical ages. So the model would imply 
that the age of the universe is less than the age of the Earth. 
Therefore Lemaitre rejected A = o. Other arguments led him to 
reject also 0 < A ~ AE where AE corresponds to an Einstein static 
universe of 'radius' RE. If R(t) is the Robertson-Walker 
expansion factor normalized to R = RE for the Einstein model, 
then R(t) for a Lemaitre model having A > AE has a graph as shown 
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RO~------------------~ 
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Figure 1 Lemaitre cosmological model [schematic diagram). 

qualitatively in Figure 1. It is drawn for A relatively little 
more than AE. It is seen that R(t) + 0, dR/dt + 00, as t + ° so 
that t = 0 is a singularity in the density and in dR/dt. Three 
phases of the expansion may be recognized the 'first expansion' 
from R = 0 to R only a little less than RE, an interval of near­
'stagnation' in which R increases to only a little more than RE, 
the 'second expansion' in which R moves increasingly rapidly 
away from RE. Lemaitre showed that he could find a case for which 
t ~ lOT and R(T ) ~ lORE' and these appeared plausible values, 

o i.e. 0 giving 0 a plausible age and a plausible mean density 
of the Universe. 

In this way Lemaitre was the first to propose a 
resolution of the age problem in cosmology. 

B. Galaxy-formation 

Lemaitre was also the first explicitly to recognize 
that the cUlminating problem of cosmology is the origin of the 
structure of the Universe,as composed of galaxies and clusters of 
galaxies,within the time available. In Lemaitre's model this 
last meant the time allowed under A. 

He presented a rather qualitative scheme starting 
apparently early in the 'stagnation' phase with 'small accidental 
fluctuations in the original distribution' of matter. These he 
saw as producing clouds which by processes of agglomeration, 
collision and merging would lead to concentrations of material 
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sufficient to produce galaxies or clusters of galaxies. Stars 
would result by gravitational contraction of portions of the 
material of a proto-galaxy. He estimated that all this could 
take place within 'a few' Hubble times. Such an inadequate 
summary makes it appear even more speculative than in Lemaitre's 
own presentation. Even so it does read much like a summary of 
the modern theory of 'isothermal fluctuations' (see below). 
Speculati ve it undoubtedly was. but it had all the right 
ingredients. and not all modern attempts take account of the time 
available. as it did seek to do. 

C. Interpretation of the big-bang; origin of the raw 
material for galaxy-formation 

Lemaitre was the first to appreciate the possibility of 
a singularity as t ~ 0 and to attempt to assign physical 
significance to this. He postulated that the Universe began as 
a single 'primeval atom' - which he supposed to undergo 
disintegration by cosmic radioactivity. In fact Lema1tre (1946) 
entitled his small volume of essays on the subject L'Hypoth~se de 
l'atome primitif and the English translation (195Q) was called 
~e primeval atom. It should be scarcely necessary to remark 
that the picture is of the entire Universe being initially 
(whatever that may mean) this one 'atom'. not of an atom 
existing somewhere in space; so the disintegration is to be 
pictured as a fragmentation accompanying the initial expansion. 
Lemaitre wrote. "if matter existed as a single atomic nucleus. it 
makes no sense to speak of space and time in connexion with this 
atom. Space and time are statistical notions which apply to an 
assembly of a great number of individual elements; they were 
meaningless notions. therefore. at the instant of first 
disintegration of the primeval atom". 

As must be remarked. there may be some inconsistency in 
speaking of "the instant. of the first disintegration" after 
asserting that "it makes no sense to speak of space and time ... " 
That apart. Lemaitre must be credited with the first attempt to 
contend with the notion of a singUlarity in space-time. Our 
reference to the consequences of any quantization of gravity for 
the meaning of space-time in the very early Universe shows that 
this was another instance of Lemaitre recognizing a basic problem 
that is still with us. 

The picture that he proceeded to develop was the 
disintegration of his primeval atom - which he described as an 
'isotope of the neutron' - first into supermassive nuclei. the 
further disintegration of which resulted in both the cosmic-ray 
background~ that in his picture is still with us. and the normal 
atoms that then constituted the gas which provided the raw 
material for the processes in B. 
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All this was Lemaitre's invention of the big-bang, 
which we are now celebrating. The details are greatly different 
from those that are now generally accepted. Nevertheless, yet 
again he produced features of broadly the right character - a 
present background surviving from the early Universe and a 
process in the early Universe that yielded the raw material 
for the present galaxies. As we shall see the most essential 
change since Lemaitre's work is that cosmologists now 
contemplate a hot big-bang; his picture assigned no particular 
significance to any cosmic temperature. 

The observed cosmos 

At this point it is necessary briefly to review the 
changes in empirical knowledge of the cosmos between the time 
when Lemaitre developed his cosmology and the time of this 
commemoration. 

About 1933 such knowledge was much what Hubble (1936) 
described in his book The realm of the nebulae. This gave for 
the Hubble time To ~ 2 X 109 years, whereas it is now almost 
certain that 10 10 $ T ~ 2 X 10 10 years. The then current 
estimate of the mean densityOof galactic matter was quite 
reasonable. The age of the Earth was inferred to be more than 
2 x 10 9 years, but by how much was not known. Compared with 
more recent times, knowledge about cosmic rays was rudimentary. 
As regards the structure of the Universe, the hypotheses of large­
scale homogeneity and isotropy were not contradicted by 
observation, while on a smaller scale the clustering of 
galaxies was well recognized although there was not much 
systematic information. 

It has to be appreciated that Hubble had started 
publishing his observations of the 'expanding Universe' only 1n 
1929 and that hitherto there had been little systematic work 
in extragalactic astronomy. So we are in fact looking back to 
the very early days of such astronomy. Two things now may strike 
us as surpr1s1ng: (a) that nobody raised an insistent call 
for 'more observations', (b) that everybody in the business 
seemed to accept Hubble's measurements quite uncritically. The 
reason for both of these was that Hubble had the use of the 
Mt. Wilson 100-inch telescope, and no other existing telescope 
could compete. 

Moving on to the time of this celebration in 1983, 
there is vastly more information than there was 50 years 
earlier1 and most of it - like results from radioastronomy - is 
of sorts that were unknown around 1933. From the standpoint of 
cosmology it is in the following categories, as compared with 
information accessible to Lemaitre: 
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1. Improvements upon old results 
2. New results having cosmological applicability 
3. New results without present cosmological 

applicability 
4. Results awaited 

To take these briefly in turn: 

1. As we mentioned above, Hubble's value for T was too 
small by a factor of order 10, but the actual va2ue is still 
uncertain to within a factor about 2. 

Various estimates of mean densities in the Universe at 
the present cosmic epoch are now available; they include that 
for the galactic matter, baryonic matter, total energy 
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(including rest mass). Some of the values are independent of the 
Hubble time T and some are proportional to T -2. Comparisons 
may thereforeOset bounds upon the value of T? For some purposes 
it is more convenient to express results in ~erms of the density­
parameter ~ rather than in mass per unit volume. 

o 

Particularly in the last few years there have been 
extensive studies of the large-scale structure of the Universe. 
Statistical studies employing 2-point or higher order correlation 
functions, particularly those~of Peebles (1980) and his school have 
yielded much more systematic quantitative knowledge of the 
clustering of galaxies. The work of Abell (1958) had earlier 
provided far more descriptive knowledge than had been available 
in Lemaitre's day. All such work supports the early 
hypothesis of the large-scale homogeneity and isotropy of the 
Universe. 

Special studies strongly indicate, however, that there 
exists a detailed structure more complex than had ever before 
been envisaged. If they are broadly correct galaxies and 
clusters of galaxies are arranged in the form of a rough network 
that outlines great voids each of the order of a million cubic 
megaparsecs in which there are effectively no bright galaxies. 
Some workers are still inclined to doubt whether the 'strings' 
of galaxies and clusters are significantly different from 
features that occur fortuitously in any random distribution. 
Others seem to be so convinced of the non-random character of 
the structure that they wish to regard it as the 'fossil' of some 
structure in the early Universe. 

2. All observations using electromagnetic radiation 
outside the optical and near infrared wavelength-range have come 
since Lemaitre's time, as well as the bulk of cosmic-ray 
observations. Some of these observations have assisted in 
improving results in category 1. But others apply to new 
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discoveries. Of these probably the most important is the miopo­
wave baokgpound padiation. It provides the only known means of 
observing the Universe before any galaxies had been formed - if 
the standard interpretation is correct. In that case it shows 
that the Universe at that epoch was isotropic to an exceedingly 
high degree. As we have seen, in a general sense it plays the 
role envisaged by Lemaitre for a cosmic-ray background. 

Another empirical parameter of cosmological signifi­
cance is the baryon: photon ratio n, estimated to be about 
10-9 and believed to have remained effectively constant Slnce 
the beginning of the 'radiation era' of the Universe. 

Quantities also of cosmological importance are the 
relative abundances of the atomic nuclei IH, 2 D, 3He , 4He that are 
inferred to have been'frozen in' to the cosmos from the end of 
about the first 3 minutes until the first stars were formed. 
Significant empirical values of these primordial abundances are 
now claimed. They form the best basis we have for estimating 
the present mean density of baryonic matter. 

3. Radio-galaxy and quasar number-counts have been expected to 
yield important cosmological information particularly with the 
object of selecting a cosmological model. It seems now that 
their usefulness from that aspect is obscured by what are 
classed as 'evolutionary effects'. Sooner or later the inform­
ation will have to be adequately analysed. 

In the same general category, but far more pressing and 
important, is the evidence that has been discussed now over many 
years regarding the existence and quantity of 'dark matter' in 
the Universe. If the amount is near the upper bound that has 
been considered, then the Universe is an almost totally different 
place from what astronomers had hitherto thought. All their past 
endeavours would have been concentrated upon less than 1 per cent 
of its content. The other 99 per cent of the mass could almost 
certainly not mainly be ordinary (baryonic) matter; it might 
be 'massive , neutrinos or more exotic particles. On the other 
hand, if the amount of dark matter is near the lower bound 
considered, then it need imply nothing more alarming than that 
some galaxies may be surrounded by rather many faint stars or 
'jupiters', and some clusters may contain rather more inter­
galactic matter than had been thought. The resolution of this 
uncertainty has become surely the central problem for present­
day astronomy. 

To quote an example of a discovery which, when correctly 
interpreted, must be a clue to the evolution of the Universe, we 
cite that of the so-called "Lyman-alpha clouds". These were 
evidently scattered through intergalactic space beTore a few 109 
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years ago and they produced most of the absorption lines in the 
spectra of quasars. They seem not to contain an important mass 
of the matter in the cosmos, but since their material was 
apparently left over after the formation of galaxies they should 
help to reveal the nature of the formation process. 

4. It is well known that a very small positive rest mass of the 
neutrino, no more than the energy of a few electron volts, would 
suffice to ensure that at the present cosmic epoch the neutrinos 
in the Universe should furnish most of its mass. [Different 
neutrino species might have different positive rest masses, 
unless all have zero mass]. It is therefore of the utmost 
importance to know if the rest mass of any neutrino is non-zero. 
The experimental evidence seems still to be inconclusive. 

Cosmology since Lemaitre 

Lemaitre himself after about 1933 worked mainly in 
fields other than cosmology. Although he was always generous 
about responding to invitations to expound in lectures and 
essays his views on the subject, he did not develop them much 
further during the rest of his life. 

In the 1930s Eddington was developing his ideas regarding 
the constants of physics; his scheme demanded a positive A • 
Lemaitre was practically the only other worker to retain A . 
Almost everyone else at the time regarded an isolated constant of 
this sort as being out of keeping with the spirit of GR. It has 
then to be asked why they were not concerned as much as Lemaftre 
was about the age paradox. Strangely enough for most astrono­
mers at the time the paradox worked the other way. I think that 
because the Hubble time was so short they took the view that not 
much more could be inferred from Hubble's result than that the 
Uni verse had been in a rather highly congested state at a time 
about T before the present. T being so much less than the 
ages as~igned to the stars and ~alaxies, they had to suppose 
that these would have retained their identities while experiencing 
that state. A Friedman-Lemaitre model as they saw it, was a 
grossly simplified representation of the actual Universe, in 
which all the elaborate system of stars, galaxies and clusters 
was replaced by a uniform stress-free dust. So the model need 
not be taken seriously anywhere near its singularity. 

Other. aspects of relativistic cosmology and alternatives 
to it continued to be studied until after World War II. Them in 
1948 Bondi and Gold, and to some extent independently, Hoyle 
propounded steady-state cosmology, necessarily implying continual 
creation. While it would be incorrect to say that this was ever 
widely accepted, it was certainly the case that its concepts 
continued to have a dominating influence upon cosmological 
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thinking until about 1965. This is not an occasion to attempt 
to recount the history of those years. For one thing, steady­
state concepts seem never to have had much impact upon Lemaitre. 
Historically what for most astronomers was the strongest reason 
for rejecting steady-state cosmology in the form in which it had 
been presented was the discovery in 1965 of the microwave back­
ground radiation. This was taken as evidence of an explosive 
start for the Universe. It is recorded that Lemaitre expressed 
satisfaction about this feature a short while before he died in 
1966. It is an irony of history that the general acceptance of 
big-bang cosmology is to be dated from the year of the death of 
its inventor. However, two comments must be made: When big­
bang cosmology regained favour, for most cosmologists this meant 
a not big-bang. The current version cannot be final, and it is 
conceivable that whatever succeeds it will contrive to combine 
some of its concepts with some of the more attractive concepts 
of steady-state theory. 

Meanwhile hot big-bang cosmology has furnished a history 
of the cosmos that in general terms seem to be acceptable on all 
the available evidence. Briefly it is: 

Early Universe -from say 10-',3 s to 10-3s , forming the 'particle 
era', be'ginning with a quark-gas. followed by hadr6ns. 

Radiation era - about 10-2 s to 1013 S (about 4 X 105 years), up 
to about 3 minutes in regard to nuclear reactlons there is 
effective thermodynamic equilibrium at each instant, but 
approaching about 3 minutes nuclear abundances are determined 
by reaction rates after which they become "frozen in"· 
effectively only IH, 2D, 3He , 4He remain. At about 4'x 105 
years matter and radiation decouple. 

Matter era - after about 4 x 105 years the energy-density is 
predominantly from the rest-mass of matter. The fact that 
decoupling works out to occur about the end of the radiation 
era appears to be an arithmetical coincidence brought about by 
the property n = 10-9 • 

All this gives a self-consistent picture using a 
Robertson-Walker metrie with expansion factor R(t) satisfYing 
the Friedman-Lema{tre equations. These follow from GR and they 
may first be derived with the retention of A. They may then be 
solved for A, which is thus expressed in terms of the Hubble 
constant, the ac celeration parameter, the function R( t), the 
mean density arid pressure at epoch t. For the actual Universe 
at the present epoch bounds may be set to all these quantities 
and they are found to imply I A I ~ 10-120 in absolute units. 
But since A is by definition a universal constant, this result 
must hold good at all epochs. A is thus ,the quantity in physics 
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most accurately measured to be zero (Hawking 1983). 

Inflation 

Several properties of vacuum (quantum) states have 
closely the same effect as non-zero values of A. They are 
significant only at very high energies. There has been a 
suggestion that a phase transition occurred when an original 
unified 'electroweak' force split into electromagnetic and 
nuclear-weak constituents. Times of order 10-35 s from the big­
bang have been mentioned for this. During the transition a 
vacuum effect of the sort mentioned is inferred to have produced 
an enormous 'cosmic repulsion' that caused the Universe to 
inflate by a factor estimated at 1020. When the transition was 
complete and the two kinds of force had been 'frozen out' with 
their familiar characters, the repulsion would vanish. This 
would, of course, be consistent with using A = 0 for the sub­
sequent normal expansion. Consistently with GR, the repulsion 
cannot then be exactly equivalent to having a non-zero value of 
A for part of the time; even so Guth (1981) noted that it is 
hard to represent a smooth return to non-inflation. 

One important consequence appeared to be that the huge 
inflationary expansion would smooth away any initial irregula­
rities in the universe and so produce the high degrees of homo­
geneity and isotropy which are inferred to have existed at an 
early stage of the normal expansion. Another would be that it 
would explain why the homogeneity can hold good between regions 
that otherwise could not have been in causal contact when their 
contents were determined. 

Unfortunately it now appears that this original inflatio­
nary model has to be rejected as depending upon a too naive 
interpretation of the particle physics. Physicists seem now to 
favour a 'bubbly' early Universe. One version envisages the 
observable Universe as arising from the inflation of one small 
bubble of an early state. Another regards even the present 
Universe as 'bubbly' on a micro-scale, but very smooth on the 
scale on which we observe it. 

Even the latest models thus inVOke an essential role for 
cosmical repulsion - as did Lemaftre's model half-a-century ago -
but now only for the very early Universe, whereas Lemaitre had 
an effect of his A that became relatively more important as the 
expansion proceeds. 

Galaxy formation 

As already mentioned, Lemaltre very properly saw the 
formation of galaxies - or maybe clusters of galaxies as the 
culmi.nating problem of cosmology. Here we shall briefly review 
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the current approach to this problem. 

A well known argument shows that since there are now 
fluctuations in the density of matter in the Universe, there 
must always have been fluctuations. More specifically, if 
what is basically a Friedman-Lemattre model possesses galaxies 
at some epoch after decoupling there must have been fluctuations 
of density at any epoch before decoupling. So the 'modern' 
approach to the problem of the origin of galaxies is to consider 
arbitrary fluctuations op!p before decoupling, and to enquire 
how they develop as the model expands into the matter era. If 
some such fluctuations are inferred in due course to produce 
galaxies, then we can ask what fluctuations in some earlier era 
could lead to these fluctuations before decoupling. The aim ~s 
then to discover what were the most primitive significant 
fluctuations. 

This approach implicitly supposes that a FL model was a 
better match to the actual Universe in the past than it is in 
our era. In particular. it is assumed that in the radiation era 
the matter and radiation were almost uniformly distributed in 
space. So far as the actual Universe is concerned this is 
strongly supported by the high degree of isotropy of the micro­
wave background radiation. 

Two sorts of fluctuations are studied; the names they 
have acquired should not be taken literally: -

1. 'Adiabatic' fluctuations The initial fluctuation is taken to 
apply to both the matter and the radiation. So long as the 
matter is to a considerable extent ionized - that is, until 
decoupling is largely complete - radiation damping is strong 
for condensations of relatively small mass. This leads to the 
conclusion that condensations surviving recombination are mostly 
in the range 10 12 to 1014 solar masses. It is inferred that such 
a condensation then collapses first as a 'pancake'. which 
proceeds to fragment into clusters of galaxies. Peebles (1980) 
identifies three characteristic lengths associated with the 
process. 

2. 'Isothermal' fluctuations These are taken to involve the 
matter alone. Radiation causes less damping in this case. No 
characteristic lengths emerge; some astronomers consider that 
this is in better agreement with observation. The first conden­
sations, after decoupling. may be on the scale of globular 
clusters; if so, these would 'merge to form galaxies. 

Neither picture leads to a quite convincing account of 
how a condensation of the raw material is transformed into a real 
galaxy as it is seen in the sky. Some phenomenon besides 
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gravitational instability seems to be required to play some 
crucial part. This could be the occurrence of shocks either 
between condensations or within a collapsing condensation 
(McCrea 1982, 1983). 

Primeval fluctuations 

The work that has been done on adiabatic and isothermal 
fluctuations, whatever may be its inconclusiveness in detail, 
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is almost certainly sufficient to show that the existence of 
galaxies in the matter era implies the existence in the preceding 
era of fluctuations op/p in a certain range of size and amplitude. 
As regards amplitude appeal may then be made to the observed 
absence of anisotropy, exceeding a certain very small amount, in 
the observed microwave background radiation. This leads to the 
inference that,in the region in the radiation era in which most 
of this radiation last interacted significantly with matter, 
that matter must have been of uniform density p to within 
fluctuations not exceeding Qp/p~10-4. On the other hand, 
fluctuations weaker than this would not be expected to lead to 
galaxy formation. It is therefore generally inferred that 
fluctuations of this amplitude existed in the cosmos at an epoch 
of order 105 years after the big bang. 

Astronomers ask, Is this a fundamental property of the 
Universe that, at any rate in our present state of knowledge, 
has simply to be accepted as such? Or can it be traced to 
something more primitive? 

As regards the latter que.stion, among possibilities 
contemplated are: 

Quantum fluctuations as an inherent element in the concept 
of the very early Universe. Some cosmologists have discussed 
how these might leave an imprint that could survive through 
all subsequent phases. 

Primeval chaos, part of which somehow achieved considerable 
homogeneity at an early epoch but never without some irregula­
rities. 

Primeval turbulence as a possibly more comprehensible version of 
'chaos' • 

Astronomers also ask, Do we learn anything about prime~ 
val fluctuations from the present large-scale structure of the 
Universe as observed? If significant, is the 'cellular' or 
'network' structure that is claimed to exist a fossil of the 
early Universe? It seems unlikely that this can be true in any 
simple way, for I am told that what evidence there is from 
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numerical simulations shows that such structure would be unlikely 
to survive from an early stage. Nevertheless, in a very general 
sense it seems that it must be true. For the existence of conden­
sations at any stage depends upon the existence of condensations 
at an earlier stage, and in the same way the existence of any 
general structure at any stage would depend upon the existence of 
structure at an earlier stage. But there remains the question as 
to whether significant general structure does actually exist. 

In summary, the whole problem of condensations in the 
cosmos is still beset by uncertainties, the most serious being 
at the two ends, the one concerning the nature of the most primi­
tive condensations, the other concerning the process by which a 
condensation of the raw material is converted into stars, stellar 
clusters, nebulae ••• to make a galaxy. 

Physics 

Cosmology, observational and theoretical, and particle 
and high energy physics, experimental and theoretical, all seem 
at the present time to have arrived at a peak of activity and 
discovery. This is partly a cause and partly a result of the 
interaction of all these elements. It is resulting in a review 
of the foundations of physics that is more profound than any 
previously possible. It would have been highly desirable that 
this essay should have dealt with the most profound aspects of 
all these developments. But anyone attempting "to do this would 
need to understand much more about modern physics than the 
writer. He can only mention a few of the aspects that have 
immediate significance for cosmology. 

Here we mention a few cosmological considerations 
specially concerned with the aonstants of physias. It is the 
existence of these that makes physics what it is. They arise 
basically because everything in physics is quantized, so that the 
physical world itself provides nat~Z units ('Planck units') in 
which it can be described. If our physical concepts are valid, 
this would in principle permit us to exchange precise physical 
information with physicists anywhere in the Universe. Consist­
ently with this, it should be noted that a constant of physics 
has an opepationaZ existenae that transcends any particular 
theoretical model. The experience that there exist operations 
that always yield the same outcome is a way of defining the 
'external' world of physics. This is a paraphrase of the remark 
that the constants of physics make physics. Not surprisingly, 
therefore, it can be seen that properties of the world of astro­
physics depend upon the values of a few constants. For example 
it can be shown that the mass of an asteroid, of a planet, of 
a star each lie within a particular interval dictated by these 
constants - the same constants that determine, say, the range of 
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possible physical capabilities of the human animal. 

What is at first surprising about the resulting situation 
is the sensitivity of its features to the values of the constants. 
The whole world of experience could be made so different by 
relatively small changes in one or two constants that we could 
not have evolved to observe it (Carr & Rees 1979; Press & Light­
man 1983). 

Such considerations are embodied in what have been called 
anthropia prinaipZes. The 'weak' principle asserts that man's 
experience of the Universe depends upon the circumstance that he 
can exist only within a restricted region of space-time. In 
itself this is self-evident; but it is obviously necessary for 
the cosmologist to appreciate that, when he thinks that he is 
discovering an important property of the cosmos, he may be doing 
no more than noticing a feature that happens to be present when 
he himself happens to be around to oberve it. Thus the weak 
principle may issue usefUl cautions, but in the form stated it 
cannot serve as a basis for making predictions about the cosmos. 
Also it is to be noted that it assigns no properties to the 
observer other than the existence of an ability to receive and 
record signals. 

The 'strong' principle, on the other hand, takes note 
of the properties of the observers that actually exist, and it 
asserts that the constants of physics have to possess values 
such that the cosmos must cause these beings to exist. Again 
the assertion is self-evident, but now it is one that may lead 
to predictions. It seems almost certain that, if we suppose 
the familiar constants of physics simply to exist, then such a 
principle should impose bounds upon their values. But it is 
hard to see how it can be inferred that such constants must exist 
and that they must possess certain p~eaise values. 

It is interesting to remark that inferences of this last 
sort were something of what Eddington (1936, 1946) was trying to 
achieve in the work described in his last two books. Nowadays 
it has become more fashionable to ask, Do there in any sense 
'exist' other universes in which the constants of physics have 
values different from those in 'our' Universe? This appears to 
be broadly the same problem. 

There are two other problems related to all this. One is, 
in a big-bang model universe, how and when do the constants of 
physics come into existence? So far as one knows, nobody has 
made any useful approach to a solution. 

The other is, Are there constants of cosmical physics 
that are not related to those of microphysics - at least in any 
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way that we can discover at present. It is to this that we 
finally turn. 

Cosmical numbers 

According to the usual view of the constants of physics 
they concern, of course, entities that exist. But they tell us 
nothing about the amounts of these entities that exist and that 
would thus serve to specify the Universe that exists. We have 
remarked that the constants of physics make physics what it is. 
Are there additionally cosmical numbers that make the Universe 
what it is ? 

The number of dimensions of space-time seems to be a 
'given' constant of the Universe. The Universe would be funda­
mentally different were the number other than 4, so that an 
observer experiences one time dimension and three space dimensions 
(Barrow 1983). Actually some recent unified theories employ 
space-times with dimensions up to 11. But whatever the number 
it may be best to regard it as both a constant of physics and a 
cosmical number. 

Rees (1983), who has given most explicit consideration to 
the Cluestion, has indicated 'three basic numbers that characterize 
our Universe'. In the terminology used here, these are: 
(i) The Robertson-Walker curvature radius at our cosmic epoch, 
R(t )~1060 Planck lengths. (ii) The baryon: photon ratio, 
n ~~0-9. (iii) The amplitude of the fluctuations that triggered 
galaxy formation op /p ~ 10 -4. We do not know why they should have 
these values, or whether to expect any discovery of any dependence 
upon the values of the constants of physics. 

If indeed, as mentioned above, 'our Universe' resulted 
from the inflation of one small bubble in a very early Universe. 
then we might conclude that the constants of physics arose from 
the latter. and that the cosmical numbers were determined by 
what happened to be the content of that one particular bubble. 

This paper is largely a catalogue of unsolved problems. 
The present developments in physics seem to promise some imminent 
further progress. We may hazard the view that progress as a 
whole is likely to be gradual. For example. as regards the 
constants of physics the trend naturally seems to be to seek some 
new theory such that the constants of existing theory become 
expressible in terms of a smaller number of constants in the new 
theory (Weinberg 1983). It may be a long time before the number 
has been reduced to zero. 
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IMPACT OF LEMAITRE'S IDEAS ON MODERN COSMOLOGY 

P. J. E. Peebles 

Joseph Henry Laboratories 
Princeton University 

Physical scientists have a healthy attitude toward the 
history of their subject: by and large we ignore it. But it is 
good to pause now and then and consider the careers of those who 
through a combination of the right talent at the propitious time 
have had an exceptional influence on the progress of science. 
As I have noted on several occasions it seems to me that Georges 
Lemaltre played a unique and remarkable role in setting out the 
program of research we now call physical cosmology (1,2). 

In the next section I recall some of the history of the 
discovery of the expansion of the universe. In the following 
section I present my assessment of the present status of some of 
Lemaltre's main ideas in physical cosmology. 

1. THE EXPANDING UNIVERSE 

Modern cosmology can be traced to Einstein's demonstration 
in 1917 that general relativity can describe an unbounded 
homogeneous mass distribution. At the time there was not much 
reason to think the universe really is homogeneous but by 1926 
Hubble had shown that one could use galaxy counts as a probe of 
the large-scale distribution of galaxies and he had found that 
the realm of the nebulae is at least roughly uniform (3). The 
best modern evidence is indirect, from the accurate isotropy of 
deep galaxy and radio source counts and of the radiation 
backgrounds (4). As our galaxy seems no better a home for 
observers than many others it seems absurd to think that the 
universe might be inhomogeneous but isotropic about us, so we 
conclude that the universe is accurately homogeneous in the 
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large-scale average. 

Einstein's 1917 world model is static, the cosmological 
constant balancing gravity. During the 1920's people came to 
see that this model has some problems. One is the Olbers' 
paradox, that if stars had shone forever in an Einstein model 
starlight would accumulate indefinitely. The earliest reference 
I have found to this in connection with Einstein's model is in 
Lemaitre's 1927 paper (5). Another problem noted by Weyl and 
Eddington is that a variable, the mass density, is set equal to 
a physical constant, 11/( 471G) (6,7). What would happen if the 
mass were rearranged? Only after the publication of Lemaftre's 
1927 paper did people see the answer: the universe is unstable, 
the perturbation tending to grow. Yet another problem was 
Slipher's discovery that galaxy spectra tend to be shifted 
toward the red. Already in 1917 deSitter had noted that Slipher's 
effect might be expected in his solution because of the g44 term 
in the time-independent form of the line element. The situation 
is complicated by the freedom of choice of galaxy orbits, but 
Weyl noted that if one demanded that an observer on any galaxy 
would see the same pattern of motions of neighbors, as befits a 
homogeneous universe, then one would find that at small distances 
the redshift is proportional to distance (8). This was indepen­
dently discovered in 1925 in a little noted paper by Lemaftre 
that is a fascinating step toward his famous 1927 paper (9). It 
was discussed again by Robertson (10), who also had the temerity 
to suggest that Hubble's distances and Slipher's redshifts for 
the nebulae were not inconsistent with a linear relation. 
Unfortunately Robertson offered no details on how he came to 
these conclusions. 

The expanding matter-filled world model was discovered in 
1922 by Friedmann (11). At the time it was thought that galaxy 
redshifts tend to increase with increasing distance but distance 
estimates were too crude to reveal the relation. In any event 
the possible connection between Friedmann's solution and galaxy 
redshifts was not discussed, and, although Friedmann's work was 
mentioned (in a somewhat negative way) by Einstein (12) it 
unfortunately dropped out of sight until about 1929. Lemaftre 
had the good fortune to hit upon the matter-filled solution when 
the redshift-distance relation was in the wings if not already 
.known (5). 

What did Lemaitre in 1927 know of the redshift-distance 
relation? As we have noted, in the following year Robertson 
stated (in connection with the deSitter model) that the data 
seemed to him to fit a linear relation (10). In his 1927 paper 
Lemaitre estimated what we now call Hubble's constant H (he got 
630 km s-l Mpc- 1 , close to Hubble's 1929 result H ~ 500) by 
using Hubble's value of the characteristic absolute magnitude of 
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a galaxy and assuming a linear relation. He indicated that the 
accuracy of the available distance estimates seemed to him to be 
inadequate for an actual test of linearity. (It is curious that 
the crucial paragraphs describing how Lemaitre estimated Hand 
assessed the evidence for linearity were dropped from the 1931 
English translation (13)). Hubble used distances based on the 
detection of stars with calibrated absolute magnitudes, and, at 
greater depths, distances to clusters based on mean magnitudes 
of several members. This reduced the scatter enough to reveal the 
linear relation (14). Hubble's use of clusters as standard 
candles was taken up by Sandage and more recently others, and 
Hubble's law now has been tested to an accuracy of 10% or so out 
to redshifts approaching unity (15). 

In the three decades following the burst of discoveries in 
the early 1930's much of the discussion in cosmology centered on 
alternatives to the standard relativistic model. The main 
candidates were Milne's model and then the Steady State cosmology, 
but also important were Zwicky's tired light idea and the 
infinite clustering hierarchy picture of Charlier and others. 
This was healthy, because the empirical basis for the standard 
model was not all that strong, and a good way to assess the 
observational evidence and hit on ways to improve it is to 
compare alternative models. This phase ended quite abruptly with 
the discovery of the microwave background, which seems to offer 
almost tangible evidence that the universe really has expanded 
from a considerably denser state because no one has found a 
reasonable way to produce this radiation in the universe as it 
is now. Opinion rapidly crystallized around the standard rela-
ti vistic model. My impression is that the case for this model 
is now strong, though certainly not definitive. 

2. THE PRIMEVAL ATOM 

Many were involved in the discovery of the connection 
between galaxy redshifts and the relativistic cosmological model: 
Weyl and Fri.edmann were on the track before Lemaitre and before 
the observational situation was ripe; Robertson had all the 
pieces a year or so after Lemaitre and Eddington and Tolman were 
close behind him (10,16,17). But in the recognition and 
exploration of the new vistas in physics opened up by the 
discovery of the expanding universe Lemaitre was distinctly the 
pioneer, without equal until Gamow came on the scene a decade 
later. Lemaitre's main early results were collected in a review 
published just fifty years ago, in 1933 (18). This paper is 
remarkable for the freshness and clarity and depth of the ideas. 
Except where noted all the following discussion of Lemaitre's 
work refers to this paper and the references to be found 
therein. 
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We are used to linking the concepts of the expanding 
universe and the singular origin of classical space-time, but, 
as Godart and Turek point out, the connection was a daring step 
(19). In his 1927 paper Lemaitre listed the possible courses of 
evolution of a closed relativistic model universe with non-zero 
cosmological constant, but he discussed most fully what has since 
come to be called the Eddington model, where the expansion 
asymptotically traces back to the static Einstein model. That 
was at least partly because this is the model that can accomodate 
the old stellar evolution ages, ~ 1013 Y »H-1 . However, 
Eddington and Lemaitre noted that that requires an exceedingly 
delicate (and unlikely) balance in the quasi-static phase (16, 
20). It was Lemaitre who took the bold step: if the universe 
cannot have existed into the indefinite past in a quasi-static 
phase then let us consider the possibility that space expanded 
from a singularly dense state, what Lemaitre came to call the 
Primeval Atom (and Gamow later termed the Big Bang). 

In a Big Bang cosmology the ages of things are limited to a 
modest multiple of the Hubble time H-1. Lemaitre strongly felt 
that the only sensible model universes have space sections with 
finite volume (21). Many of us share that prejudice despite the 
continued lack of encouragement from the observations. If A = 0 
this limits the age of the universe to t < 2/3 H. By 1933 
Lemaitre did not take seriously the very large stellar evolution 
ages in the old theory (in which energy is derived from annihila­
tion of matter; the evolution ages came down considerably with 
the recognition that the energy supply is the much smaller 
nuclear binding energy) but he did have an important constraint 
from the radioactive decay ages of terrestrial minerals. With 
the then current estimate of H these ages exceeded 2/(3 H), and 
he concluded that "from a purely aesthetic point of view that 
perhaps is regrettable. The solutions where the universe 
alternatively expands and contracts to an atomic state with the 
dimensions of the solar system have an incontestably poetic charm, 
bringing to mind the legendary phoenix" (my non-poetical 
translation). Some of us still find this aesthetically 
attractive. 

Lemaitre avoided the time-scale problem by adopting a closed 
model with positive cosmological constant, where the competition 
between gravitational attraction and cosmic repulsion of the 
A-term increases the time since the Big Bang. As it happens the 
modern estimates of H have gone down a factor of 5 to 10 from 
what Lemaitre used, removing any problem with terrestrial ages. 
However, globular cluster star evolution ages now seem well 
established at ~ 16 billion years (22,23), and in a closed model 
with A = 0 that would require H ~ 40 km s-l Mpc- 1 , which is well 
below any of the current estimates. If this bind persists we 
certainly will have to consider Lemaitre's cosmological model as 
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one way out. (And of course an open universe with A 
ages can approach H-1 , another possibility.) 

0, where 

In the Big Bang cosmology we encounter an end to classical ,-­
spacetime at a finite time in the past. Lemaftre expressed for 
us how spectacular that concept is: "The evolution of the 
universe can be compared to a display of fireworks that has just 
ended: some few wisps, ashes and smoke. Standing on a well­
chilled cinder, we see the slow fading of the suns, and we try 
to recall the vanished brilliance of the origin of the worlds" 
(20). He remarked that the precursor of classical space-time 
must be a fully quantum phenomenon, what we would now call the 
Planck epoch (24). Einstein proposed that the singularity in 
classical theory might be eliminated by departures from the 
simplified homogeneous and isotropic world model. It was at 
Einstein's suggestion that Lemaftre analyzed the behavior of a 
h9~ogeneous anisotropic model with line element 

(1) 

where the ba are the functions of t alone. He concluded, as have 
many others since, that this is not a promising way out. 
Lemaftre's suggestion that sUbatomic forces must stop the con­
traction of the universe is not now widely accepted: it is 
thought that the evolution can be traced back all the way to the 
quantum phase he had envisioned some years before. He noted 
that the entropy of the universe can only increase, so it is not 
unreasonable to suppose that the expansion commenced at zero 
entropy with the irreversible decay of some initial quantum state 
(20,24). We see this vision reflected in the exit (whether 
graceful or otherwise) from the inflationary phase of the Guth 
cosmology (25). It is still a vision, though perhaps nearer 
reality. 

Lemaftre emphasized that if the universe did expand from a 
dense state then we ought to be able to find some evidence of it, 
debris from the fireworks, and of course the nature of the debris 
would be an invaluable clue to the physics of the early universe. 
It was natural to guess that cosmic rays might be such remnants 
(26). That no longer seems likely because radiation would be a 
strong drag on energetic protons and photons. His early idea 
that stars are fragments from the decay _of the initial quantum 
state was later abandoned (26,27), and indeed still seems 
unpromlslng. We do have a very strong candidate for a remnant 
in the microwave background radiation mentioned in the last 
section, and we are heavily involved with other possible remnants: 
quarks, magnetic monopoles, massive neutrinos, axions, super­
symmetric partners, magnetic fields, strings and so on that may 
or may not be essential to our understanding of why the universe 
is the way it is (28). 
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Let us turn finally to the puzzle of the origin of galaxies 
and clusters of galaxies. In the early 1930'~ people saw full 
well that the homogeneous and isotropic cosmological model could 
only be a first approximation, and that the phenomenon of mass 
clustering must be telling us something important about the 
nature of the universe. It was Lemaitre who laid out the 
research program that I think has the best promise of untangling 
the puzzle: consider scenarios for the evolution of structure 
that start at high redshift with initial conditions that do not 
seem unduly contrived, evolve according to accepted (or specif­
ically conjectured) laws of physics, and end up looking more or 
less like the universe we observe (18,27). We may hope that as 
our understanding of physical processes and the physical universe 
improves we will come to see that some scenarios may be rejected, 
and that in the fullness of time we will be led to a useful 
approximation to the truth. And that may be the key to a deeper 
understanding of the physics of the Primeval Atom. 

An essential element of the physics of evolution is the 
fitting of a mass concentration like a galaxy into an otherwise 
homogeneous cosmological model. In the early 1930's it was 
recognized that a spherically symmetric model for a mass concen­
tration would be mathematically convenient and a sensible if 
rough approximation to a real object. Lemaitre discovered the 
solution for this spherical model: when pressure may be neglected 
each mass shell evolves like a separate homogeneous world model. 
Since different models expand at different rates we arrive at 
the exceedingly important conclusion that the universe is 
gravitationally unstable. By considering the limiting case of 
high redshift Lemaitre found the growth law op/p ,ex: t 2/ 3 for , 
linear perturbations to an Einstein-deSitter model (29). Tolman 
(30) and Bondi (31) enlarged on the analysis of the spherical 
model, but as they both referred to Lemaitre I,S prior dis covery 
I find it curious that this often is called the Bondi-Tolman 
solution. 

The scenario that Lemaitre analyzed in detail is based on a 
closed cosmological model with A > 0 where initial conditions can 
be chosen so that the universe expands from great density, passes 
through a quasi-static phase when gravity is very nearly balanced 
by the cosmological term, and then expands toward deSitter's 
limiting case. For a "reasonable" value of the density parameter 
no the quasi-static phase would be at a redshift on the order of 
ten. Because the quasi-static phase depends on a close balance 
of A and gravity any small density ,fluctuations would be strongly 
amplified during this phase, and Lemaitre accordingly proposed 
that the quasi-static phase triggered the fragmentation of the 
initially nearly smooth distribution of gas into protogalaxies 
and clusters. He pointed out that the collapse of a protogalaxy 
would be highly dissipative until the gas had fragmented into 
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stars, and that the different galaxy morphological types might 
result from spin-up during collapse of the accidental initial 
angular momenta (27). A cluster of galaxies, being dissipation­
less, would remain at about the mean density A/(4wG) of the quasi­
static phase, and Lemaitre was encouraged by the fact that 
estimates of A/(4wG) and of cluster densities were quite similar 
(18,27). It now appears that the clustering pattern is more 
complicated than that. approximating a scale-invariant clustering 
hierarchy. so a scenario with a fixed characteristic density no 
longer seems to be indicated (though it still may be possible). 
The discussion of galaxy formation commencing with collapse of a 
gaseous protogalaxy seems quite familiar today. though it should 
be emphasized that there is no general agreement on how galaxies 
formed. whether by coalescence of "pre-galaxies." or by fragmen­
tation of protoclusters. or as debris from stellar or relativistic 
explosions, or yet some other process. This has become a lively 
subject because the observational situation has been rapidly 
improving (32), and we may well see a crystallization of opinion 
around some picture or another in the next few years. 

Lemaitre set forth a program for the study of the mass 
clustering phenomenon that has become one of the mainstreams of 
modern research in cosmology, but it was not taken up in a 
systematic way for several decades. There were several reasons 
for the delay. Debate on the validity of the relativistic model 
had to take preceden~e until the observational situation had 
improved. While that debate was in progress the opinion 
developed that because the gravitational instability of the 
relativistic model is not exponential galaxies could not have 
developed out of reasonable initial conditions, such as thermal 
fluctuations. That has been resolved by observing that since 

(2) 

with n on the order of unity, we can get all the amplification we 
need by taking ti small enough. Of course, that is Lemaitre' s 
program: fix (op/p)i ad hoc and then ask whether we can puzzle 
out a consistent scenario. leaving ultimate origins to a deeper 
future theory. Another barrier was the fact that the scenario 
Lemaitre favored placed emphasis on the cosmological constant A 
at a time when A was becoming unpopular. If Lemaitre had wanted 
to rally support to his ideas he would have been well advised to 
drop A. But I can no more imagine him following that advice than 
I can Einstein heeding the admonition to give up the search for 
a classical unified field theory., And it must be recorded that 
recent developments in elementary particle physics have very 
distinctly brought A to our attention once more (25). 
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MASSIVE NEUTRINOS AND PHOTINOS IN COSMOLOGY AND GALACTIC ASTRONOMY 

ABSTRACT 

D.W. Sciama 

International School for Advanced Studies, Trieste 
International Centre for Theoretical Physics, Trieste 
Department of Astrophysics, Oxford 

The hot Primeval Atom would have produced pairs of neutrinos and 
of photinos (if they exist), many of which would have survived to 
the present day. If these particles have non-zero rest-mass they 
might dominate the universe, providing it with the critical 
density, and also individual galaxies, providing them with their 
missing mass. This hypothesis might be tested by searching for 
the photons which these particles would be expected to emit. 

1. INTRODUCTION 

While preparing my talk for this commemmorative symposium my mind 
. went back thirty years, to the time when I met Georges Lemaitre. 

He was in England to receive the first Eddington Medal to be 
awarded by the Royal Astronomical Society. During his visit he 
came up to Cambridge, where I was then working. I can vividly 
recall meeting him in the Great Court of Trinity College. His 
infectious laughter shook, or so it seemed to me, the whole Court. 
I felt very privileged to meet him. 

We are here during these days to celebrate an event that took 
place twenty years earlier still - the publication of his paper on 
the Primeval Atom. In considering what subject I should talk 
about, I thought that I could do no better than to choose a topic 
which would relate major astronomical features of the universe 
observable today to fundamental aspects of the Primeval Atom. I 
have chosen to discuss the possibility that massive neutrinos or 
the photinos of supersymmetry theory, formed by pair production in 
the high temperatures of the Primeval Atom, have survived in 
sufficient abundance till today to provide the critical density 
for the Universe, and the dark matter in galactic halos. 

31 

A. Berger (ed.), The Big Bang and Georges Lemaitre, 31-41. 
@ 1984 by D. Reidel Publishing Company. 



32 D. W. SCIAMA 

2. COSMOLOGICAL CONSIDERATIONS 

It is not yet known whether the universe possesses the 
critical density Pc, but it would be expected to do so to a good 
approximation if the inflationary theory of the universe is 
correct (Guth 1983). For the purposes of the present argument we 
shall accept this conclusion, which implies that the universe 
today very nearly conforms to the Einstein-de Sitter model. The 
value of Pc is determined by general relativity (for zero 
cosmical constant) to be given by 

871 G H2 
3 Pc 0 

where HO is the present value of the Hubble constant. There is 
considerable uncertainty in the observed value of HO' but it is 
generally agreed that 

SO<Ho<100 km.sec-1Mpc- 1• 

Accordingly 

5 x 10- 30 <Pc<2 x 10- 29 gm.cm- 3 • 

A related quantity is the age of the universe to which is 
directly related to HO in the Einstein-de Sitter model by Hoto 
2/3. Thus we would expect that 

There is also considerable uncertainty in the observed value of 
to. The best value probably comes from observations of stars in 
globular clusters. A recent re-discussion of this evidence 
(Flannery and Johnson 1982) suggests that 

Accordingly we shall assume that 

and that 

Now it is unlikely that a density as large as Pc could be 
entirely due to baryons. This follows both from the direct 
observation of baryons in stars and interstellar material, and 
from considerations of the synthesis of the light elements D, He 3 , 
He4 and Li7 in the hot big bang. Each of these arguments suggests 
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that Pb~10-31gm cm- 3, which is only about one per cent of the 
critical density (Pagel 1982). 
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We wish to discuss the possibility that the critical 
density is mainly due to massive neutrinos or photinos. Let us 
first consider the possibility that it is mainly due to massive 
neutrinos. For this purpose we need to compute their present 
concentration nv for each neutrino flavour. This problem has 
been well understood for a long time (e.g. Weinberg 1972). The 
essential point is that at very early times neutrino pairs would 
have been thermally excited e.g. by the reaction 

(1) 

Eventually the rates for these reactions become lower than the 
expansion rate of the universe, and the neutrinos decouple from 
the general heat bath. According to the Salam-Weinberg theory 
this decoupling occurs when the universe had a temperature Td~2 
Mev. The present value of nv depends critically on whether the 
neutrinos were still relativist~c at Td, that is, on whether 
mv<2Mev. If this condition holds (as we shall assume) then at 
decoupling the neutrinos would have been as numerous as the 
photons in the heat bath (apart from a factor of 3/4 arising from 
Fermi-Dirac statistics). They would still be as numerous as the 
photons today were it not for the permanent annihilation of 
electron pairs at T~~Mev. The decay products of this annihilation 
would have boosted the photons without boosting the (decoupled) 
neutrinos. Because of this suppression effect one finds that 
today 

The photon heat bath is now at 2.7°K (microwave background) and so 
one obtains 

Thus for one neutrino flavour to provide the critical density, one 
would require that 

2S"mv .. SOev. 

Since there are presumably at least three neutrino flavours, 
one must sum over their rest-masses. The question here arises of 
possible further neutrino flavours contributing to the critical 
density. Primordial nucleosynthesis of the light elements again 
plays a role here. Each neutrino flavour which was relativistic 
at nucleosynthesis helps to increase the expansion rate of the 
universe and so changes the resulting abundances of the light 
elements, thereby putting at risk the agreement with the observed 
abundances. This argument (especially as applied to He~) is now 
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believed to restrict the number of allowed neutrino flavours to 
less than 4 (e.g. Barrow and Morgan 1983, Yang et al 1984), in 
remarkable agreement with the presently accepted number of 
neutrino flavours. Independent evidence on the number of neutrino 
flavours will be forthcoming when the width of the intermediate Z 
boson state is measured by LEP. 

At this point one might regard the neutrino hypothesis for 
the critical density as rather appealing. However, we will meet 
another argument in the next section according to which, if 
neutrinos were also to dominate individual galaxies and account 
for their missing mass, then the data on dwarf galaxies, if 
confirmed, would indicate that mv)250ev, in contradiction to the 
cosmological upper limit on mv. We therefore consider here the 
alternative possibility that the critical density is provided by 
massive photinos. Of course we would still have to solve the 
problem posed by the large mass of the particle. 

Indeed we immediately face a further problem, since we are 
apparently not allowed one full further particle type which was 
relativistic at nucleosynthesis. We can however, solve both 
problems if photinos decoupled much earlier than neutrinos, so 
that particle species other than electrons which annihilated 
permanently would have boosted the neutrinos (and photons) without 
boosting the photinos (Dimopoulos and Turner 1982, Fayet 1982, 
Sciama 1982a). Now. the lowest mass particle species available are 
muons and pions which annihilated when T~200 Mev. Thus we would 
require for photinos that Td)200Mev. 

To explore this possibility further we need to carry out two 
types of calculation. The first is of the amount of suppression 
as a function of Td, resulting from the annihilation of all the 
relevant particle species. The second is the dependence of Td 
on the coupling constants of the photino (whose numerical values 
have not yet been determined by supersymmetry theory). Both these 
calculations have already been carried out. The first calculation· 
(Olive et al 1981) is simplified by the expectation that at T)200 
Mev the hadrons in the universe were broken down into quarks and 
gluons. If we define the suppression factor f by 

then one finds that at temperatures above 200 Mev, f rapidly 
assumes a plateau value ~.1, with an asymptotic value ~.05. 
More specifically, one has f~0.53 at Td~150 Mev, f~.12 at 
Td~200 Mev, while f~.08 for Td~l Gev, and f~.05 for Td)20 
Gev. Thus if one tentatively neglects the short stretch of Td 
between 150 Mev and 200 Mev, one finds that for photinos to supply 
the critical density one must have 

250<my<1000 ev. 

The requirement that Td)200 Mev has implications for the 
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coupling constants of the photino. Photino-photino processes 
analogous to (1) have a cross-s.ection ex: d- 2, where d is the 
supersymmetry-breaking parameter E20 (Fayet 1979a), and Eo is the 
energy at which supersymmetry is broken. One must consider also 
photino-go1dstino processes. (The goldstino is the spin \ 
supersymmetry partner of the Goldstone boson which must accompany 
the breaking of supersymmetry.) These processes have a cross­
section a (e/dg) 2 d- 2, where eg is the goldstino coupling 
constant (Fayet 1979a). 

The rate at which these interactions tend to maintain thermal 
equilibrium is <nov), where n is the number of interacting 
particles, a T3 in thermal equilibrium, cr a E2 a T2 and v~. The 
expansion rate of the universe a T2, according to genera~ 
re1ativitv. Hence Td is determined by the smaller of d 2 3 and 
(egd/e)Z/3. Inserting all the numerical coefficients one 
finds that Td ~ ZOO Mev implies that 

egd)107 Gev 2 
d)10B Gev 2 

Are these restrictions reasonable? Neither eg nor d is 
determined by supersymmetry theory, but there are weak lower 
limits imposed on d by experiment (Fayet 1979b) and by 
considerations of stellar evolution (Fukugita and Sakai 1982), 
namely, d)Z.6 x 10 3 Gev 2and egd>2.6 x 10 2 Gev 2• An upper limit 
on e d would follow from the requirement that supersymmetry 
shoufd solve the hierarchy problem (e.g. Llewellyn-Smith 1982). 
This problem arises as follows. The Higgs potential for the 
electroweak theory has the form 

with ~o-300 Gev. However, ~O is altered by radiative corrections, 
and one might expect ~o to be increased to a typical grand unified 
value _10 14 Gev. This need not happen in a supersymmetric theory, 
however (Llewellyn-Smith 1982). There one finds that 

~2(p2) ~2(A2) + 0 dk2 fM~ax 1 
M2. 
m~n 

where p represents a low energy, A an energy much greater than 
that at which supersymmetry breaking sets in, and Mmax min is 
the maximum/minimum mass of a supermu1tiplet. ' 

If we require that o~2<~2, it follows that 

M12<107 Gev 2, 

say. Now M12 = egd (Fayet 1977). 
Hence 

egd<10 7 Gev 2, 
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which is the opposite of our previous condition. If both 
arguments are correct we accordingly require (Sciama 1982b) that 

egd-10 7 Gev 2• 

It may be significant that our value for ~2 implies that &~2_~2. 
This suggests that ~2(=) = ~02 = 0, so that both the symmetry 
breaking of the electroweak theory and the masses of the Higgs 
particles would be radiatively induced (Coleman and Weinberg 
1973). Our lower limit on d would then imply that 

One could have eg very small (and d correspondingly large) as in 
some variants of supersymmetry theory, or one could have the other 
extreme of eg-O.1 (and so ~, which may be significant) and 
d-108 Gev 2• We will comment further on this latter possibility in 
the last section. 

Finally we note that with egd closely determined, we would 
have Td-200 Mev, and so f.....o .1. Thus if photinos provide the 
critical density and the hierarchy argument is correct we would 
have 

2S0(my(SOO ev. 

3. GALACTIC CONSIDERATIONS 

Evidence has recently accumulated that galaxies possess 
massive halos which extend far beyond their optical boundaries. 
This follows both from a stability argument (Ostriker and Peebles 
1973) and from observations of their rotation curves (Rubin 1979, 
Bosma and Van der Kruit 1979). This conclusion complements one 
known since 1933, namely, that galaxy clusters also possess 
considerable amounts of hidden mass, as judged by their large 
velocity dispersions. If neutrinos and/or photinos possess rest­
masses of the right order, the hot big-bang would clearly supply 
them in adequate numbers for them to be possible candidates for 
the hidden mass in galaxy clusters and in individual galaxies. We 
therefore consider this question here. 

The problem has two aspects. The first, more difficult one, 
is to understand the processes of galaxy formation in the presence 
of non-interacting massive particles. The second is to study the 
present properties of a galaxy or cluster which is dominated by 
such particles. The first problem is not well understood, and we 
consider here only the second one. We shall find that the 
observed properties of galaxies lead to a significant lower limit 
on the mass of the dominating particle. 

This limit arises as a consequence of the Liouville theorem, 
which applies to the particl~s after they decouple (Tremaine and 
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Gunn 1979). Strictly speaking the phase space density of the 
particles remains constant along their world-lines, but in 
practice the discreteness of their distribution may lead to 
intricate phase-mixing, if they suffer violent relaxation during 
their collapse to form a galaxy (Lynden-Bell 1967). It would then 
become necessary to coarse-grain, which would lead to a reduction 
in their phase-space density. By comparing their present phase 
space density in a galaxy with their phase-space density at 
decoupling, one obtains the limit (Peebles 1980) 

m4 > 1- [~) 3/2 h 3 
p r 6n 2n 2 
. G v a 

o 
where mp is the mass of the particle, h is Planck's constant, Vo 
is their three-dimensional velocity dispersion (assumed to be 
Gaussian and independent of position in the galaxy) and a is the 
core-radius of the particle-distribution. Let us first apply this 
limit to our own Galaxy, the Milky Way. In this case we would 
have vo~300 km sec-1 and a~ kpc (Caldwell and Ostriker 1981) and 
so 

mp)25ev. 

(Galaxy clusters would give a weaker limit). This argument is 
quite independent of the one leading to the critical density but 
is in remarkable agreement with it if the particles are neutrinos 
and the phase-space mixing is relatively unimportant (as it may be 
according to Melott's (1982) N-body simulations of the relevant 
gravitational collapse processes). 

However, recently it has been discovered that dwarf galaxies 
like Draco may possess much hidden matter (Aaronson 1983, Faber 
and Lin 1983, Lin and Faber 1983, Faber 1984). In such cases both 
Vo and a would be much smaller, and IDp correspondingly larger. 
For example, for Draco one has vo~lO km sec-1 and a --{).5 kpc, .. 
leading to 

As pointed out by Aaronson and by Faber and Lin, if this 
inequality is correct it would conclusively rule out neutrinos. 
However, we notice that it would fit in well with photinos, for 
which we deduced that 250(m~(500 ev, if the phase-mixing is 
small only for dwarf galaxies. While many problems clearly remain 
to be solved, this numerical agreement is suggestive. We note in 
particular that systems smaller than dwarf galaxies are unlikely 
to lead to still larger estimates of the particle mass. For 
example, globular clusters have a mass to light ratio only about 
one tenth of that of dwarf galaxies (Innanen et a1 1983), which 
would mean that they contain relatively much less missing mass and 
so would not lead to a further increase' in the mass of the 
dominating particle. 
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We conclude from this discussion that dwarf galaxies may 
provide the first observational evidence in favour of broken 
supersyonnetry. 

4. ULTRA-VIOLET ASTRONOMY CONSIDERATIONS 

Further evidence for the existence of massive photinos may 
come from the photons which they would be expected to emit 
(Cabibbo, Farrar and Maiani 1981). This idea is an extension of 
an earlier proposal by de Rujula and Glashow (1980) that one 
should look for photons emitted by massive neutrinos which might 
dominate our Galaxy and the universe. In the photino case of 
interest to us here the process envisaged is 

,./ '" Y + Y + g, 

where '8 is a goldstino. 
If the parent particle is at rest relative to the observer, 

then conservation of energy and momentum in the decay process 
results in a photon energy Ey given by 

E = (m2 - m2 ) 2m 
y '" ",- '" y p.; y 

If mg,~m~ we can simplify this to 

Ey4 my. 

Thus if my lies in the range 250-500 ev we would have 

Ey~125-250 ev. 

(unless ~=my), so that the decay photons would lie in the 
extreme ultra-violet or soft X-ray part of the spectrum. 

The radiative lifetime ~y of the photino has been 
calculated by Cabibbo, Farrar and Maiani. They obtain 

T '" 1.7 x 1026 ( d J2 [2;0 ev]5 sec 
'" I08Gev '" y y 

If d)108 Gev2, as we discussed above, we would have 

~~1.7 x 10 26 sec 
~y)5 x 10 24 sec 

for Ey~125 ev 
for Ey~250 ev 

We now consider whether the resulting photon flux would have 
observational consequences. To calculate the flux from photinos 
dominating the Galaxy we note that the surface density of dark 
matter at the sun required in addition to known stars and gas to 
account for the observed rotation velocity of the Galaxy is about 
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300 M0 pc- 2 (Caldwell and Ostriker 1981). If this is due to 
photinos of mass ~250 ev their surface density would then be of 
order 1.6 x 10 29 cm- 2 • Accordingly the photon flux at ~125 ev 
(neglecting absorption for the moment) for ~y~1.7 x 10 26 sec 
would be ~1000 cm- 2 sec-l. Similarly, if my ~500 ev and 
~y~5 x 10 24 sec, we would have a flux ~ 1.6 x 10 4 cm- 2 sec- l 

By an interesting coincidence, the column density of 
cosmological photinos out to a Hubble radius (nyc/Ho) would also 
be of order 10 29 cm- 2( 10 x 10 28 ), so that the reSUlting 
cosmological photon flux would be of the same order as the 
galactic flux. The main difference is that the galactic flux 
would be nearly monochromatic (since the velocity dispersion of 
the galactic photinos ~300 km sec-l~<c), whereas the cosmological 
flux would be drawn out into a continuous spectrum by the 
differential red shift associated with the expansion of the 
Universe. For an Einstein-de Sitter model this spectrum would have 
the unabsorbed form 

(A~A ) 

cn'V(z=O) 
y 

,c 
where AO is the rest wavelength of the decay photon and A the 
received wavelength. 

The observed photon background in the energy range 125-250 ev 
has been discussed recently by Fried et al (1980) and by Paresce 
and Stern (1981). The observations are broadband, but any line in 
the background in this energy range must have a limiting flux ~500 
cm-2 sec-l. The observed spectrum increases with increasing 
wavelength, and is believed to be mainly due to two components, 
namely the long wavelength end of the isotropic extragalactic X-ray 
background, and thermal emission from hot gas (T~106 OK) within 
one hundred parsecs of the sun. The observed fluxes at 250 ev and 
125 ev are about 2 and 8 photons cm- 2 sec- l ster-1 ev- l 
respectively. 

The implied limits on the photon flux from photinos depend on 
estimates of galactic absorption. In directions at right angles 
to the galactic plane, the optical depth is about 0.5 at 250 ev 
and about 4 at 125 eVe Thus when we compare our estimated line 
and continuum photon fluxes from photinos with the observational 
upper limits, allowing for absorption, we find a discrepancy of 
about one order of magnitude at 250 ev, and no discrepancy at 125 
eVe We could remove the discrepancy in the first case by 
increasing d by a factor 3 to ~3 x 108 Gev 2• In view of the 
various numerical uncertainties in our discussion such a change 
would still be consistent with our suggestion that eg~e. 
Similar estimates for the line flux from the Andomeda galaxy M31 
lead to a value which could be as large as 1 photon cm- 2 sec-l. 
This is 105 times greater than the limiting sensitivity of the 
various proposed X-ray satellites such as ROSAT, XMM, HTS and 
AXAF. Thus even if the true value of d were larger than our most 
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optimistic estimate, many extragalactic sources might be readily 
detectable in the photino decay line. If this possibility is 
realised, a new branch of astronomy would be born. 

We conclude that the photon fluxes implied by our choice of 
parameters are compatible with present observations. Future 
observations, particularly those designed to look for a narrow 
line, should clarify this situation. It would be a happy 
circumstance, and one which I believe would particularly have 
pleased Lemaitre, if X-ray astronomers and observers of galaxies 
could thus use the Primeval Atom hypothesis to demonstrate the 
correctness of the broken supersymmetry theory. 
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THE PRIMORDIAL NUCLEOSYNTHESIS 

Abstract 

Jean Audouze 

Institut d'Astrophysique du CNRS Paris France 
and Laboratoire Rene Bernas Orsay France 

The review of the primordial nucleosynthesis presented in 
the honor of the memory of Mgr Georges Lemaitre is divided in 
three chapters : in the first one attempts to determine the 
primordial abundances of the lightest elements which can be 
formed by the Big Bang nucleosynthesis. This analysis leads to 
fairly large uncertainty ranges due to dispersions in the 
observations and also in the case of Deuterium to the still 
arbitrary choice between different models of galactic evolution. 

Chapter 2 is a summary of the Standard Big Bang 
nuc~eosynthe-?is where it is recalled that (i) the abundances of 
0, He and Li allow to predict that the baryonic cosmological 
parameter is 0.10~8:33 (i.e leading to a open universe if 
baryons are the major constituants of the matter of the 
Universe ; and (ii) that the He primordial abundance is 
consistent with the three different types of neutrinos which are 
presently observed. This simple and attractive model might be 
found in difficulty in the case of a primordial abundance of He 
~ 0.24 and/or in the case of models of galactic evolution 
allowing infall of external matter having a primordial 
composition. 
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Finally chapter 3 summarizes two alternative proposals to 
the Standard Big Bang nucleosynthesis : the possible production 
of D by partial photodisintegration of He induced by energetic 
photons coming from the decay of massive and unstable neutrinos 
or some (at present quite unlikely!) spallation mechanisms 
induced by pregalactic cosmic rays on a pure hydrogen primitive 
interstellar/pregalactic gas. 

1- IntrQduction 

At epochs where the theory of a dense and hot primordial 
phase for the Universe (designated now as the Big Bang) was not 
as accepted as it is today, Mrg Georges Lemait re (with George 
Gamow whose the memory should be associated to this 
ceremony) was may be the only one to push the idea of a singular 
primeval atom. In my own country because of the strong influence 
of Henri Poincare, mathematical cosmology has been considered 
for a very long period more fashionable than physical 
cosmology. This attitude is changing slowly but definitely : the 
french research agencies like the Centre National de la 
Recherche Scientifique are now convinced that an important 
effort should be made in that field. This is why I feel much 
honored to participate to this celebration in honor of the most 
prominent french speaking physical cosmologist. 

The topic that I am going to review here is certainly one 
of those which should have pleased most Mgr Lemaitre. While the 
recession of the galaxies and the cosmic background radiation 
allow to desc~ibe 6the early phases of the Universe but distant 
by about 10 -10 years from the origin, the primordial 
nucleosynthes~s, r~sponsible for the formation of the lightest 
elements (D, He, He and 'Li) has occured at times as early of 
1-3 minutes after the primordial explosion. This is why the 
processes which are going to be presented here are so important 
with respect to the theory of the Big Bang itself. 

Before a review of the Standard Big Bang nucleosynthesis 
and its consequences on the present density of the Universe and 
the maximum number of neutrino families, a qui~k su~vey of the 
primordial abundances of the light elements D, He, He and 'Li 
has to presented here. The assets and liabilities of the 
Standard Big Bang nucleosynthesis are also discussed such as two 
proposals made by Joseph Silk (Berkeley) and myself as possible 
alternative solutions to the Standard theory. 

Since I have written another review paper on the same topic 
(Audouze 1984) this presentation will be much shorter and will 
concentrate on the basic features of the nucleosynthesis. The 
reader interested in a more thorough review on this subject 
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might consult the above reference. 

2- A surv~y of the primordial abundances of the light 
elements 

The elements of interest are D, 3He , 4He and 7Li 

2-1 Deuterium abundances 

,Jhere are two sites where the D/H ratio can be observed (i) 
the Solar 4system : the best determination comes from the Solar 
~ind4 He/ He ratio given some assumptio~s on the presolar 
He/ He ratio (D is easily destroyed into He). From Geiss and 

Reeves (1972), (D/H)Sol Syst = (2 ± 1)10-5 (ii) The 
interstellar D/H ratio is measured by its UV absorption line at 
910 A (see Laurent 1983 for a review of the current interstellar 
measurements) • 
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Figure Compilation of the available interstellar D/H 
determinations which shows a large dispersion between the 
different lines of sights (Vidal-Madjar 1983) 

Figure 1 shows how disperse<;l are the present interstellar D/H 
determinations. it is -argued by Vid~l-Madjar and Gry (1983) that 
(D/H)interst. can be as low as 5 10 • 
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Figures 2a and 2b : These two figures show the evolution of some 
light elements ~ith time in two models of chemical evolution of 
galaxy. In fig. 2a the considered zone is submitted to infall of 
primordial gas and in this case the D/H abundance does not vary 
much with time. By contrast in fig. 2b which represents the 
galactic evolution with inflow of processed material the D/H 
depletion factor can be as high as about 40 (Gry ~ 1983) 
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From these two sets of values one cannot derive in a simple 
fashion the primordial (D/H) abundance. One has to take into 
account the astration processes which took place during the 
galactic evolution and which destroy D. According to Gry et al 
(1983), the D depletion during the galactic evolution can be as 
low as a factor 2 if the considered zone is submitted to infall 
of primordial material (fig. 2a) while it can be as high as ~40 
if the considered zone is submitted to inflow of processed 
material (fig. 2b) 

From 3 the large uncertainties coming from the mixing of 
presolar He with the by-product of the D destruction, the large 
dispersion in the interstellar D abundance and the large 
variations of the D depletion factor depending on the chosen 
galactic mgdel the primo~dial D abundance range by mass is 

7 10- <X(D)< 3 10-

It should be noted that XeD) " 6 10- 5 in the primordial phases 
only if a chemical evolution model with inflow is adopted. 

2-2 The 3He abundance . , 
As for D, the 3He abundance is only measured (i) in the 

Solar S~stem (ii) in t~e interstellar medium. (i) For the Solar 
System He/H = 1-2 10- • This result comes from the Solar wind 
measurements (Geiss and Reeves 1972) or from the study of gas 
rich meteorites (Black 1972). (ii) Wilson ~ ,(1983) have 
reported a series of radio measurements of He concerning 
di ffe~ent HI I regions. They found values ranging from 3He/ H < 
2 10- up to 2 10- 4• Given these results it is impossible to-day 
to tell if stars enrich the interstellar medium into 3He or 
destroy it (may be ~hey do both !). This is why the range of 
possible primordial He/H abundances (by mass) is 

2 10- 5 < 3He/ H < 3 10-4• 
The combination of the D and 3He primordial ranges leads to 

3 10- 5 < 3He+D < 3 10-4 
-H-

2-3 The 4He abundance 

The 4He abundance has been looked for in many di fferent 
astrophysic~l sites (see e.g. the book "Primordial Helium" 
edited by Shaver ~ 1983). Fro~ the thorough observations of 
blue compact (metal poor) galaxies performed by Kunth and 
Sargent 1983, the range of primordial He abundance (by mass Y) 
is 0.22 < Y " 0.25 while Gautier and Owen (1983) argue that Y 
can be as low as 0.15 " Y < 0.24 based on IR spectrograms of 
the Jupiter surface. 
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We will adopt here 0.22 (Y( 0.25 keepin~ in mind that there 
are no observational techniques regarding He which are free 
from difficulties (ionization of He in blue compact galaxies 
which may represent material which is far to be primordial, 
chemical fractionation effects in Jupiter etc). 

2-4 The 7Li abundance - ' 

From the recent work of Spite and Spite (1982) who observed 
Li in spectra of halo stars, the <primordial Li/H abundance (by 
number) seems to be Li/H ~ 10- 1 (figure 3). By taking into 
account possible Li destruction effects in the convective zones 
of these old stars (which should be less important than in disk 
stars) the 1orimordial Li abundance (by mass) is 

5 10- U < X(/Li ) < 1.5 10- 9 

I.' 

l.7' .34 

Figure 3 : Lithium abundances for some halo stars as a function 
of the1sffective temperature Teff. The corresponding Li/H ratio 
is 10- Clog NU = 2 for log n H = 12) for stars such that 
Teff > 5500 K (Spite and Spite 1982) 

The higher Li abundance observed in the Solar System should be 
due to a galactic enrichment induced either by red giants or by 
novae (Audouze et al 1983). 

To. sum .up this discussion, tabf.e 1 ~resents th~ ran.ges for 
the prlmordlal abundances of D, . He, He and 7Ll whIch are 
considered here. 

It is expected of course that future observations will. be 
planned to attempt to obtain better determinations of these 
primordial abundances. In this respect the decision taken by ESA 
not to select the Magellan UV project intending to look for the 
D/H ratio in Magellanic Clouds and different interstellar 
regions of our Galaxy is quite unfortunate. Nevertheless, there 



THE PRIMORDIAL NUCLEOSYNTHESIS 

are many difficulties (galactic evolution, 
fractionation, ionization problems, convective zone 
etc.) which will be hard to solve within a near future. 

Table 1 
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chemical 
depths, 

Range of possible values for the primordial abundances of the 
light elements 

--~----.-----""---------.------
elements Range (abundance by mass) 

.--I~-.... ~-.----.... ,---

3 -, The St~ndard Big Bang nucleosynthesis 

In tne Standard Big Bang model, six different hypotheses 
are made : 
1 The interacting particles (nucleons, electrons and 
positrons, neutrinos and photons) have been irl statistical 
equilibrium which means that TBig Bang ~ 10 K at the 
beginning 
2 - The laws of physics do not depend on time and location 
(Principle of Equivalence) 
3 - The Universe is homogeneous and isotropic (Cosmological 
Principle) 
4 - The rate of expansion of the Universe is fixed by the 
General Relativity theory, the characteristic expansion time .. 
is 

.. ~ l24 n G p(t)J-1/2 (1) 

where G is the gravity constant and pet) the total density 
given as a function of the Universe age t. 
5 - The expansion of the Universe is assumed to be adiabatic 
i.e. during the whole evolution of the Universe one has 

(2) 

where T 9( t) is the temperature in 10 9 K units and h the so 
called bar~on density parameter which remains constant and equal 
to 3.3 10- ~ all throughout the Universe history. 
6 - The Universe is asymetric : namely the density of antimatter 
is negligible compared to that of matter. This is why the 
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bar von-photon density ratio Tl has values as large as 10_ 10 -
10-9 • 

Within this framework, the nucleosynthesis starts when 
T9~1 when the photodesintegration of D is slower than the 
neutron absorption by photons and a few minutes after the Big 
Bang. 

Figure 4 : 3Calcutated pr¥?ordial abundances of the light 
elements D, He, He and Li as a function of the present 
~aryonic-density of the Universe (after Wagoner 1973). The D, 

He and 'Li abundances favour values of the present baryonic 
density of the Universe lower than the critical density which 
means that the baryons by themselves do not close the Universe 

Figure 4 3is the very' classical presentation of the 
calculated D, He, 4He and 'Li abundances made after Wagoner 
(1973) with respect to the present density of the Universe. 
Figure 5 is an updated presentation made by Yang et al 1984 of 
these calculated abundances as a function of n the ba~yon-photon 
density ratio which is strictly proportional to the present 
density of the Universe. 
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Figure 5 : calculated primordial abundances of itHe (by mass 
i.e. V), D, 3He and 7Li (by number) as a function of T1 the 
baryon over photon density for a neutron life-time of 10.6 
minutes. The He abundance V has been calculated for three values 
of the number of neutrino types Nv = 2,3 and 4. The error bar 
on the V(Nv = 3) curve shows the range in V corresponding to 
10.4 < ~ 1/2 < 10.8 minutes (After Yang et al 1984) 

Two important predictions can be made from the Standard Big 
Bang nucleosyr,thesis : 
1 - From D, He and 1Li abundances one can deduce both a lower 
limit and an upper limit of the present baryonic density of the 
Universe 

the baryon cosmological parameter 0B can be defined as 

0B = 3.5 10-3 (_~)3 (3) 
h 2 ,T110 

where ho = 
Mpc-1 , To 
1010 nB/n 

t " y 
ra 10. 

o 2.7 

(H/100), H being the Hubble constant in km s-1 
the cosmic background temperature and T110 = 
i.e. 1010 times T1 the baryon-photon density 

When 0B > 1 the Universe is closed (only by the baryons) 
while 0B ~ 1 corresponds to a open Universe (unless neutrinos 
have masses ~ 30 ev). From the D and (D+He 3 ) primordial 
abundance dispersions, one deduces the following range 
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with ho = 1/2 and X(~) > 7 10- 6 0B < 0.21 
with ho = 1 and X(D+ He) < 3 10-4 0B ) 0.01 
0.01 < 0B < 0.21 corresponds to 3 < n10 < 15 

J. AUDOUZE 

This means that Ex. them,selves the < b~ryonsc cannot, clo~e the 
4niverse. Apparently now there does not seem to bp any 
compelling experimental reason for neutrinos to have a mass 
signi ficant enough to compete with that of baryons (Mossbauer 
1984). Therefore from that analysis on can predict that the 
Universe is open. 

2 - The primordial abundance of helilJ11 puts constraints on the 
number of different neutrino families. 

This can be seen on figure 5 but may be more conspicuously 
on figures 6a, 6b, 6c, from Olive et al (1981) where the number 
of allowed relativistic neutrinos Nv appear to increase with Y 
at a rate of about 1 new neutrino family for any increase of 1~~ 

in Y. 

This correlation between Y and Nv comes from the fact 
that when Nv increases the total density of the Universe 
increases too. The addition to this total density is 

Tf 4 
7/8 9f(-) Pb for any new fermion family f where 

To 

~f is the statistical weight and T f their temperature. There 
1S than an increase by a factor of about 7/4 on the total 
density for each new neutrino family. As argued by Yang et al 
1984 if Y < 0.25, n10 < 7 and if the neutron life time is 
about 10.6 ± 0.2 minutes then there should exist three neutrino 
flavours. This value of Nv = 3 makes the GUT lovers happy 
because there is then a strict correspondance between the 3 
lepton and the 3 quark familes (Fayet 1984). 

Therefore given the uncertainties on the primordial 
abundances of the light elements, the Standard Big Sang 
nucleosynthesis is a quite valid model which predicts a low 
baryon density such that D.S = 0.1 :tDB·a~ and three different 
types of neutrinos. As discussed by eU>ourgo-Salvador et al 
(this volume), the uncertainties on the nuclear reaction rates 
do not affect signi ficantly the present discussion. However one 
should be aware that this model works only under specific 
conditions : 
a) the He abundance has to be. such that Y > 0.24 : in order to 
analyze the consequences of Y < 0.24 as suggested by Gautier and 
9wen (1983), in Audouze (1983) I used the theoretical curves 
Li(n) (figure 7a) and He (n, Nv , '"1/2) (figure 7b) provided 

by Schramm (1982). I deduced the n range from the Li 
observations of Spite and Spite 1982 (figure 7a) and reported it 
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on the He( TJ) (figure 7b). From this figure one can see that y < 
0.24 is barely consistent with Nv = 3. 

11.0 

-;z 10.5 
§. 

,#i 10.0 

I" 

11.0 N,:7 

c 

~IO.O 

9.5 
10S·";--'-'~'"':IO::;;;·IO.........l~'S--'-->"".....J_ 

~.nb/ny 

Figures 6a, 6b, 6c : j\llowed number of different neutrino 
families for three upper limits of the primordial He abundances 
: y " 0.23 (fig. 6a) ; y "0.25 (fig. 6b) and Y " 0.27 (fig. 
6c). The sketches are made after Olive et al (1981) in the plane 
(1:1/2, TJ) where 1:1/2 is the neutron life time in minutes and 
TJ the l~aryon-photon density ratio. Solid lines correspond to TJ > 
2 10- (coming from the dynamics of binary systems or smaH 
groups of galaxies) while dashes lines correspond to TJ > 10-
which is the lowest upper limit coming from the mass-luminosity 
ratios determined in the Solar neighborhood. For Y " 0.23 there 
is only room for 2 different types of neutrinos, for Y " 0.25 
(our prefered case) Nv = 3 and for Y "0.27 Nv = 5. 



54 J. AUDOUZE 

Figure 7a : Figure 7a shows the dependance of the calculated "1U 
abundance with the baryon-photon density ratio n on a plot drawn 
by . Schramm (1982). One can deduce from it the allowed range for 
n from the Spite and Spite (1982) measurements concerning the 
halo stars (Audouze 1983). 

b) The consideration of some contrasted models of chemical 
evolution of galaxies shows (Gry et al 1983) that if the models 
allows infall of external gas with primordial composition, the n 
ranges deduced from the abundances of He and D are strictly 
incompatible (figure 8). To make them compatible requires 
chemical evolution models where inflow of star processed gas 
takes place. 

Although the Standard Big Bang nucleosynthesis is a quite 
attractive and simple model one should realize that it is not 
free of possible difficulties coming either from primordial 
abundances or from models of chemical evolution of galaxies. 
This is why it is legitimate to consider possible alternatives 
to this otherwise beautiful theory. 
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Figure 7b : on this figure 7b where the He abundance Y is 
plotted against n by Schranvn (1982). Q'ne reports the n range 
deduced frome figure 7a for various' values of Nv and ~1/2 
(respectively the number of neutrino families and the life time 
of the neutron). One can then notice that values of Y ( .24 are 
hardly compatible with Nv = 3 (from Audouze 1983). 

4 - Some competing mod~ls to synthetize the light elements 

Many different works have attempted to propose models other 
than the Standard Big Bang nucleosynthesis (see Audouze 1984 for 
references). In this section I _ would like to provide a brief 
summary of two different proposals currently suggested by 
Audouze and Silk (1984). They concern 1) the possible partial 
photodisintegration of He to produce D by energetic photons 
coming from the decay of massive unstable neutrinos 2) the 
production of D during the pregalactic phase by spallation 
reactions. 
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Figure 8 : P5imordial abundances of D, 4He and 7Li as a function 
of n (the baryon over photon density ratio) and in the case of 
Nv = 3. The boxes come from the abundance ranges selected by 
Vidal-Madjar (1983). Box A (for D) corresponds to models of 
chemical evolution of galaxies with infall of external matter 
while Box B corresponds to models with inflow of star processed 
material (Gry ~ 1983). Box A leads to 4n values deduced from 
D quite discrepant to those deduced from He : in this case the 
Standard Big Bang nucleosynthesis is introuble. Models of 
chemical evolution in the inflow of star processed material 
might be the only one for which Standard Big Bang 
9ucleosy~thesis predicts consistent values for n together for D, 
Li and He. 
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4-1 Photodesintegratfon of He by energetic photons coming 
from massive neutrinos. 

_ The existence of massive unstable neutrinos during the 
early phases of the Universe has already been proposed by 
several authors (see Cowsik 1981 for a review). As shown by 
Lindley (1979) these massive neutrinos in dec~ying release 
energetic photons which could photodisintegrate He (if 50 < 
My < 250 MeV) or D if (10 < My < 50 MeV). In an analysis 
inspired by that of Hut and White (1984) and illustrated in fig 
9 we show that if the massive neutrinos have a life time ~ such 

4 
ty 10 

(.ec) 

-10 L-__ ~ __ ~ __ ~ __ ~ __ ~ ____ L-~ 

1KeV 1MeV 
my 

1GeV 

Figure 9 : Constraints on the mass My and the life time t1/2 
of mass'ive neutrinos which could have existed during the early 
phases of the Universe and decay into energetic photons which 
could either photodisintegrate He (region 1) or D (region II). 
Line 1 corresponds to the thermalization of the decay photons in 
the background radiation ; line 2 is the limit of the mass of 
the unstable neutrinos coming from the supernova observations ; 
line 3 is the limit below wich the energetic photons are more 
likely to be transformed into e+e- pairs than to induce any 
photodesintegration reaction ; line 4 and 5 set the. limits of 
the photon energy for which ~He is more likely to be 
photodesintegrated than D. Finally line 6 corresponds to a 
photon density increased by .a factor 3 with respect to the 
cosmic background radiation. (adapted from Hut and White 1983 
and from Audouze and Silk 1984). 
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that 10 4 < '& < 210 I sec and a mass Mv such that 50 .. Mv" 250 
MeV then the energetic photons coming from these massive 
neutrinos are able to photodisintegrate preferentially He than D 
(region 1 of fig 9). In this case the Big Bang may lead to a 
denser Universe where 4He is formed during the Big Bang 
nucleosynthesis (but not D) while D is formed afterwards by 
these photodisintegration processes. 

I f the mass of neutrinos is such that 10 < Ev < 50 MeV, 
with the same type of lifetime (region II of fig 9) then D is 
photodesintegrated by these energetic photons. One has then to 
consider models such as those of Rees (1983) where D can be 
formed in the matter surrounding black holes or by the model 
that we are considering now. 

2- Pregalaptiq cosm~c rays 

The propo~al according which D could be produced by 
spallation reactions during pregalactic phases of the Universe 
has already been presented by Epstein 1977 and Woltjer 1982. Our 
suggestion (already presented in Audouze and Silk 1983) is at 
variance of these early presentations in the sense that we have 
attempted to find ways to avoid the over production of 7Li with 
respect to D by the He + He spallation reaction. Our hypothesis 
is as follows : 
a) The Big Bang does not produce any light element : the 
pregalactic gas is then made of pure hydrogen. 
b) [ro~ this pregalactic gas a first generation of massive 
(10 -10 solar mass) stars is formed. As recalled during this 
symposium by Professor o. Godart, Mgr Lemattre was attracted by 
the idea of the existence of a first generation of massive stars 
born before the formation of the galaxies. 
c) These massive stars release strong winds during their 
lifetime. The matter of these winds is enriched into He (and 
partially also into CNO). From these winds, the pregalactic 
cosmic rays are accelerated and lead to the spallation reaction 
He (pregalactic cosmic rays) + H (pregalactic gas -+- D + 
which can take place in principle in the absence of the He + He 
-+- Li reaction. 

In Audouze and Silk (1984) the severe constraints acting 
against this proposal are discussed. While this process is 
energetically possible, it is only efficient for He pregalactic 
cosmic ray particles with energies > 300 MeV amu-1 which is a 
quite severe and may be lethal constraint regarding this 
proposal • 

. In order to keep the idea of a spallative ongl.n for D, 
D.D. Clayton (private communication) had the exciting idea that 
pregalactic cosmic rays are accelerated before the formation of 
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the first generation of stars and there might spall some of the 
He nuclei trapped in the atmospheres of these stars. The 
possible only difficulty with this entertaining idea is that the 
GCR proton flux might lead to an overproduction of gamma ray 
photons coming from the p+p + ~o + y reactions. 

5 - Conclusions 

To end up this presentation made in honor of Mgr LemaHre 
let me borrow the following quotation coming from Georges 
LemaHre and reported by J. Barrow and J. Silk at the end of 
their book "The left hand of Creation" : Mgr Lemaitre was asked 
like other prominent cosmologists what single question he would 
ask to an infallible oracle who could only answer by yes or no. 
Mgr Lemaitre made this wise choice "I would ask the Oracle not 
to answer in order that a subsequent generation would not be 
deprived of the pleasure of searching for and finding the 
solution". 

We are at about the same situation concerning the 
primordial nucleosynthesis : Standard Big Bang nucleosynthesis 
is certainly the most attractive possibility but nobody can 
swear that it will not encounter in a very near future some 
quite embarassing difficulties coming either from the primordial 
abundances of the light elements or their galactic evolution. We 
may not like much to-day to calIon some magic massive neutrinos 
or some quite contrived pregalactic spallation processes. In 
cosmology the problems are sufficiently complex such that the 
next generations inspired by the example of scientists with a 
stature like that of Mgr George Lemaitre may still have the 
pleasure of searching in problems as exciting as the primordial 
nucleosynthesis. 
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Abstract A generalization of the Friedman-Lemaitre 
-Robertson-Walker (FLRW) models is obtained by weaken­
ing the assumptions under which they are derived from 
Einstein-s relativity. It is assumed that each section 
t = const is homogeneous and isotropic while the space­
time itself not necessarily has any symmetry. The re­
sulting Stephani Universe has an undetermined function 
of time in place of the constant curvature index k. In 
this Universe, some spatial sections may be open while 
others will be closed. It.s geometrical picture is pre­
sented and its physical properties are discussed. 

1. GENERALIZATIONS ARE COMPATIBLE WITH OBSERVATIONS. 

The Friedman-Lemaitre-Robertson-Walker (FLRW) so­
lutions of Einstein-s field equations (1 - 4) were der­
ived under the very strong assumptions that the space­
time is homogeneous and isotropic. These assumptions 
were not meant to reflect our knowledge about the Univ­
erse, but rather our ignorance: at that time (1930-ies) 
no structures larger than galaxies were known. The hom­
ogeneous and isotropic distribution of galaxies was 
thus a reasonable first hypothesis which at the same 
time made Einstein-s equations tractable. 

The models proved successful in describing several 
observable properties of the Universe, like Hubble-s 
expansion law, the abundance of helium or the microwave 
background radiation. These successes are often under­
stood as confirmations of the underlying assumptions. 
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In fact, they only confirm that the Universe was much 
hotter and denser in the past than it is now and that 
it was very nearly isotropic at the time when the radi­
ation last interacted with massive particles. Even 
within these classical models massive particles and ra­
diation are considered as two independent components of 
matter which decoupled in the moment of last scattering 
and later evolved independently. Whatever happened to 
particles afterwards, did not affect the distribution 
of radiation. Therefore, the isotropy of radiation does 
not force upon us a model in which all matter is dis­
tributed so symmetrically. 

Once isotropy is given up, the requirement of hom­
ogeneity is not compelling anymore. The Universe is 
assumed homogeneous because it would be unnatural if it 
were spherically symmetric only around us (5), but if 
it is not spherically symmetric at all, it might be in­
homogeneous as well. This statement does not speak aga­
inst the copernician philosophy. According to it, no 
place in the Universe should be preferred. This does 
not mean that all the places in the Universe should be 
exactly identical. The latter assumption fulfills the 
former, but is much stronger (see also Ref. 6). 

A purely theoretical argument also shows that more 
general models of the Universe can be reconciled with 
the existing data (cf Fig. 1, in Ref. 7). Only the 
events lying on our past light cone are directly ob­
served, and only directions to them can be measured 
with a satisfactory precision. All other data needed to 
calculate the spatial distribution of matter are in­
ferred therefrom through a model-dependent procedure: 
1. Through each event on the light cone we draw a world 
line representing the history of that portion of 
matter, e.g. a galaxy (the equations of those lines can 
only be calculated given a specific class of space­
times); 2. Through the vertex of the light cone we draw 
a hypersurface S of events simultaneous with "now" 
(Even within a fixed model this depends on the refer­
ence system chosen. The reference system is usually at­
tached to a physical structure in the spacetime, e.g. 
the congruence of matter world-lines); 3. The points of 
intersection of the world-lines with the hypersurface S 
represent the positions of the galaxies now (These po­
sitions depend on the slope8 of the matter world-lines, 
i.e. on the velocity of expansion, given the model and 
given S. This velocity can be calculated from the ob­
served redshift - provided we know precisely what part 
of the redshift is of cosmological origin). 4. Only now 
can we calculate the spatial distribut5.on of matter. 
Thus a model is assumed before any observations are 
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taken into account. It can be confirmed or refuted by 
these observations, but is in no way implied by them 
(see also Refs 6, 8, 9). 

2. GENERALIZATIONS ARE IN FACT NECESSARY. 

According to present .data, galaxies are grouped 
into clusters and shells surrounding voids which con­
tain no visible matter at all (10). Thus the Universe 
might possibly be homogeneous only on still larger 
scales (if at all). Such a large scale homogeneity cou­
pled with small scale inhomogeneity is not properly 
described by a spacetime with a continuous transitive 
group of symmetry (curve a in Fig. "I) of which the FLRW 
spacetimes are examples. A more appropriate description 
would be a spacetime with a discrete group of symmetry 
in which matter density would be given by a function 
like curve b in Fig. 1 (see similar remarks by Ellis 
(6». Such distribution of matter does not distinguish 
any single observer because, if the space is infinite, 
there exist infinitely many identical copies of any 
chosen finite portion of matter distributed regularly. 
Such a solution can only be found if the assumption of 
continuous homogeneity is relaxed altogether. 

Fig 1. Matter density vs position in a 
3-space that is homogeneous with respect to 
(a) a continuous group of symmetry, (b) a 
discrete group of symmetry. 

Moreover, the FLRW models taken literally tell us 
that no galaxies may ever have formed out of a homo­
geneous and isotropic background. All theories of ga-
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laxy formation must consider perturbations of the FLRW 
models (see e.g. (11». If we have to go beyond the 
FLRW models, it is equally reasonable to consider exact 
generalizations instead of approximate perturbations. 

This author is in a definite minority, but not 
alone with his criticism of "standard cosmology". Sim­
ilar concerns were expressed by Ellis (6, 8, 9,. 12-14), 
MacCallum (15) and Mashhoon (16, see also this volume). 

Since the FLRW models proved so successful, the 
more general new models should contain them as special 
cases, i.e. as first approximations. This paper will 
show how a certain generalization results if the as­
sumptions underlying the FLRW models are slightly re­
laxed. This generalization does not go sufficiently far 
in order to be free from the above mentioned 
weaknesses. Its existence proves however that more gen­
eral solutions can still be reasonably simple. 

3. ASSUMPTIONS. 

The considerations of the previous sections show 
that what is checked against astronomical observations 
is the 3-dimensional space t now rather than the 
whole spacetime. It is then a natural question, to what 
extent the 3-geometries of the spaces t = const deter­
mine the 4-geometry of our spacetime. Let us assume, as 
is commonly done, that: 

1. Each 3-space t = const is homogeneous and iso­
tropic, 

2. The spaces are orthogonal to the family of 
t-coordinate lines, 

3. Matter moves along the t-lines, 
4. The Einstein-s field equations are fulfilled, 

the source being a perfect fluid, 
but let us consider the possibility that: 

5. The spacetime not necessarily has any symmetry. 

4. THE SOLUTION. 

The assumptions to 5 produce the following solu­
tion of the Einstein-s equations (17): 

2 
ds 

D 

2 2 
D dt 

222 
- (R / V ) (dx 

R 3 V 
F - ) , 

V a-t R 

2 
+ dy 

2 
+ dz ), (4 • 1 ) 

(4.2) 
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2 2 2 
V = 1 + - k { (x- x ) + (y - y ) + (z - z ) }(4.3) 

4 0 0 0 

2 2 2 
k (C - 1 IF )R , (4.4) 

2 
Ke: 3C (4.5) 

2 dC V a V 
KP - 3C + 2C I ( - ) , (4.6) 

dt R at R 

0 
a 0, 

(4.7) 
i 2 2 

a (V IDR )D, i 1 , 2, 3. 
i 

where F, R, C, x , y ,z are arbitrary functions of 
000 

time, e: is the energy density, p is the pressure, and a 
is the acceleration field of the fluid flow. 

This solution was first found by Stephani (18) in 
1967, but was not investigated from the point of view 
of cosmology. 

5. LOCAL PROPERTIES OF THE SOLUTION. 

The solution has in general no symmetry at all. 
Its most striking property is the fact that k is a 
function of t, the sign of k being not determined. 
Since k is the curvature index of the 3-spaces t = 
const, one sees that in this spacetime some spacelike 
sections have positive curvature (and so should be 
closed) while some others have negative or zero curva­
ture (and so should be open). Other differences with 
the FLRW solutions are the following: 

1. Matter moves with acceleration, i.e. not on ge­
odesic lines. 

2. The equation of state is not of the form e: 
e: (p), but depends on the position in the space: p = p 
(e:, x, y, z). 
This last property means that a single thermodynamic 
function of state (e.g. pressure) does not suffice to 
describe matter in this model, at least one other func­
tion is necessary, e.g. temperature which would have 
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different values in different places. 
The Stephani Universe reduces to a FLRW model when 

anyone of the following situations occurs: 
1. The functions x , y , z and k are constant. 

a a a 
2. The acceleration field vanishes (i.e. matter 

moves on geodesics). 
3. The equation of state is of the form € = €(p), 

i.e. it does not depend on position. 
This solution is conformally flat, and moreover it 

is the most general conformally flat solution with a 
perfect fluid source and nonvanishing expansion (19). 

6. GLOBAL PROPERTIES OF THE STEPHANI UNIVERSE. 

Stephani has shown (18) that this solution can be 
embedded in a flat five-dimensional space. To construct 
the embedding explicitly would in general be too diffi­
cult because of the 6 arbitrary functions of time. It 
was more instructive to study a special case in which 
the embedding could be performed explicitly. 

Such a special case results when e const; the 
Stephani Universe reduces then to the deSitter solu-
tion. It was further assumed x = y z = a, R = 

a a a 
const, k = -to In the case e = const these additional 
assumptions amount just to a choice of a simpler coor­
dinate system (foliation). 

The deSitter manifold is then a 4-dimensional one­
sheet hyperboloid embedded in a 5'-dimensional pseudoeu­
clidean space. The metric form of the 5-space is: 

2 
dS 

22222 
dZ - dX - dU - dW - dY , 

while the equation of the deSitter hyperboloid is: 

2 2 2 2 2 2 
Z - X - U - W - (Y - 1 Ie) -1 Ie 

or, in parametric form: 

2 2 2 2 2 1/2 
Z = R (x + y + z ) (e R + t) I 2V 

(X, u, W) (R/v) (x, y, z) 

2 2 2 2 
Y eR (x + y + z ) I 2V 

(6.1 ) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 
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Fig. 2. Projection of the deSitter manifold 
onto the (Y, Z) plane. Only sectors I and IV 
are covered by the parametrization (6.3) 
(6.5). See text for more remarks. (Adapted 
from Ref. 20 with the permission of the Ple­
num Publishing Corporation). 

The projection of the hyperboloid (6.2) onto the 
(Y, Z) plane in the space (6.1) is shown in Fig. 2. On 
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the figure one can see that a spacetime of a simple to­
pology can result from the foliation introduced in sec. 
3. The sections t = const of the spacetime are inter­
sections of the hyperboloid (6.3) - (6.5) with the hy­
perplanes Z/Y = const. They all contain the (X, U, W) 
space (the X axis in Fig. 2) and their tilt to the (X, 
U, W, Y) hyperplane (the (X, Y) plane in Fig. 2) is 

2 2 
determined by k(t) = -to With -C R < t < 0 we have 
k (t) > 0 and the tilt of the t = const hyperplanes is 
such that their intersections with the hyperboloid 
(6.2) are 3-ellipsoids (ellipses in Fig. 2) - closed 
spaces of positive curvature (in the special case t 

2 2 
-C R it is a 3-sphere). With t = 0 we have k = 0 and 
the intersection is a 3-paraboloid (a parabola in Fig. 
2) - the flat space. With t > 0 (k < 0) the intersec­
tions are two-sheet hyperboloids (hyperbolas in Fig. 2) 
- open spaces of negative curvature. 

Fig. 2 faithfully represents not only the topology 
of the general Stephani solution, but also several de­
tails of its geometry - more than would be worth dis­
cussing in this place (see Ref. 20). Only the singular~ 
ity at x = y = z = 0 seen on Fig. 2 looks differently 
in the general case. It is then a true curvature singu~ 
larity, and it occurs at different values of (x, y, z) 
for every t. It is an additional singularity to the one 
predicted by the Hawking-Penrose theorems (21) which 
occurs also in the FLRW models. The additional singu­
larity can be avoided when the functions k(t) and R(t) 
and their derivatives obey certain inequalities (20). 
If k(t) > 0 for all t, then the inequalities can be re­
adily fulfilled. Otherwise, they imply that pressure 
must be negative somewhere. This, in turn, can only be 
avoided by matching the Stephani Universe to an empty 
space solution. In any case, however, the weak energy 
conditions of Hawking and Ellis (21), € > 0 and € + P 
> 0, can be fulfilled. 

7. IN WHAT SENSE IS THIS UNIVERSE HOMOGENEOUS? 

The pressure and acceleration scalar do depend 
here on spatial coordinates. On the other hand, we as­
sumed in sec. 3 that all the 3-spaces t = const should 
be intrinsically homogeneous. Is this a contradiction? 

No - because pressure and acceleration are not in­
trinsic properties of these 3-spaces. They are fields 
defined on the 4-dimensional spacetime (or on 
4-dimensional subsets thereof). As such, they have well 
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defined values over the spaces t = const. These values, 
however, can never be calculated if we are given only 
the geometry of a single 3-space t = const - they are 
determined by the whole 4-dimensional metric tensor 
t.hrough the Einstein-s field equations. The theory of 
relativity is telling us here, in its own language, the 
message known from statistical physics: it is impossi­
ble to determine pressure (in any kind of matter) by an 
instantaneous measurement. 'rhe measurement must always 
take a finite time (the pressure must be defined over a 
continuous family of t = const spaces), and only after­
wards can we determine momentary values of pressure -
as limits at At --) 0 of mean values over time-inter­
vals At. This fits with the microscopic definition of 
pressure - as the mean momentum transferred by the gas 
particles to a unit surface in a unit of time. 

Let us consider a more general spacetime in which 
the 3-spaces t = const are orthogonal to the t-lines, 
but have arbitrary intrinsic geometries: 

2 
ds 

2 2 
= D dt 

i j 
- h dx dx , 

ij 
(7.1 ) 

where i, j = 1, 2, 3 and all the functions (D, h ) are 
ij 

arbitrary. Let us assume this metric fulfills the Ein­
stein-s field equations with a perfect fluid source 
whose velocity field is tangent to the t-lines. The 
density of matter can then be calculated to be 

ij 2 
Ke: R(h)/2 + {(h h ,) 

ij t 

ij 
+ h , 

t 

2 
h , }/8D 
ij t 

(7.2) 

where R(h) 
metric h 

ij 
need not be 

is the 3-dimensional scalar curvature of the 
Eq. (7.2) shows that also matter density 

spatially homogeneous when h is. It 
ij 

happens to be so for the Stephani Universe by accident 
(and for the Bianchi type models by assumption). 

8. IS THE STEPHANI MODEL COMPATIBLE WITH OBSERVATIONS? 

Since the FLRW models are contained in this one as 
special cases, and are themselves believed to be good 
models of the observed Universe, the answer to the 
question asked above is immediate: yes, the functions 
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k (t), X (t), y (t) and z (t) can always be chosen to 
000 

vary so slowly that no observation can distinguish them 
from constants to which they reduce in the FLRW limit. 
This statement raises a further question: what are the 
limits imposed by observations on the derivatives of 
these functions? This will be a subject of a separate 
study. An ultimate question is however: can the Stepha­
ni model describe anything that the FLRW models could 
not? The calculations i.n it are undoubtedly more in­
volved, so does it payoff to use it? 

To the author, it was interesting to learn that 
the classification of cosmological models into the 
open, the flat and the closed one is not required by 
Einstein~s theory itself, but is an artifact of the 
very strong symmetry requirements imposed on the FLRW 
models a priori. The Stephani model had thus at least 
this conceptual advantage. Whether it has any others, 
remains to be seen. Further generalizations are needed 
in any case, since, with spatially homogeneous 
mat.ter-density, the modet cannot serve to describe the 
galaxy formation in a nonperturbative manner. 
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ABSTRACT. The present standard model of cosmology is based on the 
cosmological principle which has only limited observational sup­
port, especially in connection with the issue of large-scale homo­
geneity. The recent discovery of voids provides further im~etus 
for the study of large-scale inhomogeneities. It is proposed to re­
place the hypothesis of spatial homogeneity by the assumption that 
the (matter and radiation) content of the universe is on the ave­
rage uniform, i.e., the equation of state of the system is every­
where the same. It has been shown that if (a) the universe is spa­
tially isotropic, (b) the content of the universe is approximated 
on the average by a perfect fluid obeying a physically reasonable 
equation of state p = p(~), including p = 0, and (c) the expansion 
or contraction of the universe is shear-free, then the only ohysi­
cally acceptable nonstatic cosmological solution of the Einstein­
Maxwell equations is the Friedmann-Lemaitre-Robertson-Walker (FLRW) 
universe. If (c) is relaxed, then Einstein's equations allow solu­
tions which differ from the FLRW models by the existence of radial 
inhomogeneities due to shear. As a first step toward a general 
study of inhomogeneities, local models with radial inhomogeneities 
have been developed and the observational quantities for such mo­
dels have been determined. 

I. INTRODUCTION 

To interpret cosmological observations, it is necessary to 
have knowledge of the cosmic gravitational field which, in turn, 
must be determined from the distribution and motion of matter over 
cosmological scales. The distribution of luminous matter in the 
universe appears quite nonuniform. The recent discovery of huge 
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voids in the distribution of galaxies has led astronomers to con­
template that the galaxies may form cellular patterns rather than 
disjoint clumps (see Shandarin and Zeldovich, 1983). On the other 
hand, the present standard model of cos~ology is based on the 
Friedmann-Lemaitre - Robertson-Walker (FLRW) cosmological models 
which embody the hypothesis that the universe is homogeneous and 
isotropic on a large enough scale. The remarkable isotropy of the 
microwave background radiation, the isotropy of the X-ray back­
ground, and the isotropic distribution and recession of galaxies 
and radio sources provide impressive evidence in favor of the hypo­
thesis of isotropy of the universe. The evidence in support of spa­
tial homogeneity is not as strong, however. The problem of deter­
'mination of cosmic distances is at the root of the difficulties 
that the verification of the hypothesis of spatial homogeneity has 
encountered. The observational limits on anisotropy place severe 
restrictions on any significant inhomogeneities that might exist, 
except, of course, for radial inhomogeneities (Barrow, Juszkiewicz 
and Sonoda, 1983). There is no reason to suppose that our cosmic 
neighborhood is in a central position with respect to the distribu­
tion of matter in the universe. On the other hand, significant lo~al 
inhomogeneity might exist which could well influence cosmological 
observations. It should be emphasized that the assumption of homo­
geneity is strictly valid if the averaged-out content of the uni­
verse is scattered uniformly throughout space. But the averaged-out 
distribution may in fact be strongly inhomogeneous locally. This 
can happen, for instance, if the prevailing structure in the uni­
verse is of network type. 

To investigate the possibility of existence of local large­
scale inhomogeneities, it is proposed to replace the geometrical 
hypothesis of spatial homogeneity by the assumption of uniformity 
of the nature of matter that occupies space. For simplicity, the 
averaged-out content of the universe will be represented by a per­
fect fluid with proper energy density ~ and pressure p. The new 
hypothesis of uniformity then implies that the matter satisfies the 
same eqaation of state p = p(~), or p = 0, everywhere. 

The pioneering studies of the inhomogeneous cosmological models 
are due to McCrea and McVittie (1930), Lemaitre (1931) and Tolman 
(1934). As a first step toward the study of general inhomogeneous 
spacetimes, it proves interesting to focus attention on locally 
isotropic models. To develop local models incorporating radial in­
homogeneities and based on assumptions that are consistent with 
observations, nonstatic and isotropic solutions of the field equa­
tions will be considered for a perfect fluid satisfying an equa­
tion of state. The general solution of Einstein's equations satis­
fying these conditions is not known. The problem is considerably 
simplified, however, if it is assumed that the motion of matter 
has no shear, i.e., the rate of expansion (or contraction) is the 
same along the lateral and radial directions so that an infinitesi­
mal sphere remains a sphere during the motion. On the other hand, 
shear would cause an infinitesimal sphere to become a spheroid as 
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the universe expands (or contracts). It has been shown (Mashhoon 
and Partovi, 1980) that the only nonstatic shear-free solutions of 
the Einstein-Maxwell equations which are isotropic, satisfy an 
equation of state of the form p = p(~), or p = 0, and are physically 
reasonable (i.e., ~ 2: 0, P 2:-0, and 11 2: 3p or 11 2: p) are the FrJU'l mo­
dels. This result has been recently partially generalized (Collins 
and Wainwright, 1983; Mashhoon and Partovi, 1984): For neutral mat­
ter the assumption of isotropy may be replaced by the weaker hypo­
thesis of irrotational motion and still the FLRW class remains the 
only physically reasonable solution. It follows from these results 
that in physically reasonable cases radial inhomogenities are asso­
ciated with shearing motions. Shear inhomogeneities are therefore 
considered in the next section and their influence on cosmological 
observations are studied. 

II. SHEAR INHOMOGENEITIES 

Very little is known about exact isotropic solutions with 
shear; the Tolman solutions for dust provide the best known exam­
ples. If the metric of an isotropic spacetime is expressed as 

2 2 2 2 2 2 
-a (t,r)dt + b (t,r)dr + R (t,r)dn , 

in comoving coordinates, then the shear is proportional to 

a(t,r) 1..(1.. ab _ 1.. aR) 
a b at R at 

(1 ) 

(2) 

In the case of dust, the shear must depend on the radial coordinate 
if inhomogeneities are to exist. For a general equation of state 
p = p(~), the general solution of the field equations is not known. 
To simplify the problem, one may impose constraints on the func­
tions a,b, and R and search for possible solutions. To this end, 
one may assume, e.g., 

1 ab 
--= 
ab at h(t) (3) 

as an expression of a generalized Hubble law. With this assumption 
the comoving coordinate condition may be integrated once to yield 

1..~-h(t)R 
aClt 

s (t) (4) 
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where s(t) is proportional to the shear. Among the Tolman solu­
tions for dust, the condition (3) holds only for the homogeneous 
(FLRW) solutions. Various attempts to find simple shearing solu­
tions satisfying (3) for the equation of state ~ = 3p have been 
unsuccessful. Thus no isotropic solution of the field equations 
for radiation in equilibrium is known at present which contains 
shear inhomogeneities. Static solutions for radiation in equili­
brium have been considered by Klein (1947). Moreover, the only 
inhomogeneous solution of the form a = a(r) and b = b(t) for an 
equation of state ~ = (y - 1)p with constant y exists when y = 2 and 
b is a constant. This solution has been studied by Wesson (1978). 

In the absence of a general solution and in view of the fact 
only local inhomogeneities are of interest, expansions of the func­
tions~ and R will be considered with respect to the radial 
coordinate r around the center of symmetry (r = 0). Einstein's 
equations for a perfect fluid with a reasonable equation of state 
imply (Partovi and Mashhoon, 1984) 

1 2 
a = 1 + ~r + •.. (5) 

b (1 + ~Br2 + •.. ) S (t) (6) 

and 

1 2 r (1 + 2Yr + ..• ) S (t) (7) 

where a,S, and yare functions of time only and the shear is given 
by 

(] 
1 d 2 
2dt(S-y) r + ••• 

The comoving coordinate condition implies that 

d -(S - 3y) 
dt 

-2Ha 

where S -3y is the spatial curvature and H is the Hubble para­
meter 

(8) 

(9) 

H 
1 dS 
S dt 

(10) 

The expansion of the metric quantities has been considered only to 
second order in the radial coordinate since in our local analysis 
the expansion of the observational quantities in terms of the red­
shift parameter z is of interest only to second order (z < 1). In 
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general, the leading terms in the ex,?ansion of the observational 
quantities in z are the same as in the FLRW models and the higher­
order terms are modified by the presence of inhomogeneities. For 
instance the luminosity distance is given by 

z 1 2 H + 2H (1 - q - C) z + 

where 

ex 
C - ---

is the inhomogeneity parameter and q, 

2 
qH 

(11 ) 

(12) 

(13) 

is the usual deceleration parameter. Hence the physical parameter 
that would be determined from the luminosity distance-redshift 
relation, taking due account of the difficulties associated with 
source evolution, is q + C. On the other hand 

q - C = t [ rl (1 + 3;) ] r o 

where rl is the density ].I in units of the "closure" density 
3H2/(8n). It follows from (14) that 

(14) 

(15) 

if the equation of state satisfies the condition ].I L 3p. One can 
give a similar analysis for the p = 0 case (Partovi and Mashhoon, 
1984) . 

The absence of any firm observational upper limit on the 
shear inhomogeneity in our local cosmic neighborhood implies that 
significant local deviations from the FLRW models could exist. 
According to a singularity theorem (cf. Hawkinq and Ellis, 1973), 
the existence of a trapped surface in the universe leads via the 
gravitational field equations (and certain other reasonable condi­
tions) to the prediction of a singularity in the spacetime. Trapped 
surfaces exist in FLRW models; in fact, the physical radius of the 
apparent horizon RAH is greater than, equal to, or less than the 
Hubble radius H- 1 for the spatially open, flat or closed model, 
respectively. If the universe is sufficiently homogeneous over 
length scales of the order of the Hubble radius, then a singularity 
must exist (e.g., an initial singularity). However, the possibility 
of existence of shear inhomogeneities can vitiate this argument. 
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III. NEWTONIAN COSMOLOGY 

The meaning of shear-free motion, upon which the previous 
analysis is based, can be elucidated further by considering its 
Newtonian analog. The absence of isotropic shear, which leads to 
the uniqueness property of FLRW solutions, corresponds in the New­
tonian theory to homologous motion. Various investigations of gra­
vitational collapse in Newtonian theory have indicated that homolo­
gous motion develops in the late stages of collapse (cf. Cohn, 
1980). A consistent treatment of the isotropic and homologous motion 
of a perfect fluid in Newtonian theory leads to the conclusion that 
the only cosmological (i.e., unbound) solution with an equation of 
state p = p(~), or p = 0, is the standard homogeneous solution of 
Newtonian cosmology. Thus the uniqueness property of FLRW solutions 
has an exact Newtonian analog. It is important to recognize, how­
ever, that the Newtonian result is not a weak-field limit of the 
relativistic theory. To clarify the relationship between these cos­
mological theories, it is useful to consider an immediate conse­
quence of the principle of equivalence, namely that a weak-field 
approximation to any gravitational field may be obtained over a re­
stricted spacetime domain except at a singularity of the gravita­
tional field. This can be illustrated for the FLRW model, 

2 2 2 -2 2 2 2 
-ds = -dt + S (t)f (r) (dr + r de ), (16) 

where the fundamental observers follow geodesics. Here 

f(r) (17) 

and k = +1, 0, or -1 for the closed, flat or open models. To de­
scribe local observations, the observer can set up a local Fermi 
coordinate system (t,X,Y,Z) based upon the natural system of 
parallel-transported tetrads A~ ( . Thus in the (t,r,e l ¢) coordi­
nate system, the only nonzero te~bad components of A~(a) are those 
wi th ~ = a. Near the observer, the spacetime deviates only slightly 
from the Minkowski spacetime and the metric is given to second order 
in spatial Fermi coordinates by 

2 2 2 2 2 [ 1 2 -2 2] 2 *2 -ds = -(1+qH p )dt + dp + 1- 3(H +kS )p p de , (18) 

it it 
where spherical coordinates (p,e ,¢ ) have been introduced in the 
Fermi frame, 

2 
p (19) 

etc., and Hand q have their usual meaning in terms of S(t). Ein­
stein's equations imply that 

2 
qH (20) 
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and 

2 -2 8IT 
H + kS = 311 (21) 

It should be noted that the metric in the Fermi frame does not de­
pend upon r,G, or ¢ as a consequence of the spatial homogeneity of 
the FLRW spacetime. Though the gravitational field is weak in the 
spacetime neighborhood of the observer, it is nevertheless fully 
relativistic. To obtain a Newtonian approximation, additional re­
strictions on the magnitude of velocities is necessary. Thus the 
Newtonian potential is given by 

(22 ) 

The weak-field solution is local, in contrast to cosmology which 
by its very nature must be global. 
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We present some results concerning the vacuum cosmo­
logical models which admit a 2-dimensional Abelian 
group of isometries classifications of these space­
times based on the topological nature of their space­
like hypersurfaces and on their time evolution, 
analysis of the asymptotical behaviours at spatial 
infinity for hyperbolical models as well as in the 
neighbourhood of the singularity for the models pos­
sessing a time singularity during their evolution. 

The spatially homogeneous and isotropic cosmo­
logical models, known as Friedmann-Lemaitre-Robertson­
Walker models,constitute a satisfactory description of 
the present stage of evolution of our universe. However 
in addition to the mathematical interest of more genera 
cosmological models, there are undeniable physical 
reasons to study such universes. They give us the 
possibility of examining if the properties of the 
simplest models are either a result of the symmetries 
or an intrinsic physical characteristic They could 
also provide a better model for the first phases of 
our universe and in particular, information on the 
more general form of a space-time in the neighbourhood 
of the initial singularityl. 

The first step towards complexity is relaxing 
the assumption of isotropy. The spatial homogeneity is 
then expressed by imposing to the models to be inva­
riant under the action of a 3-dimensional group of 
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isometries, G3 , acting transitively on spacelike hyper­
surfaces. These are the Bianchi models classified in 9 
types following the different possible G3' These models 
were intensively studied during the last fifteen years2. 

More recently, inhomogeneous generalizations 
of certain models were also considered 3 • Because of the 
mathematical complexity of the generic models, the 
major attempts have been concentrated on a class of 
models with one-dimensional inhomogeneity. These models, 
characterized by an Abelian G2 acting orthogonally 
transitively on 2-dimensional spacelike orbits, are 
described by a generalized Einstein-Rosen metric. In 
particular, if the two Killing vectors are hypersurface­
orthogonal, this metric can be globally diagonalized 
and written in the following form 

ds 2 = eAC-dt2+dz2)+R(eXdx2+e-Xdy2) (1) 

where the (real) functions A,R and X depend on both 
variables t and z. The two commuting Killing vectors 
are then (a/ax) and (a/ay). 

In this paper, we shall describe some results 
that we have recently obtained on the nature and the 
behaviour of vacuum cosmological models with the 
metric (1) (for more details, see [6J and [7J). First 
of all, one must concentrate on the global structure, 
that is the topological nature, of these space-times. 
For that purpose, the function R plays a primordial 
role. Indeed, the separated solutions 4 R=f(t) g(z) of 
the field equation 

(2) 

can only be of the following types 5 

(i) R=t or t z corresponding to the plane topo­
logies usually represented by a compactification of R 3 , 
the three-torus topology, T3. 

(ii) R=sin t sin z corresponding to the sphe­
rical topologies, S3 (3-sphere) and SlxS2 (3-handle). 

(iii) Both f and g are one of the following 
functions : sinh, exp or cosh. These nine possible 
cases correspond to the hyperbolical topologies, H3 
(3-hyperboloid), SlxH2 and a third kind of topology, 
denoted H ,in which both 2-dimensional surfaces (x,z) 
and (y,z)sP have the H2-topology. 
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The plane and spherical cases are closed 
spaces in the sense that their spacelike hyper surfaces 
are compact. The plane model was intensivelx studied 
by Misner [8J, Gowdy [9J, [10J and Berger [llJ and will 
not be considered here anymore. The s~herical models 
we rea Iso stu die din [ 9] ' [1 0] and [1 2 J but wit hIe s s 
details. In our knowledge, the hyperbolical models 
were not considered so far. However, they are interes­
ting at several levels 

(i) They restore the parallelism between the 
spherical, plane and hyperbolical topologies already 
present in the simplest models. 

(ii) As they form a large class, they offer 
more various behaviours not always present in other 
models. 

(iii) They constitute a natural generalization 
of Bianchi models of types III,V and Vl h and they even 
contain spatially homothetic models of types fI'fIII, 
fV and fVl h as particular cases. 

(iv) Finally, being inhomogeneous open models, 
they pose the very complicated problem of their asymp­
totical behaviour with respect to the space like varia­
ble. 

The classification of the spacelike hypersur­
faces is then based on their topology but also, in 
cases H3 and SlxH2, on the coordinate system used to 
describe this topol ogy 6 (indicated in Table 1 by the 
first down index). Once these hypersurfaces are classi­
fied, it is necessary to classify their time evolution. 
This evolution essentially depends on the function 
fet), a choice indicated by a second down index. The 
combined. result of both these classifications as well 
as some other characteristics of the corresponding 
models, are given in Table 1. 

We have calculated most of the exact solutions 
of the Einstein's field equations for these space­
times 8 and then examined their regularity with respect 
to the space like variable z. This led us to compute, 
with the help of the algebraic program SHEEP, the com­
ponents of the Riemann ten~05 in a Lorentz basis and 
the curvature invariant Ra Y R B o' The requirement 
that these expressions be a Y bounded at spatial 
infinity imposes some regularity conditions on the 
solutions 9 , However, this is only a necessary 
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g(z) sinh(z) exp(z) cosh(z) sin(z) 

f(t) ~ It 
[o.-+<») R R [0. 1TJ 

:mixed cs-r ti cs-r i cs-r 

sinh(t) (O.-+<») (H3) 
I s 

(Hsp)1 
(SIX 2 (SIX 2 

HI») H 3) I 

sp r-r null r-r ti s-r 

exp(t) R 3 
(H I) 2 

(Hsp) 2 

(SIx 2 
HI) 2 '(S Ix 2 

H 3)2 

sp r-r sp {r-r} 
s-s 

3 

cosh(t) R 
(H I) 3 

(H sp )3 
(SIx 2 

HI) 3 

mi es-cs 
53 

sin(t) (0. 1T) 
I SX s2 

Table I : Classification of the spherical and hyperbo­
lical generalized Einstein-Rosen space-times with me­
tric (I) based on the function R - f(t) g(z). The ran­
ge of variation of the spacelike and timelike variables 
is indicated as I and It respectively. For each possi­
ble case. we specify the name of the model (precising 
its topology and the coordinate system describing it). 
on the upper left. the causal nature of R.~ • the gra­
dient R~and finally. on the upper right, the nature of 
the time evolution of the model, cs, sand r denoting 
respectively a curvature singularity. a singularity 
(at least a whimper singularity) and regularity. Thus. 
a space-time characterized by cs-r, evolves from an 
initial curvature singularity to regularity. 
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requirement in order to ensure regularity since the 
corresponding space-time would be singular in another 
basis a whimper singularity would then occur. This 
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question of regularity or singularity of a general 
space-time is however a very complicated problem neces­
sitating a global analysis of the space-time, which 
goes beyond our purpose (for a review, see [14J). 

The behaviour of the curvature invariant and of 
the Riemann tensor components was then examined with 
respect to the timelike variable t; the results are 
also indicated in Table l. For f=sinh(t), we have been 
able to show that a singularity occurs at t=O by cal­
culating the asymptotic solution in the neighbourhood 
of t=OlO. If 

x '\, S(z) In(t) + T(z) (3 ) 

where 11'\,11 means lIasymptotic expansion to the first 
order in t", the metric functions can be written as 
follows 

gxx '\, f (z)t l + S 
x 

f (z)t l - S (4) 
gyy '\, 

y 

gzz '\, f (Z)t(S2_ 1)/2 
z 

where the functions f. are known expressions of Sand 
T. This expansion als~ allows us to characterize the 
behaviour of these spaces in the neighbourhood of their 
initial singularity (see Table 2). When one goes towards 
the singularity, two possibilities arise, either the 
model is contracting to zero in two directions and 
expanding to infinity in the third one rcigarlike sin­
gularity", S"±J). or it is contracting to zero in one 
direction and reaches finite non-zero values in both 
others ("pancakelike singularity". S=±}). As z is run­
ning in I , S varies, so both types of singularities 
and direc~ions of contraction and expansion can alter­
nate. As for a fixed value of z, the singularity is of 
the Kasner type (from the name of the vacuum solution 
of Bianchi type I universe), we shall say this singu­
larity is of the generalized Kasner type. 

As particular cases of models H ,consider 
the spatially homothetic models of type~PfI'fIII'fV 
and VI. These space-times are conformal to the 
standara metrics of Bianchi models of corresponding 
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type in the synchronous basis (see [ISJ and [6J) and 
their general vacuum exact solution depends on two real 
parameters, A and O. The types fI'fIII and fV, parti­
cular cases of fVlb' correspond respectively to the 
following values of parameters,A=O=O, A=±O and A=O. 
When A2+20+1 ? 0, the space-time is of ty~e (H )1 and 
its metric can be expressed as follows [6J sp 

(ds2)=e(1-0)z{(sinh t)A 2+o(tanh (t/2»-AIA 2+20+J 1 112 

(-dt 2+dz 2)+(sinh 

(O-A)Z 
e dx 2+(sinh 

(o+A)zd 2} 
e y .' 

1 2 11/2 
t)I-A(tanh (t/2» A +20+1 

t) l+A(tanh (t/2»-IA 2 +20+11 1/2 

(5) 

The Ellis and MacCallum's solution for Bianchi types 
III,V and VI h is obtained by posing 0=1 11 • In other 
cases (A 2 +20+I<O), the space-time is of type (H )3 
and its metric is obtained from (5) by replacin~P -I 
(sinh t) by (cosh t) and (tanh (t/2» by (exp (tan 
(sinh t»). Finally, Figure 1 gives the evolution of 
the spatial volume of these models which can be of 
three different types in both cases,following the 
values of parameters A and O. 

Notes 

lActually, the behaviour of the vacuum Bianchi IX 
model in the neighbourhood of its singularity is 
believed to be of the most general type [IJ, however, 
the debate on this subject is not yet closed [2J. 

2For more information on Bianchi models and other 
topics concerning exact solutions of Einstein's field 
equations, see [3J. 

3 For a review on the inhomogeneous cosmological models, 
see [4J and [SJ. 

4The general solutions of this wave equation is of 
course well known but suitable coordinate transforma­
tions on t and Z can reduce non separated solutions 
to one of the possible separated forms. 
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v 

t 

Figure : Different possible evolutions of the spatial 
volume V(t)=afReA/ 2dz (a being an integration constant) 
of the spatially homothetic space-times. 
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~ -1 I 

gxx 00 c 0 0 0 

gyy 0 0 0 c 00 

gzz 0 c 00 c 0 

Table 2 : For f=sinh(t), the limit value of 
the metric functions for t going to 0 depends 
on the spacelike variable z through S (c means 
a non-zero constant). 

5 These topological considerations are partly based on 
the following remark. If the topology of a 3-dimen­
sional space is known (for instance, spaces of cons­
tant curvature, cylindrical spaces, .•• ) and its 3-
dimensional line element is written in the form 
dI 2 =E(w i )2 (Latin indices run from 1 to 3, Greek ones 
from 0 to 3), a space whose line element is written 
dI 2=Eg .. (w i )2. will be considered as a deformation of 
the inifial space and will have the same topology as 
that space. 

6 Two coordinate systems describing the same topology are 
of course, equivalent for constant curvature spaces, 
but this is no more the case for more complex spaces. 
Note that the H3 and SlxH2 spaces are particular 
cases of H 

sp 
2 2 

7 Thorne [13J interprets the causal nature of R as the 
direction that will be followed by hypotheticA¥ parti­
cles in a considered vacuum space-time. A timelike 
gradient will then be necessary to characterize a 
cosmological model while a spacelike gradient will 
rather correspond to a model where only gravitational 
waves would propagate. Certain models could present 
both types of behaviours, the null surface is then 
considered as a shock wave. 

8 The (SlxH2) space does not exist since it does not 
satisfy so~e3integrability conditions of the field 
equations. 
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9 In the (H ) space, these regularity conditions are 
never sat~Efied. 

10 In t his cas e, the sin g u 1 a r i t y i s 0 f the cur vat u r e 
type as all timelike geodesics (and even curves) 
going to this point are incomplete.A similar expan­
sion is also possible at points t=O and t= TI far the 
spherical models [12J. 

11 Note that the only possible solution for type.fI 
model is Minkowski space so there does not ex~st any 
homothetic generalization of Kasner's vacuum spatially 
homogeneous solution. 
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THE SIGNIFICANCE OF NEWTONIAN COSMOLOGY 

D.Galletto and B.Barberis 

Istituto di Fisica Matematica "J.-Louis Lagrange" 
Via Carlo Alberto 10, 10123 Torino, ITALY. 

ABSTRACT - Starting from the hypotheses that the physical space 
is Euclidean, that the Universe is infinite and homogeneous and 
that with regard to our galaxy its behaviour is isotropic, with­
out resorting to Newton's law of gravitation we deduce Hubble's 
law, the law of motion of a typical galaxy, the equation of evo­
lution of the Universe, that the force at a distance exerted 
between any two galaxies is expressed by Newton's law of gravi­
tation, etc. Adding the hypothesis that the velocity of light is 
independent of its source, we obtain that the metric of space­
time is necessarily given by the Einstein-de Sitter metric, that 
the tensorial form of the equations of Newtonian cosmology is 
given by Einstein's gravitational equations, etc. 

1. - The results which are summarized here are based on the fol­
lowing hypotheses: 

1. the physical space is the ordinary three-dimensional Euclid­
ean space; 

2. the Universe, at least on a large scale, is homogeneous and 
infinite; 

3. with regard to our galaxy the behaviour of the Universe is 
isotropic, in the sense that with respect to the frame of 
reference with origin in the centre of mass of our galaxy and 
determined by three other distant galaxies the motion of a 
typical galaxy is radial. 

Hypotheses 2 and 3 are suggested by astronomical observa­
tions. 

To describe the Universe, the incoherent matter scheme is 
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used and hence, taking into account hypothesis 2, the Universe 
is represented by means of an infinite homogeneous fluid without 
internal stresses (the cosmological fluid), which from now on 
will be indicated by U. 

Hypothesis 3 implies the existence of an element 0 of U and 
of a frame of reference 120 which has its origin in 0 and with 
respect to which the motion of any element P of U is radial. 

Let II (t) be the density of U and let us define 

1 ~ 
h(t) = -- - (1) 

3 II 

From the equation of continuity and from the principle of con­
servation of matter we obtain (cf. [6],2): 

dOP 
dt = h (t) OP (2) 

Let 0' be any other element of U and let 12 0' be the frame of 
reference which has its origin in 0' and which is in translatory 
motion with respect to 120 • With regard to 120, as well law (2) is 
verified, in the sense that 

~ = h(t)O'P 
dt 

with the conclusion that all the frames of reference which have 
their origins in the elements of U and which are in translatory 
motion with respect to 120 are equivalent to one another. We 
shall call these frames natural frames of reference. The frame 
Rois one of them and hence, at least from the kinematical point 
of view, it is completely indistinguishable from them. We can 
therefore say that: 

I. The fluid U has the same kinematical behaviour with respect 
to any natural frame of reference. Whatever the natural frame 
120 is, such behaviour with respect to 120 is described by the law 
expressed by (2). 

Whatever the natural frame 120 is, from (2) follows 
d2 0P 

2. - Whatever the natural frame RoiS, from (3) it is possible to 
deduce (cf.[12] in which the deductions made in [6],3 and [11],3 
and re-examined in [2] are fully revised and perfected) that the 
equation of motion of P with respect to 120 , and therefore with 
respect to any natural frame of reference, is expressed by 

d2 0P 
K II OP (4) 
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where K is a constant. Defining 

k = - -.r.;;-
equation (4) becomes 

d2 0P 4 
d t 2 "3 lTk \.I OP (5) 

Equation (5) preserves its form unchanged in any natural 
frame of reference. 

The considerations summarized above permit us to affirm 
that: 

II. From the hypotheses 2 and 3 the explicit equation of motion 
of P with respect to any natural frame of reference follows, 
without resorting to Newton's law of gravitation. 

III. With respect to any natural frame of reference the fluid U 
has the same dynamical behaviour, expressed by equation (5). 

IV. All natural frames of reference are equivalent to one an­
other, in the sense that the fluid U has, from both the kinemat­
ical and the dynamical points of view, the same behaviour with 
respect to them. 

Furthermore, from the comparison of (5) with (3) the equa­
tion of evolution in Newtonian cosmology follows: 

'. 4 
h + h 2 = - - lTk \.I (6) 

3 

from which follows 

h = V ~ lTk \.I + a \.12/3 

where .a is the constant of integration, etc. 
If we introduce the deceleration parameter: 

Ii + h2 

q = -
h2 

from (6) follows 
3 h2 q 

k = --
4lT \.I 

a relation which permits us to obtain the value of the constant 
k starting from the present values of h, \.I, and q • 

3. - Equation (5) is the same one that would be obtained by as­
suming the frame R 0 to be inertial, the part of U external to 
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the material sphere SOP with centre at 0 and radius 10 PI to give 
no contribution to the motion of P, and the forces at a distance 
(gravitational forces) exerted on P to be expressed by Newton's 
law of gravitation (where k is the gravitational constant). A 
priori, there is nothing, however, to authorise this procedure, 
which is the one that has been fOllowed up to now in all trea­
tises on cosmology made in Newtonian terms. On the contrary 
equation (5) has been obtained here without imposing a priori 
any limitation on the frame Ro and above all without resorting 
to Newton's law of gravitation and resorting instead only to the 
hypotheses made for U. 

However we can prove (cf. [12]) that: 

V. From the hypotheses 2 and 3 Newton's law of gravitation nec­
essarily follows, in the sense that these hypotheses imply that 
the action at a distance exerted between any two elements of U 
is necessarily expressed by Newton's law of gravitation. 

An attempt to deduce Newton's law of gravitation from (1) 
has been made in [13], but this attempt is tautological (cf. 
[1]) • 

From (5) and V follows: 

VI. Whatever the natural frame Ro is, as far as the motion of P 
with respect to it is concerned everything happens as if the 
frame Ro were inertial and as if the part of U external to the 
material sphere Sop made no contribution to the motion of P. 

This result implies (cf. [6],8; [11],6; [7],5) that: 

VII. The fictitious force acting on P and the resultant of the 
gravitational forces exerted by U on P are inseparable. Whatever 
the natural frame Ro with respect to which the motion of P is 
considered is, their resultant is given by the resultant of the 
gravitational forces exerted on P by the material sphere Sop. 

The results given in VI justify the procedure for the de­
duction of equation (5) which is followed in all treatises deal­
ing with Newtonian cosmology: this procedure was followed in 
particular by Milne and McCrea, who in 1934, in [17] and [15], 
were the first to study cosmology in Newtonian terms. (Of course 
we do not mention Seeliger's attempt, which dates back to the 
end of the 19th century, because that attempt - since it was 
based on the belief that the Universe were static - contradicts 
astronomical observations as well as Newton's law of gravita­
tion. For more details, see [9],1 and [3J,2). 

What has been established so far, and especially the re­
sults summarized in VI, prove that the criticism made by Layzer 
in [14J is incorrect: in that paper Layzer denies the possibili­
ty of formulating a Newtonian cosmological theory with an infi-
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nite homogeneous Universe. In particular what is proved to be 
incorrect is the general conviction that the results summarized 
in VI can be justified only by resorting to the general theory 
of relativity (cf., e.g., [14]; [19], p.475; [18], Chap.8, 
Sec.9; etc.). 

In general what we have seen so far allows us to consider 
the so-called Newtonian paradox to be inconsistent: this paradox 
in essence states the impossibility of applying Newton's theory 
of gravitation to an infinite homogeneous fluid. For more de­
tails on this point, see [9] and above all [3]. 

4. If the instant to is fixed once and for all, and if we de-
fine 

R (t) = exp 

from (2) follows 

t f h(t)dt 

to 

OP = R (t) OPo (8) 

where Po is the position assumed by P at the instant to. OWing 
to (8), from (1), (2) and (5) follow 

and 

R 
R 

R 

R 

1 ~ 
+ -- = 0 

3 l.l 

4 
- - TTk l.l 

3 

From (10), taking into account that 

4 3" TTkl.l R S = const. 

(as follows directly from (9», we have 

R 2 8 2ex 
R2 = "3 TTk ]l + RT 

(9) 

(10) 

( 11) 

where ex is the value of the energy constant which would belong 
to the element P (which we assume to have a unit mass) if it 
were at a distance R from the origin of the natural frame of 
reference with respect to which the motion is considered. 

Equations (9) (the equation of continuity) and (10) (which 
in essence does not differ from the equation of evolution of U, 
expressed by (6», together with (11) (the energy integral, 
which in essence does not differ from (7», are the equations of 
Newtonian cosmology. As has already been stressed, these equa­
tions have been deduced here without resorting to Newton's theo­
ry of gravitation, and making use only of the hypotheses made 
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for the fluid U. 

5. - The results obtained in the preceding sections entail the 
following cosmological interpretation from the Newtonian point 
of view: 

VIII. From the hypotheses 2 and 3 follow: 
a) Hubble's law, expressed by (2), which is verified with re­

spect to every natural frame of reference; 
b) the law of motion of a typical galaxy, expressed by (5), and 

the law of evolution of the Universe, expressed by (6); 
c) that the forces at a distance which determine the motion of 

any galaxy with respect to any natural frame of reference are 
necessarily expressed by Newton's law of gravitation; 

d) that, with respect to any natural frame Ro ' the resultant of 
the forces acting on any galaxy P is equal to the resultant 
of the gravitational forces exerted on P by the part of the 
Universe contained in the sphere SoP with centre at 0 and 
radius IOPI ; 

e) that all natural frames of reference are equivalent to one 
another, in the sense that the Universe has, from both the 
kinematical and the dynamical points of view, the same behav­
iour with respect to them. 

This last result in essence expresses the so-called cosmo­
logical principle. 

All the results hitherto obtained provide, among other 
things, sound mathematical support and proofs to the considera­
tions made in [4]. 

6. - At this stage, if we take into account the property of the 
velocity of light revealed by the Michelson-Morley experiment, 
we have (cf. [10],3; [7],9): 

IX. The local velocity of light is the same with respect to any 
natural frame of reference. 

From this result and from the Galilean law of addition of 
velocities follows (cf. [10],4,5,7; [7],10): 

X. The metric of the space-time manifold is necessarily ex­
pressed by the metric of the Einstein-de Sitter model of the 
Universe. 

In other words, the metric of space-time is that particular 
case of the Friedmann-Robertson-Walker metric that Einstein and 
de Sitter suggested in 1932 for space-time (cf. [5]) in virtue 
of its simplicity, while working within the framework of general 
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relativity. 
At this point we can derive the usual formula for the red­

shift (cf. [10],8,9; [7],11) and we have: 

XI. In the present case the formula connecting the red-shift to 
the expansion of the Universe is a consequence of IX and of the 
Galilean law of addition of velocities. 

Analogous considerations can be made about horizons (cf. 
[10],10), etc. 

7. - If we impose the condition that the equations of Newtonian 
cosmology and the Einstein-de Sitter metric are compatible, in 
the sense that it would be possible to give an intrinsic form to 
these equations within the framework of this metric, it follows 
(cf. [7],12,13) tha t the energy constant a, which appears in 
(11), must be zero. In other words: 

XII. The property of the velocity of light of being independent 
of the velocity of its source implies that the energy constant a 
is zero. 

Therefore, while in the Newtonian framework we have no 
restriction on the energy constant a, the property of light of 
having the same local velocity in every natural frame of refer­
ence implies that this constant is zero. 

OWing to (8), equality (2) implies 

h = : 

and hence, with a = 0 , from (11) follows 

h = y' ~ 11k Il (12 ) 

an expression which, on the other hand, we could obtain directly 
from (7) because, from a = 0 it follows that a = 0 and vice versa. 

Therefore, as the metric of space-time is the Einstein-de 
Sitter metric if and only if the physical space is Euclidean and 
as this metric implies a = 0, we find that equality (12) express­
es the relation connecting hand Il which must be verified in 
order that the physical space is effectively Euclidean. In 
other words, if this equality is not verified (i.e. not con­
firmed by astronomical observations) the possibility that the 
physical space is Euclidean is excluded. For more details, see 
[7],16. 

8. - Once it has been proved that a=O, we obtain (of. [7],14, 
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15) that the intrinsic form imposed by the Einstein-de Sitter 
metric on the equations of Newtonian cosmology is precisely the 
one expressed by Einstein's gravitational equations. It can 
therefore be stated that: 

XIII. The hypotheses 2 and 3, ~ogether with the property of 
light of having the same local velocity with respect to any nat­
ural frame of reference, necessarily lead to Einstein's equa­
tions of the general theory of relativity. 

What has just been briefly discussed is therefore a deduc­
tion of Einstein's gravitational equations from astronomical 
observations. This deduction entails, among other things, that 
Einstein's gravitational constant X is necessarily expressed by 

8 "Irk 
X = -­

c 4 

where c is the local 
treatises is obtained 

velocity of light, a result that in all 
by resorting to approximation methods. 

9. - With appropriate modifications the results summarized in 
the preceding sections may be extended to the case that the 
physical space, instead of being Euclidean, is a three-dimen­
sional maximally symmetric space. The results given in I, II, 
III, IV, IX, XI and XIII are maintained, together with equations 
(9), (10) and (11). The energy constant a is no longer zero and 
determines the curvature of the physical space, whereas the 
metric of space-time is necessarily expressed by the Friedmann­
Robertson-Walker metric. These results can be extended to the 
more general case of homogeneous and anisotropic universes (some 
of them have been dealt with in [8]). 

All these results will be presented in detail in forthcom­
ing papers. 

All the considerations summarized here and the further ones 
which will be developed in forthcoming papers put Newtonian cos­
mology in a new light and, in clear contrast with [14] and [16], 
completely clarify its real meaning. 
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NUMERICAL SIMULATION OF EVOLUTION OF A MULTI-DIMENSIONAL HIGGS 
FIELD IN THE NEW INFLATIONARY SCENARIO 

Katsuhiko Sato and Hideo Kodama 

Department of Physics 
Faculty of Science 
The University of Tokyo 
Tokyo 113, Japan 

Numerical simulation of the evolution of the adjoint Higgs 
field in the new inflationary universe scenario based on the 
SUeS) GUT model with the Coleman-Weinberg potential is carried 
out by introducing a suitable viscosity term in the equation of 
motion. It is found that in order for a consistent scenario of 
the universe without too large density inhomogeneity to be 
constructed, the value of viscosity should lie in an appropriate 
range. 

1. Introduction 

Recently cosmological consequences of grand unified theories 
(GUTs) have been investigated actively. One of the most 
interesting and important results obtained in the investigation 
is that the universe might have undergone an exponential 
expansion caused by the vacuum energy of a metastable state when 
it made a first-order phase transition associated with the 
breakdown of a grand unification symmetry( Sato 1981, Guth 1981, 
Guth and Weinberg 1981,1983). The existence of this so-called 
inflationary stage gives a possible solution to the horizon, the 
flatness and the monopole problems because of the rapid increase 
in the cosmic scale factor and the particle horizon size. 

It was shown, however, that the original scenario of the 
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inflationary universe has serious difficulties: the phase 
transition never terminates and the universe does not get out of 
the exponential expansion stage due to the smallness of the 
nucleation rate of bubbles naturally predicted in the 
conventional GUTs( Guth and Weinberg 1983): furthermore even if 
the phase transition terminates, formation of large bubbles 
results in a universe with too large density fluctuations which 
conflict with the homogeneity of the 3K microwave background 
radiation( Sasaki et a1. 1982, Kodama et a1. 1982 ). 

In order to avoid these difficulties, Linde(1982) and 
Albrecht and Steinhardt(1982) proposed a new version of 
inflationary universe scenario, which is based on the Coleman­
Weinberg mechanism of symmetry breaking. In this new scenario 
the Higgs field spends a lot of time near the metastable 
symmetric point, where the potential energy is still very large, 
because of the flatness of the potential. As a result each 
coherent region in which the Higgs field has a nearly uniform 
non vanishing expectation value expands exponentially for a 
sufficiently long time while the Higgs filed rolls down to the 
absolute minimum point of the potential. 

In most of the investigation until now it has been assumed 
that the vacuum expectation value of the Higgs field evolves 
directly to the SU(3)xSU(2)xU(1) direction from the start of 
rolling down. Recently, however, some people have pointed out 
(Moss 1983, Breit et al. 1983, Kodaira and Okada 1983 ) that the 
Higgs field goes toward SU(4)xU(1) state, which may give rise to 
serious difficulties in the new inflationary scenario. The 
purpose of the present work is to investigate this point in more 
detail by examining the evolution of a Higgs field (j> 

belonging to the adjoint representation of SUeS) in the full 24-
dimensional space by numerical simulation and to elucidate 
whether the new inflationary scenario is consistent with 
cosmological observations or not. 

2. Formulation 

In practical computations it is not necessary to calculate 
the evol ution of the full 24 components directly. It is quite 
natural to assume that the time deri v~ti ve of the Higgs field 
vanishes( Abbott et a1. 1983), i.e., (j> =0, just when the Higgs 
field acquires non-vanishing classical expectation values in the 
first stage of the phase transition. Then the Higgs field 
represented by an arbitrary SxS hermitian traceless matrix can be 
diagonalized in each coherent region by a global gauge 
transformation, keeping ~ =0. The equation of motion of the 
Higgs field guarantees that (j> remains diagonal in the course of 
its evolution if (j> is diagonal and ~ =0 at the start. Thus in 
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the calculatlon of evolution we can restrict the form of the 
Higgs field without loss of generality as 

cI> =diag[ <1>1' <1>2' <1>3' <1>4' <1>5] 
5 

with the constraint Tr cI> = iEl<1>i=O. 

(1) 

In this representation the Coleman-Weinberg potential with 
the one-loop correction by the gauge boson (the Higgs boson 
contribution to the one-loop correction is not included) is given 
by( Abbott ~ a1. 1983 ) 

V( cI»= 
3 4 5 4 7 5 22 

--_Il-Z [ C{ E <1>. - 30- (E <I>.)} 
2s67T i = 1 3. i = 1 3. 

+ ~ ( <1>. - <1>.) 4 { In(-<I>-=i~_<I> j)2 - -21 } ],(2) 
. . 1 3. J J1 
3.,J= 

where C is an arbitrary parameter of this potential and J1 is a 
renormalization parameter related to the vacuum expectation value 
of the Higgs field at the SU(3)xSUft)xU(1) minimum point cI> = a x 
diag [1,1,-3/2,-3/2] ( a ~ 4.5x10 Ge V) as 11 =5 a /2. In the 
present work we neglect the effect of temperature on the 
potential because the inflation begins after tpE cosmic 
temperature becomes less than the GUT temperature (~10 GeV) and 
the essential fate of the Higgs field is determined before the 
universe is heated up again to the GUT temperature. 

5 
Because of the traceless condition E <l>i=O, five 

com p 0 n e n t s 0 f the Hi g g s fie 1 d <I> i' i = 1 , 2 , ~:~ 5, are not 
independent. This makes the numerical computation complicated if 
we calculate the time evolution of these components directly. In 
order for the convenience of numerical computation, we introduce 
the following four components fields which are completely 
independent each other, 

1);i = 
4 _ 

<l>i + E <1>'/(1+ 15 ), (i=l,2,3,4) 
j=l J 

(3) 

_ In Fig. I, contours of the potential on a plane (x= /3 1); 1 
=/3 1); 2=/31); 3' y= 1);~) are displayed for the case of the potential 
parameter C=l. In this plane there are two SU(3)xSU(2)xU(1) 
minima and four SU(4)xU(1) minima. As is easily understood from 
the potential Eq.(2), local minima in the SU(4)xU(1) direction 
can exist for C<15, and these minima become global minima for 
C<-151n(1.5)( Breit et a!. 1983 ) 
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The equation of motion for the fields ~i are given by 

.; . + 3R/R ~. + a v /a ~ . + C. I ~ . lIe. = 0 
1 1 1 V1S 1 1 

(4) 

where a viscosity term Cvis I ~ i I ~..i is introduced in order to 
convert the energy of the Higgs field into thermal energy. The 
scale factor of the universe R is calculated by the expansion 
equation of the universe 

1) (5) 

where we have assumed that the universe is spatially flat, which 
is adequate in the early universe even if it is not flat exactly. 
The change of radiation energy density P r and the energy density 
of the Higgs field Pcp are described, respectively, by 

4 4 • 2 4 
d( P R )/dt = E C I~ I~ R 

r i=1 vis i i 
(6) 

y 

,-----+~x 

Figure 1. Contour map of the Coleman-Weinberg potential for 
the case C=1 is displayed on the plane (x=/3 ~1=/3 ~ 2= 

!3 ~3'y= ~ 4). On this plane, there exist four SU(4)xU(1) minima 
C+) and two SU(3)xSU(2)xU(I) minima C·). In this plane, a =0 
means SU(4)xU(1) direction, a =-0.29"IT SU(3)xSU(2)xU(I) direction 
and a =0.21"IT the direction vertical to the SU(3)xSU(2)xU(1) 
direction. Numerical computation is carried out in 
the range -0.29 "IT < a <0.21 "IT • 
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and 
1 4 • 2 

P<p = 2 L W i + 
i=1 

v (7) 

The initial value of the Higgs field has four5deg2ef, of 
fr~edq~' one is the norm of Higgs field Ilw II =(.h <Pi) 2 = 
C.~lWj ) /2 and the others are the direction of the \ector ( WI' 
~, W3' W4) in the four dimensional ~ space. In the present 
investigation we take E:= Ilwll 0 = 8xlO- (} as the initif72value 
of II W II, which is about 0.2H, where H=(8'IT GV(0)/3) • In 
order to parametrise the initial direction of W we utilize three 
angles a , e and W. a represents the deviation angle from the 
SU(4)xU(l) direction Wl= W2= W3= W4(>0) on the plane W I=W 2=1/3 
as shown in Fig.l, and e and <P represent the deviation angles 
off this plane. Though we do not limit the range of a 
essentially, we restric~ e and <P in the very narrow range 
I e I <10- and I ¢ I <10- for the convenience of the analysis 

of the numerical computation as a first step. 

3. Result of Numerical Simulation 

In Fig.2-a rv 2-c, some resul ts of numerical computation for 
the case of the potential parameter C=1 are shown. As 
demonstrated in these figures, the Higgs field goes to the 
SU(4)xU(l) direction W 1= W 2= W3= W4>0 at first independent of 
the value of viscosity parameter C~s and the initial angle a , 
provided that -0.29 'IT < 0,<0.21 'IT. This is obviously a natural 
consequence of the fact that the potential has the steepest 
gradient along this direction where the norm II W II is small(see 
Fig.l)( Breit ~ a1. 1983). In Fig.3, the dependence of the 
degree of inflation on the initial angle a is shown. Here we 
define the degree D as the ratio of the cosmic scale factors, 
D=R2/R2' where Rl is the value when the inflation begins, i.e., 
when the vacuum energy density becomes greater than that of the 
radiation, and R2 is the value when the Higgs field arrives near 
the SU(4)xU(1) minimum. Note that inflation begins again when 
the Higgs field settles down at an SU(4)xU(l) state because of 
the remaining vacuum energy density. Of course this inflation is 
not taken into account in this definition. As shown in Fig.3, 
the degree of inflation is very sensitive to the initial angle 
a , but almost independent of the potential parameter C and the 
viscosity parameter Cvis provided that Cvis<O.l. The evolution 
after the arrival to this minimum, of course, depends on the 
value of Cvis' 

Generally speaking, the Higgs field settles down in a very 
direct way to the SU(4)xU(I) minimum after short time oscillation 
independent of the angle a provided that Cvis >l as is 
illust,rated in Fig.2-a. For the smaller values of the viscosity 
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Figure 2-a. 

Cvis = 0.1 

a=O.l1T 

Figure 2-b. 

Cvis = 0.01 

a = -0.21T 

Figure 2-c. 

Cvis = 0.001 

a = 0.21T 

Fig.2-atV Fig.2-c Time evolutions of the Higgs field 
projected on the same plane 'as shown in Fig.1 for three 
characteristic pairs of values of Cvis and a. C=l for all the 
three cases. 
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parameter Cvis ' however, it can depart frolll this local minimum 
and further evolve to an SUi3)xSU(2)xU(1) minimum state. As 
shown in Fig.2-b (Cvis=lO- and a. =O.2 1T ), the Higgs field 
evol ves to the nearest SU(3)xSU(2)xU(1) state via the SU(4)xU(1) 
state and settles down to this state after oscillation around it. 
Note that, however, details of the evolution of the Higgs field 
are different for the different initial" angles even if the value 
of the viscosity parameter Cyi is the same. For example, if we 
take a. =-O.l1T , the Higgs he\d settles down to the SU(4)xU(1) 
state after large amplitude oscilations. When we take the 
smaller values for Cvis ' the Higgs field begins to circulate in 
this (x,y)-plane and wanders around a lot of SU(3)xSU(2)xU(1) 
states andSU(4)xU(1) states. After a few time circulations, the 
Higgs field goes out from this plane and begins to wander around 
more numbers of SU(3)xSU(2)xU(1) and SU(4)xU(1) states in the 
four dimensional space of the Higgs field. This result suggests 
that the eventual state of the Higgs field is changed greatly by 
the very small deviation of the initial direction of the Higgs 
field. 

In Fig.4 final states of the Higgs field are summarized :~n 
the plane of the initial angle a. and the viscosity parameter 
Cvis• As has been discussed, final states of the Higgs field 

35 

25 

-C=1 

=14 

Figure 3. The dependence of the degree of inflation D=R2/R1 
on the initial angle a., where Rl and R2 represent the values of 
the cosmic scale factor R when tlie inflation begins and when the 
Higgs field arrives near the SU(4)xU(1) minimum, respectivet y• 
The initial modulus of the Higgs field is assumed to be (1jJ 1 + 
wi + W32 + W12)1/2= 8xlO-6a • 
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depend on the value of the viscosity parameter Cvis strongly. The 
final state is an SU(4)xU(1) minimum if Cvis is greater than a 
critical value. Although the critical value depends on the 
initial angle a as shown in Fig.4, we may conclude that the 
final state is SU(4)xU(1) if Cvis>10-2• This state is, however, 
unstable if we take into account the quantum tunnelling effect. 
Although the Higgs field can reach a nearby SU(3)xSU(2)xU(1) 
state by this tunnelling, the same difficul ties as appeared in 
the original inflation scenario( Sato 1981, Guth 1981, Guth and 
Weinberg 1981,1982, Sasaki et a1. 1982, Kodama et a1. 1982) arise 
because this phase transition is of first order, i.e., large 
scale inhomogenei ty is created by bubbles formed by this phase 
transition as pointed out by Breit, Gupta and Zacks(1983). 

When w~ take the 2alue of the viscosity parameter in the 
range 2x10- <C . <10- , the Higgs field can settle down to the 
nearest SU(3)xsrrf2)xU(1) state steadily without traveling to 
other SU(3)xSU(2)xU(1) or SU(4)xU(1) states. In this case, the 
inflation scenario works ~yll with no trouble as has been 
investigated by many people. 

On the other hand, if we take values Cvis<2x10-3, the Higgs 
field travels around a lot of minimum states as illustrated in 
Fig.2-c. Eventual states to which the Higgs field settles down 
are changed by fluctuations of initial values of the Higgs field. 
This resul t strongly suggests that a coherent region, which is 

• 
:> 

<.) 

SU(4) x U(1) 

~ 
SU(3IxSU(2)xUI11 / 

/////////////// 

Trayeling Around 

-0.291f -0.21r -0.11f 0 0.1''' 0.21r 

a. 

Figure 4. Summary of final states of the Higgs field in the 
time evolution calculations. 
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formed by nucleation of bubbles or spinodal decomposition in the 
early stage 111JJ II <H, will be fragmented into many SU(3)xSU(2) 
xU(l) and SU(4)xU(1) states by the fluctuations of the Higgs 
field associated with the initial state. Even if the classical 
fluctuations of the Higgs field are extremely small, the quantum 
ones might fragment the original coherent region into small 
pieces of different state( Breit et al. 1983). Thus this result 
suggests that large scale inhomogeneities also appear for the too 
small values of Cvis ' which conflict with present observation. 

We have carried out numerical computations for different 
values of the potential parameter C (Eq(2» in the range O<C<14. 
The result displayed in Fig.4 (the case C=l), does not change 
qualitatively for the other values of C in this range except that 
the critical value of the viscosity parameter Cvis ' which decides 
whether the final state is SU(4)xU(l) or not, depends more 
sensiti vely on the initial angle a. We have also carried out 
the simulation by us~ng the viscosity of the form Cyis II 1JJ II ~i 
instead of Cvis l1JJ i ll,u .• The results were essentially the same 
both qualitatively anJ quantitatively except for the small change 
in the critical val ue of Cvis• 

4. Conclusion 

In the present work, we have found that in order for an 
inflationary scenario of the universe consistent with observation 
to be constructed, the value of the viscosity must be in an 
adequate range, otherwise large scale inhomogeneities which 
conflict with observations arise. Recently Abbott et a1.(1983) 
and Hosoya and Sakagami(1983) estimated the strength of 
viscosity. At present, it is hard to judge whether the value of 
viscosity lies in the range adequate for the new inflationary 
scenario or not, because the result of Abbot et al. is very 
qualitative and the viscosity obtained by Hosoya and Sakagami is 
a thermal viscosity. In order to make clear whether a consistent 
scenario can be constructed'or not, more precise evaluation of 
viscosity is necessary. 

The authors thank D.W. Sciama, C.J. Pethick, I. Wasserman, 
and A. Hosoya for valuable discussion. This work is supported 
in part by the Grant in Aid for Science Research Fund of the 
Ministry of Education, Science and Culture No.56340021 and also 
by Asahi Scholastic Promotion Fund. Numerical computations were 
carried out with FACOM M-190 of LICEPP. 

Note 

1) The absolute units c=h=G=l are used throughout this paper. 
2) We have checked that at least in this range of Cvis the 
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universe is heated up again to a temperature which is high enough 
for the baryosynthesis to occur. 
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Paris-France 

I INTRODUCTION 

Recent measurements conce~ning abundances of elements of 
cosmological interest (0, He, 7 Li ) have been performed 
respectively by Vidal-Madjar et al l1 J, Kunth and Sargent lzJ, 
Spite and Spite l3J. 

Vidal-Madjar and Gry l4J pointed out some incompatibilities 
between the measured values and theoretical predictions of the 
standard Big-Bang nucleosynthesis. 

On the other hand, the values of the nuclear reaction rates 
invol ved in nucleosynthesis processes have been updated very 
recently by Harris et al l5J. 

In order to examine if the reaction rates uncertainties 
could account for the discrepancy between theoretical 
predictions and observations, we performed independent 
calculations of the abundances of these elements in the frame of 
the hot Standard Big-Bang (J. Audouze, this volume). But here we 
took also into account the uncertainties on the nuclear reaction 
rates invo+ved in these computations. 

Section Z describes the computational techniques and the 
reaction rates used in the work, in Section 3 a comparison is 
made between the theoretical results and the observations in 
Section 4, the prediction regarding the maximun number of 
neutrino families (J. Audouze, this volume) is presented while 
Section 5 contains our conclusions. 

113 

A. Berger (ed.), The Big Bang and Georges Lemaitre, 113-122. 
© 1984 by D. Reidel Publishing Company. 



114 P. DELBOURGO-SALVADOR ET AL. 

II THE N~MERICAL CODE 

In the frame of the hot standard Big-Bang model, we have to 
follow the evolution of the abundances in a netwo~k of 50 
~u~le~r. re!f.c~i0f.s i~volv~ng J6 ~ttJcle\l (n, lf~' 0, T, He, /tHe, 
L1, L1, L1, Be, Be, B, B, B, B, C). 

The abundance Ni of an element i is given by 
dNi 

= -·2 N. N. <crv> .. + 2 Nk Nl <av>kl 
dt J 1 J 1J kl 

where <crv> is the nuclear reaction rate by pair of elements i 
and j. The first term of the r. h. s. represents the rate of 
destruction of i by the all the reactions i+j + k+l and the 
second the formation of i by all the reactions k+l + i+j. This 
system of 16 non linear differential equations must be solved by 
an implicit scheme because of the very strong temperature 
dependence of the reaction rates. We used the classical 
computational method described by Arnett and Truran L 8 J. The 
timestep is variable and adjusted in order ~o have a maximum 
relative variation of abundances of 5.10- • The amount of 
computing time required for a typical run is about 60s CPU on a 
Cyber 750 computer. 

The physical conditions (temperature and density profiles) 
during the nucleosynthetic phase occuring just after the 
Big-Bang are described by Weinberg L9J. The network and 
references for the reaction rates are given in table I. 

The parameters governing the final abundances are Nv the 
number of neutrinos families, Po the present density of the 
Universe and ~1/2 the lifetime of neutron. 

Fig.I displays the values of primordial abundances as a function 
of Po for Nv = 2, 3 and 4. 

The results are in good agreement with those obtained by 
Wagoner l10J and Beaudet and Yahil l11J. 

Table I 

Reactions Rates 

p(n,y)D Fowler et al 1967 
3D(n,y)T 4 " " 
6He (n,Y).,He " " 
U(n,y) U " " 
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Figure I 3 It -
Primordial abundances by masses of D, He, He, 'Li as functions 
of Po' present density of the Universe, and for 2, 3, 4" 
families of neutrinos. 

'&'1/2 = 10,61 min 
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lOB(n,y)!lB Fowler et al 1967 
T(p,n) He Fowler et al 1973 

17Li (p,n17Be " " 
!B(p,n) !c " " 
Be(p,n~ B " " 
D(p,y)He Harris et al 1983 

6 T(p,y)4~e Fowler et al 1973 
Li(p,y) Be Harris et al 1983 
~Be(p,y)~~ " " 

loBe(p'Yfl B Fowler et al 1975 
B(p,y)6 C " " 

sT(a,n) LL " " 
4Li( a,n,} B Wagoner 1969 
. He( a,n) l~e " " 
'Li( a,na B Fowler et al 1975 
D(a,y)7Li Harris et al 1983 

6T(a,y) 'rb Fowler et al 1975 
7Li(a,y)ll B Harris et al 1983 
7Li (a'Y)ll B Fowler et al 1975 
Be(a,y~ C Harris et al 1983 
D(D,n) He Fowler et al 1975 4 

" " T(D ,n) He 
3D(D,n)T 4 " " 
He(D,p) He " " 
!He(3He,2~)4He " " 
He(an,y) Be " " 

1 ~ Be(D, p) ~ 4He " " 
. B(p,a)2 He Harris et al 1983 
'LiQ,2n)2 4He Fowler et al 1975 

~~!~3~::~~~~~~: " " 
" " 

D(p,n)2~ " " 
3T(T,2n) He " " 
He(T,D)4He " " 

3He (T,np)4 He " " 
4He (np,y)6U " " 
7Be (T ,np)~4He " " 
7 Li ( D , n ) 2 He " " 
1~B(n,24He4p Wagoner 1969 

C(n,2He) He " " 
:~~~~:~~~:~g " " 

" " 

III COMPARISON WITH OBSERVATIONS 

A compilation of observations provides the following range 
(Table II) of primordial abundances. (J. Audouze, this volume) 
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Table II 

p.22 < X < 0.25 5 
~(D) = (2 ± 2) 10-

XC He) = (2 ± ~6 10- 5 
X( 7U ) = 5 10-

The corresponding uncertainty boxes are shown on figure II 
where the abundances have been computed with respect to Po for 
Nv = 3 and ~1/2 = 10.6 min. 

One can find Po values consistent with all primordial 
abuQdances of the light elements only if X(D) primordial > 
10- • This requires that models of chemical evolution of 
ga~axies as speciJic as ,those of Gry et al. l13 J where 
X(D)prim/X(D)interstellar > 20 do apply: Th1s requests 
inflow of already processed material inside the galactic zones 
where chemical evolution is analysed. 

If this is not the case, there is then 4 a discrepancy 
between the p values deduced from D and He abundances 
respectively as noticed e.g. by Vidal-madjar and Gry l4 J. In 
order to explain this possible discrepancy one could assume that 
the standard Big-Bang model does not apply (i) Audouze and Silk 
l12 J are currently analyzing possigle photodesintegration 
processes able to produce D from . He or the effect of 
pregalactic cosmic rays in the case of a cold Big-Bang model 
(ii) the effect of anisotropy of the Universe has been 
considered by Barrow l15 J, Juskiewicz et al l16 J and also by 
Gorski and Delbourgo-Salvador l17J. --

In any case (discrepancy between the p values or not) it is 
worth to examine the effect of nuclear rate uncertainties. 

IV INFLUENCE OF THE REACTION RATES AND OF THE NUMBER OF 
NEUTRINO FAMILIES 

- Influence of the new reaction rates 

In table III, the modifications of the computed abundances 
of the light elements when the most recent nuclear rates are 
used instead of the older ones, are displayed. The calculations 
have b~en perf~rme~ onlY7 for the two most important reactions : 
D(p,y) He and He( He,y) Be. 
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102~------------T-------------' 
0.30 

0.28 

X (4He) 
0.24 

0.22 

X(O) 
X(3 

.20 

0- 8 

X (7U) 

'--____________ '--____________ .1 0 - 1 0 

10-30 log fo 

Figure II 
Primordial abundances of D, 3He , 4He , 7Li as functions of Po 
for 3 families of neutrinos~ 
The boxes show the ranges deduced from observations. 

~1/2 = 10,61 min 
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Table III 

3 - D(p,y) He 
Po 

4He D 3He 7Li 
1D- 32 D·' D% D·' D·' ,. ,. ,. 
1D- 31 D% D,6% 1,3% D·' ,. 
1D- 3O D% 18~6 8 ,6~6 9·' ,. 

3 4 7 - He( He,y) B~ 
.PO 32 He D 3He 7Li 

1D- D% D·' D·' D·' ,. ,. ,. 
1D- 31 D% D% D% D,4% 
1D- 3O D% D% D·' 1·' ,. ,. 
- Influence of the uncertainties on the reactions rates 

The deviations of the primordial abundances of the light 
elements corresponding to 1m6 variations of the nuclear rates 
are shown on Table IV. 

Table IV 

- p(n,y)D 4He 
±1m6 

3He 7Li Po D 
1D- 32 5% 1,5% 1% 8% 
10- 31 D,5% 7% 3% 8% 
1D- 3O D% 1% D,6% 4% 

3 - D(D,n) He 4He 
±1D% 

3He 7Li PO D 
10_ 32 D·' 3, 5~6 2,5% 3,5% ,. 
1D- 31 D% 4% 2 ,6~6 12% 
1D- 3O D·' 1D% 1,7% 4,1% ,. 

_ T('+He,y)7Li 
4He 

±1m6 
3He 7Li PO D 

10_ 32 D% D% D% 10% 
10- 31 D% D% 0% 9% 
10- 30 D% D·' D·' 0% ,. ,. 

4 - T(D,n) He 4He 
±10% 

3He PO D 7Li 
10_ 32 0,7% 0% 1% 9% 
10_ 31 0% 0% o ,2~6 1m6 
10_ 30 D% 0, 5~6 D,5% 0,7% 

From tables III and 4IV one can see that the vartation of 
abundanc!?s are .. 1·' ,. for He, .. 20% for D, .. 10% for He and .. 
20% for Li. 
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Fig III displays the variation of abundance of If He in 
tonction of PO for 3 values of 1;1/2. The primordial value of 

He depends more strongly on the parameter 1;1/2 than on the 
others reactions rates. The primordial abundance of If He can be 
obtained directly from the ratio nip between the neutron and the 
proton density at the begining of nucleosynthesis (Yang et al 
l14J) : nip 

X4 = 2 
He "1 + nip 

nip depends on 1;1/2 

On the same figure, the primordial abundances of D,3 He and 
ILi have been represented with the maximum variation i.e. ± 20% 
due to the nuclear reaction rate uncertainties. 

The uncertainties ranges of observations are drawn on this 
figure and one can see that the discrepancy between If He and D 
still exists (if the inflow chemical evolution model of Gry et 
al l13J does not apply. 

- Influence of the number of neutrino families 

T~e possible' discrepancy between the P values deduced from 
D or he increases if Ny = 4 and decreases if Ny = 2 (which 
could be the actual case if the tau neutrino is not relativistic 
during the early phases of the Universe. 

V CONCLUSION 

There are no discrepancy between the values for the present 
density Po of the Universe deduced from 'tHe and D only if the 
chemical evolution models allowin~ inflow of processed material 
in the considered zone (Gry et al L13J) are those which actually 
apply. 

In the case of discrepant Po values, the consideration of 
uncertainties on the nuclear reaction rates cannot solve this 
difficult y. 

We are indebted to Robert Mochkovitch for fruCtful 
discussions. 
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10- 2 

0.30 

X(D) 0.28 

± 20% 
X (4He) 

0.26 

10- 3 

0.24 

X (3He) 0.22 

± 20% 
0.20 

10-8 

X(7Li) 
± 20% 

L-____________ ~ ____________ ~10-10 

10-30 109 fo 
Figure III 
Variptior) of primordial abundance of 4He as a function of Po 
for three values of 1:1/2 : 10.81 min ; 10.61 min ; 10.41 min 
(the abundance increase when 1:1V2 increas~). On the same 
figure Primordial abundances 0 D, 3He , 'Li with a ± 2m~ 
variation. The boxes show the consequences on the range of Po 
given by the observationnal datas. The number of families of 
neutrinos is three. 



122 P. DELBOURGO-SALVADOR ET AL. 

REFERENCES 

(I) Vidal-Madjar A., Gry C., Bruston P., Ferlet R., York D.G., 
Astron. & Astroph., 120, 58 1983 

(2) Kunth D., Sargent ,~.--;Submitted to Astrophys. J. 
(3) Spite F., Spite M., Astron. & Astroph. 115, 357 1982 
(4) Vital-Madjar A., Gry C., Submitted to Astron. & Astroph. 
(5) Harris M., Fowler W., Caughlan C., Zimmerman B., Ann. Rev. 

of Astron. & Astroph 1983 
(~) Fowler W., Caughlan G., Zimmerman B., Ann. Rev. of Astron. 

& Astroph. 1975 
(7) Fowler W., Caughlan G., Zimmerman B., Ann. Rev. of Astron. 

& Astroph. 1967 
(8) Arnett W., Truran J., Astrophys. J. 157,339 1969 
(9) Weinberg S., Gravitation and Cosmology 1972 Wiley and Sons 
(10) Wagoner R., Astroph. J. 218, 253, 1977 
(II) Beaudet G. & Yahil A., Astroph.J. 218, 253 1977 
(12) Audouze J. & Silk J., 1984, submi tted to Astroph. J. 
(13) Gry C., Malinie G., Audouze J., and Vidal-Madjar A., 

"Formation and evoluti"on of galaxies and large structure 
of the Universe" ed. J. Audouze and J. Tran Thanh Van 1983, 
Reidel Dordrecht 

(14) Yang J., Steigman G., Schramm D., Rood R., 1975, Astroph.J. 
227, 697 

(15) Barrow J.D., 1976, MNRAS, 175, 359 
(16) Juskiewicz R., Bajtlik S., Gorski K., 1983, MNRAS, 204, 63P 
(17) Gorski K., Delbourgo-Salvador P., 1984, in preparation 



TIME and SINGULARITY* 

Jacques Demar'et 
Institut d'Astrophysique, Universite de Liege, 
B-4200 Cointe-Ougree, Belgium 

Mar'k J. Gotay 
Department of Mathematics and Statistics, University 
of Calgary, Calgary, Alberta, Canada T2N lN4 

Abstract: We show that the occurrence of quantum gravitational 
collapse and, more generally, the validity of Wheeler's "rule 
of unanimity" are inextricably linked to the classical choice 
of time. The crucial distinction is between "fast" and "slow" 
times, that is, between times which give rise to complete or 
incomplete classical evolution respectively. We conjecture 
that unitary slow-time quantum dynamics is always non-singular, 
while unitary fast-time quantum dynamics inevitably leads to 
collapse. These findings are illustrated by an analysis of the 
dust-filled Friedmann-Lema1tre-Robertson-walker universes. 
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It Was a most ancient ... tradition amongst 
the Pagans ... that the cosmogonia ... took 
its first beginning from a chaos. 

Cudworth (1678) 

What is the genesis of the Universe? This fundamental 
question has never ceased to arouse man's curiosity and fascinate 
theologians and scientists alike. That there are two distinct 
issues here, the beginning of the Universe as opposed to its 
creation, was already pointed out by St. Thomas Aquinas 700 years 
ago. The creation of the Cosmos is an a priori philosophical 
concept, and its elucidation belongs to the realm of metaphysics. 
In contrast, the beginning of the Universe is an empirical 
concept and thus amenable to scientific analysis. 1 

With the prodigious development of relativistic cosmology 
since 1915, the traditional Western belief in the permanence of 
the heavens has gradually yielded to the notion that the 
Universe had an absolute beginning. Indeed, the first successful 
relativistic model of our expanding Universe, due to Friedmann, 
possessed an infinite density, infinite curvature cataclysm a 
finite proper time in the past. Insofar as one can reject the 
possibility of a closed cyclic universe with an infinitude of 
past cycles -- the "phoenix" universe of Monseigneur Lemaitre -­
such an initial singularity must represent the beginning of the 
Universe. 2 

Although the first detailed analysis of this phenomenon of 
catastrophic spacetime collapse was given by Monseigneur 
Lemaitre, it was not realized until the late 1960s to what 
extent singularities form an essential element of modern 
cosmology [4]. In view of the celebrated theorems of Hawking, 
Penrose and Geroch, it is now clear that singularities must occur 
in all "physically reasonable" spacetimes. Moreover, the 
existence and isotropy of the cosmic microwave background strongly 
imply the presence of a singularity in the past of our Universe. 

Still, the case for the initial singularity is not ironclad, 
since the singularity theorems are classical constructs and as 
such do not take into account quantum phenomena which are 
expected to be important during the exotic early stages of the 
Universe. As one extrapolates further into the past, it is 
therefore conceivable that quantum effects could modify -- or 
perhaps prevent altogether -- gravitationally induced spacetime 
collapse. On the other hand, Wheeler [5] has recently proposed 
a "rule of unanimity" which, if valid, would shatter this hope: 
"Given that all solutions of the equations of motion run into a 
singularity (or are free of singularity) except a set of measure 
zero. Then all solutions of the corresponding quantum-mechanical 
problem are singular (or free of singularity)." 
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In the absence of a complete consistent quantum theory of 
the gravitational field and its interactions, research on 
quantum singularity avoidance has proceeded along two lines: a 
search for semi-classical mechanisms for suppressing the 
formation of singularities and model calculations within the 
framework of quantum cosmology. Despite considerable effort, 
however, a satisfactory resolution of. the quantum collapse 
problem remains a chimera. On the semiclassical level, in which 
the matter is quantized but the gravitational field is treated 
classically, attempts to eliminate the classical singularities 
by inducing violations of the positive energy conditions in the 
singularity theorems remain inconclusive [6]. Quantum 
cosmological studies, which include the quantum effects of both 
matter and gravity in the analysis (albeit at the expense of 
"freezing out" all but a finite number of degrees of freedom), 
are similarly beset with a host of technical and conceptual 
difficulties [7]. The foremost among these stems from the 
freedom in the classical choice of time: different such choices 
often lead to wildly divergent quantum behaviors [7-15]. 

The work which we now briefly summarize [8] is devoted to a 
study of the relationship between quantum gravitational collapse 
and the choice of time. We find that whether quantum collapse 
occurs is effectively predetermined, on the alassiaal level, by 
this very choice. The crucial distinction is between fast and 
slow times, that is, between times which give rise to complete 
or incomplete classical evolution respectively.3 More precisely, 
we conjecture that unitary slow-time quantum dynamias is always 
non-singular~ while unitary fast-time quantum dynamias inevitably 
leads to aollapse. These results indicate that the quantum 
collapse question is really quite intricate and also help to 
reconcile the heretofore bewildering array of "answers" to this 
question. 

We substantiate these contentions with an analysis of the 
classically collapsing Friedmann-Lema1tre-Robertson-Walker 
(FLRW) universes in two time gauges, one fast and the other slow 
(cf. [8]).4 These homogeneous and isotropic cosmologies are 
described by the metrics 

ds 2 = _N(t)2dt 2 +e 2]1(t)dr,2 , 

where dr,2 is the line element for a 3-manifold of constant 
curvature k = +1, 0 or -1. The matter content is taken to be 
dust with density p and 4-velocity u = -d~, ~ being the only 
nonvanishing Seliger-Whitham velocity potential. The super­
hamiltonian constraint, characteristic of the general relativis­
tic Hamiltonian formalism, is 

1 - 3]1 2 ]1 
P ~ - 24 e P]1 - 6ke = 0 , (1) 
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where 

12 311" 
P)l = - Nell 

are the momenta canonically conjugate to )l and ~, respectively. 
Since these models are in parametrized form, they admit an 
Arnowitt-Deser-Misner reduction. This consists of two steps: 
choosing a time t and then solving the constraint (1) in the 
form Pt - H = 0, thereby determining the effective Hamiltonian H. 

We first choose the time from among the matter variables: 
t = -~. This is essentially cosmic time, and hence slow. After 
performing the canonical transformation 

reduction yields the phase space (0,00) x m and the Hamiltonian 

H(x,p ) = P 2 + XX2/3 (2) 
x x ' 

where K = i 3/6k. The dynamics is thus equivalent to that of a 
particle on the half-line (0,00) moving in a potential 
V(x) = Kx2/3. 

Upon quantizing we find that the quantum Hilbert space is 
L 2 (0,00) and that the operator corresponding to the Hamiltonian 
(2) has an infinite number of self-adjoint extensions 

H = _~2 d2 + XX2/3 
ex dx2 

determined by the boundary conditions 

1/1'(0) = ex1/l(0) , (3) 

where the parameter ex £ (_00,00]. Since the operators Hare 
rather complicated, we illustrate the qualitative feat~res of the 
dynamics via the motion of a k = ° wave packet. 

Fix S = b + iE, b > 0, and consider the initial state 
k 

[ 87Tb) 4e-Sx2 • 1/1 (x,O) 

Taking ex = 0, this evolves according to 

[ ) ~ 1 2 • 
1/I(x,t) = 8: [1+4ifiSt]-'2e-SX /[1+4-z-12Stl 

To check for collapse, we study the expectation value 

_k: k: 
<1/1 (t) 1 x 11/1 (t) > = (27Tb) 2[1 - 8Ent + l6(b 2+E2 )122t2] 2 

(4) 

(5) 
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of the ~uantum "radius" operator, recalling that classically 
x ~ e3~ 2 measures the expansion of our model. 

If B > 0, this wave packet represents a universe which is 
initially contracting. But as t approaches the "turn-around 
time" 
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quantum effects are decisive: the universe decelerates, 
"bounces," and expands thereafter! In contrast, the classical 
model corresponding to the initial state (4) contracts uniformly 
and collapses after a time T = 1/4~ > T. This behavior is c 
displayed below. 

x(t) 

Quantum 

i 

CZassicaZ ~ 

.~------------~----~-------- t 
T T c 

CZassicaZ/quantum correspondence for the wave packet (5) 

In fact, this instance of quantum singularity avoidance ~s 
not exceptional: since x is a positive operator and as each Ha 
is self-adjoint, <w(t)lxlw(t» can neVer vanish in finite time 
for any evolving state W(t). Consequently, no nontriviaZ state 
can evoZve into a singuZarity so that, within this dynamical 
framework, quantum gravitationaZ coZZapse is strictZy forbidden. 

An unexpected corollary is that this phenomenon of quantum 
singuZarity avoidance is independent of the choice of boundary 
condition (3). This is contrary to widespread belief, which 
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holds that an evolving state ~(x,t) is non-singular if and only 
if ~(O,t) = 0 for all t [9]. In particular, note that the wave 
packet (5) is certainly non-singular, even though ~(O,t) f 0 
always. 

Another important consequence of our analysis is the break­
down of Wheeler's rule of unanimitv. To regain it there are 
only two options: modify either the classical or the quantum 
formalism. But which one, and how? The key observation is that, 
ultimately, the cause of the disparity between the classical and 
the quantum predictions is that the quantum evolution pepsists 
etePnallYJ whepeas the classical evolution does not. Since self­
adjointness guapantees that the quantum dynamics is defined for 
all time,S it is apparent that we should "complete" the classical 
dynamics. 6 

As this "paradox" of incomplete classical versus complete 
quantum evolution arises whenever one makes a slow choice of 
time, one might expect results more in agreement with 
the unanimity principle when one quantizes in a fast-time gauge. 
Then both. the corresponding classical and quantum dynamics are 
complete, although the physical implications of this completion 
are rather surprising. Classically, of course, the system is 
still singular. Quantum mechanically,' however, completeness in 
fast time has a quite different meaning than it does in slow 
time. Eternal slow-time quantum evolution implies that collapse 
is impossible. But quantum completeness in fast time, being 
physically equivalent to incompleteness in slow time, can only 
signal the presence of a singularity. In other words, it is 
plausible that fast-time quantum dynamics incorporates collapse 
in much the same way that slow-time dynamics prohibits it. 

We verify this assertion for the k 
universes in the intrinsic-time gauge t 
corresponds to the initial singularity, t 
The reduced phase space is ~ x (0,00) and, 
effective Hamiltonian is 

3t/2 t !.: H(q;,p ,t) = 2/6e [p - 6ke ] 2 
q; q; 

-1,0 dust-filled FLRW 
]..I. Since t = -00 
= ]..I is a fast clock. 
from (1), the 

(6) 

Quantizing in the momentum representation, the time-dependent 
quantum Hamiltonian H(t) is represented by multiplication by 
H(t) on the Hilbert space L2 (0,00). 

It is straightforward to check that the resulting quantum 
dynamics is unitary, so that these models must evolve to the 
t = _00 limit. Furthermore, since classically H(t) + 0 as t + -00 
and as H(t) is a positive operator, the expectation value 
<~(t) IH(t) I~(t» is a good indicator of quantum collapse. Then 
(6) and the dominated convergence theorem yield 
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lim <$(t) In(t)I$(t» = 0 , 
t'"'>-oo 

so that these models asymptotically collapse. But asymptotic 
collapse in this fast intrinsic time means that these quantum 
models become singulap in finite ppopep time so that, within 
this dynamical setting, quantum gravitational collapse is 
inevitable. 

As this analysis demonstrates, the validity of Wheeler's 
rule of unanimity depends critically upon the choice of time. 
This classically innocuous choice is the decisive factor 
governing the occurrence of quantum gravitational collapse. 
Although our conclusions are motivated in the context of the 
FLRW models, a moment's reflection shows that they will apply, 
mutatis mutandis, to any spatially homogeneous cosmology. 
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Our claim that quantum collapse is strictly forbidden within 
the slow-time qynamical framework is supported by the work of 
DeWitt [9], Lund [10] and Lapchinskii and Rubakov [11] on the 
FLRW universes and Demaret's analyses [12] of several Bianchi 
models. On the other hand, our contention that the fast-time 
version of quantum cosmology does not significantly alter the 
classical behavior near the singularity is consistent with the 
findings of Misner and Ryan [13], Gotay and Isenberg [14] and 
Brill [15]. Thus, our conjectures are confirmed for a wide 
range of both cosmological models and (intrinsic-, extrinsic-
and matter-) time gauges. 

Of course, it remains to determine which of these 
classical/quantum formalisms is "correct". Philosophical 
considerations [2-4] aside, the answer must likely await the 
development of a complete quantum theory of gravity. Until then, 
one can only wonder, like philosophers of all ages, whether 
indeed " ..• the world has a beginning in time." 

Notes 

IThis is so despite Scriven's claim [1] that the orlgln of the 
Universe " ••• is not within the power of science to determine, 
nor will it ever be." North refutes this assertion in Chap. 18 
of [2]. 

2Whether it can be demonstrated, on a purely philosophical basis, 
that the Universe has either a finite or an infinite past 
remains open to question [3]. 

3We call a time variable t a fast time if the singularities 
always occur at either t = _00 or t = +00. If this is not the 
case, then t is said to be a slow time. 
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4We chose units so that c = 1 and l6nG = 1. 

SIt is possible [8] to relax the requirement that the quantum 
Hamiltonian be self-adjoint by letting a in (3) be complex. 
The operators H with 1m a < 0 will then generate contpaction 
semigpoups rath~r than unitary groups. In this case, the 
quantum models may as~mptotically collapse in the sense that 
<~(t)lxl~(t» + 0 as It I + 00, although it still cannot be 
ensured that an initially contracting state will collapse in 
fini te time. 

6This is in keeping with Lund's suggestion [10] that one should 
always quantize on a geodesically complete minisuperspace. 
Here, however, the completion consists of modifying the choice 
of time rather than the minisuperspace itself. 
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QUASAR ENERGY FROM FROZEN FUSION VIA MASSIVE NEUTRINOS ? 

J. Steyaert 

Institut de Physique, Universite Catholique de Lou­
vain, B-1348 Louvain-la-Neuve, Belgium 

" nega t i ve hydrogen ions. This is an ins tance of an im-
portant astrophysical problem demanding for its solution an 
atomic phenomenon which plays no important part in terrestrial 
physics and the understanding of which depends upon a consider­
able refinement of atomic theory". 

W.Y. McCrea, Physics of the Sun and 
Stars, p. 70, 1950, Hutchinson, London 

The above sentence, discovered by chance when finishing this 
article, is quoted to illustrate the importance of individual 
processes for the understanding of macroscopic ones. 

Speculation is dangerous and speculative articles, like this 
one, should be targeted. "Proving they are wrong could be more 
enlightning than agreeing on their correctness". If this sen­
tence is maybe from Feynman, it is a good place to recall 
Lemattre's opinion about the double frustration with mistakes: 
firstly when you discover it, secondly when you wonder why you 
didn't discover it earlier. 

Intuition leading to objectivity is a difficult task but 
intuition has a role to play in the scientific walk. 

Contradictory experiments in atomic physics about a simple 
charge exchange reaction 
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where the starting point of the present speculation. It has 
been called the H-H problem by the physicists (1) who first 
performed a detailed calculation before the complete experiment 
was executed and found to agree reasonably well (2). 

Contrary to the detection of both H 
previous experiments (3) detecting only 
peaks in the cross section between 
center-of-mass energy of both H. 

atoms in coincidence, 
one H, showed dramatic 

20 eV and 500 eV 

At the Baddeck Conference (Nova Scotia, Canada), the discre­
pancy became public (4) and it was proposed that it could be 
due to the reaction 

+ - +-
H +H -+H+H +e [2] 

Unfortunately, this reaction amounts to a few percent of [1] 
shows no peaks as was recently reported (5). 

At about the same time, a measurement of electron-neutrino 
mass was announced (6) giving 14 eV<m < 44 eV. This experiment 
is on the way to be confirmed; it give~ a most probable value 
~ =34 eV which coincides rather curiously with the low energy 
peak of [1], of which the other peaks are at about 54 eV and 
150 eV. 

This coincidence led us to propose a variant of the p-e-p 
reaction 

+ -
H + H -+ D + \I (3] 

as a complement to reaction [1]. 

We have no idea about the details of reaction [3] which 
should be consider~13 on1t for its energetics. Its probable 
cross· section of lQ.44 c~ is about 30 order of magnitude dif­
ferent from the 10 cm cross section expected if only weak 
interaction is present. However, it should be pointed out that 
present neutrino physics is derived from relativistic neutrinos 
and no-one knows the dynamics 2f massive neutrinos with a kine­
tic energy around or below m c • v 

The peaks observed in the cross section of reaction [1] are 
maybe an experimental artefact as further investigations by 
Peart and Dolder have not been able to reproduce them, in spite 
of a considerable and careful experimental work (7). 
Nevertheless, peaks have been observed at a given time by at 
least two independent groups and their or1g1n remains 
unexplained. The data should be reexamined and, if possible, 
found again with the help of investigating the role of 
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detectors, ion sources, residual gas, the age of the hydrogen 
bottle (8 or 12 years old), origin of the hydrogen, presence of 
electric or magnetic fields in reaction area, etc. 

Up to now, on~y atomic physicists are concerned with an em­
barrasing experimental conflict and above ideas could be kept 
as a mere clipboard curiosity. 

Nevertheless there is a small chance that the above process 
is of interest to astrophysicists. The black hole hypothesis 
for quasar formation should still be considered as a working 
one. Just from the energetics the reaction 

H+H+D+ v 

E = 1.4 MeV v 

[4] 

E 553 V 230 km S -l 
D = e , vD '" 

and less probably [3], are possible contenders. More over, it 
could well be that only radio-quiet quasars are concerned. The 
radio-louds ones, where electrons are accelerated (or decelera­
ted), are maybe depending of the still more exotic reactions 
[5] cited a little further. 

If the processes are really present we will call them "fro­
zen fusion" as the concept "cold fusion" is already used in 
heavy ion nuclear physics. 

Neutrinos are playing an increasing role in as trophysics : 
source of the missing mass in Galaxies (7), diffuse gas 
embedded in clusters of Galaxies (8). 

If reaction [4] is really producing neutrinos it is maybe of 
importance to the physics of proto-galaxies, of which the qua­
sars seem to be part of. 

supposing the quasar to be a hydrogen plasma with an atomic 
temperature T of a few ten to a few hundred eV, the charged 
components could undergo reaction [3] an~ the neutral ones re­
actir [4] ._lhe rea£flon 2ate being 4r = _~<o v>, we get for 
v",lO cm s , 0",10 cm and N",lO cm (as suggested by the 
str~~gth of 0[11] with respect to 0[111] lines (9» a power of 
",10 W is obtained in a sphere of 1 pc radius, supposing most 
of En converted in radiation. This is jifnsistent lith the power 
emitted by a typical quasar, about 10 W, or 19 _rrg/s (10). 
For such a N the reaction rate would be 10 cm s • In about 
1000 s the neutral gas (or the neutral component of the plasma) 
would be depleted in H and enriched in D. Frozen fusion could 
proceed further with D and so on, but there is no experimental 
indication for the following reactions, selected among others : 
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H + D -+ T + v, [5a] 

D + D -+ 
4 + [5b] He + e 

4He + 4 He + 4 He -+ l2C+ + e [5c] 

l2C + l2C -+ 24Mg+ + e [5d] 

D + 4 6.+ [5e] He -+ L1 + e 

6Li + 6Li -+ l2C+ + e [5f] 

If they exist, they could complete with big-bang reactions 
and modify the proportions of primeval elements. 

The rapid depletion of ne~tral hydrogen in a fraction of an 
hour, of a mass of about 10 M will probably generate turbu­
lence, a deuteron stream, a neu~rino wind. If pieces of a 1 kpc 
radius gas sphere are brought sucgessively into the core th~ 
process could nevertheless lasl2 10 times longer or about 10 
years for a total mass of 10 Me. The neutral matter of the 
future galaxy would 4then be processed quite rapidly. Big-bang 
generation of D and He would then be questionable, at least in 
the amounts we presently infer from observation. Evidence of 
the red-shifted deuterium equivalent to 21 cm line i.e. ~v(D) = 
327.38402 MHz (91.6 cm) would give some clue about D generation 
and distribution (11). 

The frozen fusion reaction could not take place in the big-
- + 

bang phase before recombination, an era dominated by e H 
plasma. Cool plasma, or atomic gas, is necessary to have enough 
H for reaction [4]. 

The kinetic energy necessary to start the frozen fusion 
could come from the gravitational potential. An hydrogen atom 
falling from the 112eriphery at 1 kpc toward the cloud's center 
of total mass 10 Me would gain an energy of 'U 40 keY if no 
collisions occur. Tak1ng them into account as well as radiation 
pressure would give a more realistic value. 

It has been shown recently (12) that no quasars seem to 
exist with a red shift z>3.7 and, more precisely, the abrupt 
limit where quasars disappear (or appear) is related to their 
intrinsic magnitude. We present here a conjectured time evolu­
tion of QSO core, following H temperature: 

- T > 500 eV : pre-quasar state with "normal" atomic physics. 
2H eV < TH <500 eV : quasar state dominated by reaction [3] 
or [4], possibly ending in BL Lacertae objects (13), Seyfert 
galaxy (14), N-galaxy or the center of our galaxy where a hot 
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galactic wind has been suggested_f15) and short galactic arm 
found expelled at about 100 km s with a mass loss expected 
of lOMe per year (16). 

- TH < 20 eV : post-quasar state with a return to "normal" 
aeomic physics as seen outside of galaxy cores. 

Ingredients are present for a tentative explanation of main 
quasar properties : high power output, compact shape, non-ther­
mal radiation, emission lines, evolution. Before detailed cal­
culations could be undertaken, atomic physicists will have to 
prove that frozen fusion really exist, measure it cross sec­
tion, explore its existence for elements like He, C, 0, Ne ••• 

The particle physicist will be interested in the presence of 
frozen fusion reactions. They will enable him to study neutri­
nos at low energy or low momentum and determine if neutrinos 
are bradyons, tachyons of even light tachyonic monopoles. 

The engineer will be happy to burn hydrogen with hydrogen 
producing energy, with no induced radioactivity, just by 
shooting a gas with a keY neutral injector. 
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ESTIMATION OF GALACTIC MASSES USING THE ZERO ENERGY-MOMENTUM 
COSMOLOGICAL PRINCIPLE 

Summary 
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B-2610 Wilrijk-Antwerpen. Belgium. 

The cosmological zero energy-momentum principle is briefly 
explained. It is then applied in a quasi-Newtonian model to 
derive Jeans' instability criterion. once without and once with 
electrical charges. The calculation of the masses of galaxies 
from it yields a reasonable agreement if the estimated values 
for the temperature in galaxies are used. However. since the 
zero energy principle rather implies that we use the CBBR tempe­
rature we obtain about 5x10 8 solar masses. An expanding Newto­
nianlike universe combined with the zero energy principle gives 
presently no definite conclusion about the stability; but if un­
stable the relevant wavelengths and masses seem qualitatively 
acceptable. 

1. INTRODUCTION 

The zero energy-momentum cosmological principle introduced 
by one of us (1) allows to explain several incidences. However. 
if really a valid principle it should explain many other cosmic 
phenomena. It should be used e.g. to give a more acceptable 
derivation of Jeans' instability criterion and as a consequence 
to yield reasonable estimates of the galactic masses. 

The plan of the paper is as follows. First the idea of the 
zero energy-momentum cosmological principle is explained (sec­
tion 2). Then an improved analysis of Jeans' instability crite­
rion is briefly derived. although still in a static and quasi­
Newtonian approximation (section 3). It yields galactic masses 
that are too small. In section 4 an expanding Newtonianlike 
model using the zero energy principle is developed. The last 
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section contains some conclusions, comments and suggestions for 
further extensions. 

2. THE ZERO ENERGY-MOMENTUM COSMOLOGICAL PRINCIPLE 

It was advanced by one of us (1) that the total energy and 
total momentum in the universe is zero. Several arguments in 
favor of this principle can be given. First of all it seems 
very objectionable to accept that the total mass and energy of 
the universe should have been contained in an extremely small 
volume (in the limit a point of zero dimensions). Such a singu­
larity can be a useful approximation in the later stages of the 
universe; undoubtedly the idea of an expanding universe has been 
a most fruitful one. It was first considered from the viewpoint 
of mathematical physics by Friedmann, advanced by Hubble to ex­
plain the red shift of the galaxies and studied from the view­
point of theoretical physics by Lemaitre (i.e. looking for the 
real universe and not for several mathematical possibilities al­
lowed by the general theory of relativity). However a Singula­
rity is unsatisfactory as an ultimate scientific explanation of 
whatever physical feature; and certainly this initial singulari­
ty is unsatisfactory as the very beginning of an otherwise phy­
sically well behaving universe. Moreover quantum fluctuations 
may be called for help for the initiation, but fluctuations of 
such an enormous magnitude are rather unbelievable, even if the 
initial conditions and physics are different from the present 
ones. Moreover fluctuations resulting in a net amount of energy 
from nothing remain much less acceptable than fluctuations which 
do not involve a net creation of energy but only the creation of 
positive and negative energy balancing each other perfectly to 
zero at all times. 

The assumption of a zero total momentum seems very plausible 
in view of spatial symmetry; however from the relativistic view­
point a zero total momentum is also an indication that the total 
energy may be zero. 

There is a very strong Newtonian argument in favor of this 
cosmological principle. Indeed the graVitational energy of a 
mass m at the center of a graVitational sphere of radius R, of 
homogeneous density p and of mass Mis: 

3 GMm 2 
mP = - "2 R " -27TGpR m ( 1 ) 

where G is the graVitational constant. 
Clearly this (negative) energy is tremendous per unit mass if ~ 
corresponds to the potential of the universe. On the other hand 
the rest energy mc 2 , is also an enormous energy per unit mass 
but positive. According to the zero energy principle their sum 
should be zero. This entails immediately several consequences. 
First it explains where the tremendous rest energy comes from 
and also where the field energy went to. At the same time it 
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fixes the arbitrary constant in the potential; this constant in 
itself has usually no importance but for the total potential 
energy of the cosmos it does matter. 

Moreover it shows that the inertial mass (m.l, which occurs 
in the rest energy, has to be equal to the gravi~ational mass, 
which occurs in the gravitational energy; otherwise there would 
be a surplus of energy. Moreover, in agreement with Mach's prin­
ciple, besides the cosmological interpretation of the rest ener­
gy, it gives also a cosmological interpretation of the speed of 
light in vacuum: 

(2) 

Using conservative_y~lues tor the dens{t¥6and the radius of the 
universe (p = 3x1o kglm and R = 2x10 m) one obtains c = 7.10 7 

mis, which is about a fourth of the real value. Moreover, the 
value for p may probably be increased by a factor 3 and maybe even 
by a factor 10 in view of the newly discovered extensions of the 
galaxies according to their rotational velocity curves. The 
value for R is also an underlimit. So the coincidence is rather 
good and probably will still improve. On the other h~nd one has 
to realize that this is only a Newtonian approximation and in 
addition one should take into account other genepators of poten­
tial energy besides the gravitation. 

The full expression of the cosmological zero energy-momentum 
principle requires that the right hand side (-KT ) in Einstein's 
field equation is zero in the universe. ~v 

RV _ ~ R gV + AgV = 0 
~ 2 ~ ~ 

(3) 

This is clearly revisiting the De Sitter's universe, however with 
a plausible explanation for putting the right hand side equal to 
zero. This cosmology is fully in the line of Einstein's theory 
of gravitation, except for the additional assumption of the 
cosmological zero energy-momentum principle. It may be remarked 
that these appear to be inconsistent since the Einstein field 
equation is precisely the expression of the equality between 
field tensor and matter tensor. One of us has given the explana­
tion of this paradox, but this would lead too far in the present 
context. 

3. IMPROVED JEANS' STABILITY CRITERION. 

Jeans studied the stability of an infinite, Newtonian 
gravitating medium of homogeneous density and uniform pressure 
(2). He obtained the following critical wavelength: 

A J = J GTIp ~~ (4) 
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in which dp/dp corresponds to the square of the sound velocity 
(about the thermal velocity of the molecules). According to 
Jeans a perturbation with wavelength A larger than A is 
(linearly) unstable and would lead to condensations tgalaxies, 
stars, ... ), while a perturbation with wavelength smaller than 
AJ would be stable and would behave as a sound wave, modified 
more or less due to the gravitation in relation to the ratio 
A/AJ . However the equilibrium which Jeans had considered can not 
exist. To explain this we consider the Poisson equation and the 
equilibrium condition in Newtonian mechanics: 

41fGp (5 ) 

Vp .. -pV<p (6) 

If P is uniform then V<p is zero everywhere (unless p is zero). 
This requires ~ = 0 and thus requires anyway p = o. 

In fact the difficulty was basically the same as the one 
which Einstein met in 1917 in, order to make a cosmological model. 
Einstein introduced the cosmological constant to cope with the 
problem. (This corresponds in the Newtonian approximation to 
adding a term A<p in (5); the vanishing of grad <p then yields 
A<p = 41fGp.) Later the expansion of the universe fulfilled the 
same purpose (This corresponds to adding a term pdv/dt in (6), 
then grad <p does not vanish because grad p vanishes). A third 
al ternative is to use the cosmological zero ener~'-..fnomentum 

principle. This solves the difficulty and it will be used, in 
the following to give a better basis to the Jeans' stability 
criterion. However, it should be clear that we do not at all 
claim that the expansion of the universe or the cosmological 
constant are superfluous. In fact in the next section we will 
deal with an expanding universe in which the zero energy princi­
ple is also valid. 

The relevant equations are 

dt \; + v.Vv 
1 
- Vp p 

- V<p (7) 

'\p + div pv = 0 (8) 

p = Kp r (9) 

~ = 41fG (p-.p f) (10) 

where the last one is the form of the Poisson equation in which 
the mass density p corresponding to the field is added. The 
equilibrium quantities are characterized by the index o. One 
has v = 0, P = Pf (= Pf ) and p = Kpr are independent of space 
and t~me and ° <p 19 independentOof sp~ce. 

The perturb~d quantities are characterized by the index 1. 
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P is considered as not changing markedly during the perturbation. 
A~ter linearization and'elimination (3) one obtains the differen­
tial equation 

Using a Fourieranalysis 

i(wt+k.~) 
P1 - e 

yields the dispersion relation 

(11 ) 

(12 ) 

(13 ) 

which is the same as obtained by Jeans. This yields, by putting 
w = 0, the critical A of eq. (1). However a somewhat more 
correct analysis Yiel~s in his theory a factor 8 instead of 4 in 
the last term of eq. (13). 

The same analysis can be performed taking into account that 
the materi~l consists of electrons and ions (once ionized). This 
leads to a more involved dispersion relation, combining plasma 
oscillations and gravitational oscillations or instabilities (4). 
Instabilities now arise for wavelengths larger than the critical 
wavelength 

1 

P 
o 

(21T 
G 

( 14) 

which is larger than AJ by about 12. (Indices i and 8 are for 
ions and electrons respectively) 
The critical Jeans'mass is 

M =P A3 
J 0 J 

1Trk T 3/2 
( __ B_) 

G m 
(15 ) 

with m say the mass of a proton. However one has to take at 
least a wavelength corresponding to 2AJ in view of the corres­
ponding growth rates. This makes MJ larger by about an order of 
magnitude. One obtains a reasonable mass for a galaxy using a 
temperature of 100K as is actually observed in our galaxy. 
However in this model with the zero energy principle it seems 
indicated to use the present 3K of the C~BR. This yields only 
an average galactic mass of about 2 x 10 so~ar masses. Using 
the plasma value brings this to about 5 x 10 solar masses, which 
is still two to three orders of magnitude too small. 
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4. EXPANDING NEWTDNIABLIKE MODEL WITH ZERO ENERGY PRINCIPLE 

The relevant basic equations are eqs. (7), (9), (10) supple­
mented by the following: 

(16 ) 

( 17) 

R(t) is the radius of the universe in this Newtonianlike model. 
Since in the Newtonian approximation Pf - ~R-2 (eq. (2) and since 
-~ should correspond to c 2 the choice of eq. (17) is plausible. 
In fact the possibility of a variable G is not considered here. 
The equation of continuity seems logical, with v (the velocity 
of the unperturbed state) instead of v in the ri~ht hand side. 
This corresponds to the fact that we take Pf as not influenced 
by the perturbation, which simplifies the analysis. Also K and 
r are taken as constants which do not change neither with place 
nor during t~e ev~lution. 

Assume v = rf(t). We want to have P ,p and ~ indepen­
dent of space~ That also ~ is independen~ of Os pace ~eans that 
in this model the so-calledocosmological principle (that all pla­
ces in the universe should be alike) is even better satisfied 
than in customary Newtonian models, where ~ cannot be indepen­
dent of r, unless a cosmological constant i~ used, because of the 
Poisson equation. 

From eq. ( 7) it follows then that f + f2 ~ 0 and thus 

f = ~ (18) 
t 

where a is a dimensionless constant. In an expanding universe 
one has a > D. Thus: 

ar 
v T 0 

(19) 

and 

V == 
aR v ~ T oR 

(20) 

It follows then from eqs. (17) , (9 ) and (16) : 
2 

P = Pf 
(Ca) 

0 Vt 
(21 ) 

0 

Po 
K r 

Po 
K(Ca)2r 

Vt 
(22) 
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(23) 

Note that the source term vanishes if a = 2/3. In spite of the 
source term each density decreases like t- 2, each starting at 
infinity (But there this Newtonianlike approximation is no more 
applicable), The total mass of each kind increases like t from 
zero on. 

For the perturbed equations one obtains: 

-
dt v i + vi ,VVo + vo ,Vvi (24) 

dt Pi + div Pi V o + div Pov i = 0 (25) 

rp 
0 

Pi 
Po Pi (26) 

/';pi " 47TGP i (27) 

Although our basic equations differ markedly; from the New­
tonian ones, the perturbed ones are formally the same. Cf. Wein­
berg (5), who refers to Lifshitz and Bonnar. Of course the un­
perturbed solution is different, so that the perturbed one is al­
so different, although similar. 

Put 

(28) 

and similarly for Pi' Vi and ~i' k stands for a dimensionless 
wavevector. Taking a = 1 and eliminating Pi and ~i yields 

=- Vir i rp 47TGV 2t 2 -
( - 0 

Vi + e -- + ) kPi t r Vt p2 k2 
0 

(29) 

3P i ipo 
k.v i Pi + 

t Vt 
(30) 

Putting 
-
k 

Vi v1re r + v1k k (31 ) 

yields Vir + Vir It 0 (32) 
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(33) 

(34) 

From (32) it follows that v1 dies 9ut. We drop then the corres­
ponding term in (34). Elimlhating v1k yields after some algebra: 

= 0 (35) 

For the particular case r = (isothermal) one has solutions of 
the form P1 = Ata with A an arbitrary constant and 

(36) 

This yields instability if 

(37) 

It seems likely to take V = c; also C2 = c2/2~G seems a reaso­
nable approximation. Inequality (37) then reads 

(38) 

which is never satisfied. 
When r # 1 one can express the solution of (35) by means 

of Besselfunctions: 

SA IKF cr-1 r 1 
P1 .. At- 2 Zp(TF-lT r kt - ) 

V 
(39) 

with p2 • (16~GC2 _ 24)/25(r-1)2 
V2 

(40) 

It is clear that f9r gravitational instability leading to 
galaxies and the like we are interested mainly in extremely small 
k. In the limit of k zero all solutions lead to the same result 
as r • 1, independently of r, as can be seen from eq. (35) itself. 

Hence this model doesn't yield a clear instability as long 
as we cannot insert more appropriate values for V and for C. 
This is not wholly unexpected since all analyses related to the 
Jeans' one are always a bit marginal. Lifshitz (5) found insta-
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bility but with a growth like a power of t and not an exponential 
growth. In fact in his analysis this doesn't allow a statistical 
fluctuation to develop sufficiently. In our analysis this is a 
minor inconvenience since we start with a small total mass. 

However it has become clear what to expect in a refined 
(i.e. general relativistic) analysis. Indeed k will have to be 
of order of cK- 1ft or c/v with V the sound velocity 

s s 
fkBT 

(41) 
m 

The corresponding wavelength is 

21fR Vs 
A=-k- .. 21fR c (42) 

10 With R = 2.10 ly and v = 150 m/s (corresponding to 3K and 
atomic hydrogen), one obtains: 

A "" 6 x 10"ly (43) 

This is qualitatively of the right order of magnitude, but 
again too small. 

It may be remarked that in this expanding model with the 
zero energy principle, we may expect that the radiation density 
1/3 aT~ is roughly proportional to the mass density. Hence 
T - t- 'f2. It fo~lows that A would be in this approximation 
proportional to t ~". 

5. CONCLUSION 

The Jeans' criterion may be correctly derived in a static 
model with the zero energy principle. It would yield a reasona­
ble average mass for the galaxies if one might use the observed 
temperatures of the galaxies (say 100 K). However the model ra­
ther requires the use of the CBBR (3 K) and yields masses which 
are too small by 2 or 3 orders of magnitude. 

The expanding model with the zero energy principle leads to 
a very interesting analysis, similar to those of Lifshitz and 
Bonnar. But with the approximations at hand we cannot clearly 
decide about the stability. If unstable, however, the critical 
wavelength will be about the one given in eq. (42), yielding a 
plausible result but also too small. However, several interes­
ting features of the model became clear in the analysis. Proba­
bly an analysis in the framework of general relativity will be 
able to give a more decisive result. 
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DYNAMICS OF ORBITING DUST UNDER RADIATION PRESSURE 

Andre Deprit 
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For a three-dimensional Keplerian system in the presence of a 
homogeneous field possibly in uniform rotation, action and angle 
variables are introduced by canonical transformation in the 
averaged Hamiltonian truncated at the first order. After 
substitution, the first order averaged system proves to be 
integrable. More precisely, it is shown how the orbit space 
decomposes into a pair of spheres in a three-dimensional space, on 
which the representative curves are the small cir~les induced by a 
finite rotation about a fixed axis. From this intuitive geometric 
picture follow simple formulas for solving the initial value 
problem. 

))EDICATION 

The lectures on integral invariants which Elie Cartan gave at 
the Sorbonne in the schoolyear 1920-1921 fascinated Msgr Lemaitre, 
for he sensed that Cartan's geometric approach opens new vistas on 
classical problems. Cartan's techniques, he was convinced, could 
be made into a tool for producing and analyzing models of dynamic 
systems. Of all the applications dealt with in Cartan's textbook, 
the problem of three bodies caught Lemaitre's imagination. It is 
typical of the gap left open in Cartan's Reduction Theory: on the 
one hand, a differentiability criterion expressed in the intrinsic 
language of Exterior Calculus implies that the original phase 
space may be reduced; on the other hand, no indication is given on 
how the actions of the reducing Lie group could lead to an atlas 
of symplectic maps on the reduced manifold. Thus it is that 
whenever Cartan's theory of integral invariants announces a 
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possible reduction, the physicist receives the news as a challenge 
to create a good set of coordinates for converting the 
mathematical abstraction into a workable dynamic system. Msgr 
Lemaitre thrived on this kind of challenge because he knew he was 
very good at meeting them. In the problem of three bodies, he 
invented precisely the· kind of coordinates that are missing in 
Cartan's exposition. Not only do they make the reduced manifold 
amenable to numerical integration, but they have the incomparable 
advantage of transforming the binary collisions from moving 
singularities into fixed critical points to be regularized 
straightaway, all three of them at once, merely by a conformal 
mapping. 

In the reduced problem, Msgr Lemaitre studied closely two 
situtations: the collinear case where the masses stay forever 
aligned, and the isoceles configuration which Chazy had been 
analyzing by Tauberian arguments. The reason is that both systems 
have only two degrees of freedom, and Msgr Lemaitre hoped they 
could be handled in much the same way as he had treated the 
Stoermer problem with remarkable success twenty years earlier. 
Might it not be, after all, that manifolds of asymptotic orbits 
emanating from unstable periodic orbits stake out accessible and 
forbidden regions in the phase space? On this hunch, a campaign 
began in Louvain for locating periodic orbits with real 
characteristic exponents, or perhaps it was rather a succession of 
brilliant raids bringing back outstanding periodic orbits but, 
alas, never one with four real characteristic exponents(*). So 
little do we understand of the mechanisms that produce unstable 
periodic orbits in a dynamic system. At any rate, Lemaitre proved 
right in thinking that Cartan's Geometric Dynamics could be made 
computable. There had never been a doubt in his mind that the 
physicist's imagination is the spark that throws off mathematical 
abstractions which then flare into brilliant mechanical models. 
Technology and mathematics, the enormous increase of mathematical 
sophistication and the ever galloping progress in electronic 
computers are now fostering the NOuvel Age in mechanics and 
mathematical astronomy of which Lemaitre, assuredly, was a 
precursor. 

We chose the topic of our communication, not only 
bears on a current problem in planetology, but mainly 
offers a simple example of the gap Msgr Lemaitre 
Cartan's Reduction Theory when it is applied to the 
Three Bodies. 

because it 
because it 

bridged in 
Problem of 

(*)C. Cauwe, 'Recherche d'orbites periodiques particulieres dans 
Ie mouvement rectiligne de trois masses egaIes,' Memoire presente 
pour obtenir Ie grade de Iicencie en sciences, Universite 
catholique de Louvain, 1951. 
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J. Meeus, 'Exposants caracteristiques des configurations 
equilaterales de Lagrange d'excentricite non nulle dans Ie cas de 
masses egales,' Memoire presente pour obtenir Ie grade de licencie 
en sciences, Universite catholique de Louvain, 1952. 

A. Bartholome, 'Recherches sur Ie probleme des trois corps dans Ie 
cas de masses egales,' Memoire presente pour obtenir Ie grade de 
licencie en sciences, Universite catholique de Louvain, 1952. 

A. Deprit, 'Configurations isoceles du probleme plan des trois 
corps. Equation d'une orbite periodique d'ejection et ses 
exposants caracteristiques,' Memoire presente pour obtenir Ie 
grade de licencie en sciences, Universite catholique de Louvain, 
1953. 

G. Steenbeckeliers, 'Configurations isoceles du probleme plan des 
trois corps. Orbites symetriques d'ejection,' Memoire presente 
pour obtenir Ie grade de licencie en sciences, Universite 
catholique de Louvain, 1957. 

E. De Vylder, 'Les variables regularisantes du Chanoine Lemaitre 
et la theorie de la lune de de Pontecoulant,' Memoire presente 
pour obtenir Ie grade de licencie en sciences, Universite 
catholique de Louvain, 1958. 

1. Introduction 

The dynamics of the two-dimensional 
characterized by the Hamiltonian 

Stark effect is 

(1) 

describing a Keplerian system with constant parameter ~ to which 
is added a small perturbation of constant magnitude and of fixed 
direction in the particle's orbital plane, the small parameter e 
having the physical dimensions of an acceleration. Averaged over 
the mean anomaly and then truncated to the first order in e, 
Hamiltonian (1) gives rise to an amazingly elementary system. Its 
orbit space is a two-dimensional sphere, and the phase motions 
consist of uniform rotations around a fixed axis [9]. It will now 
be shown how this simple picture carries on for the class of 
Hamil tonians 

H = ! (X2 + y2 + Z2) - H + e (x cos mt + y sin mt) 
2 r 

(2 ) 

representing three-dimensional Keplerian systems undergoing a 
small perturbation of constant magnitude but, in this case, 
rotating at a constant angular velocity m in a fixed plane that 
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need not be the particle's orbital plane. The model is an 
abstraction contrived to account for the effect of radiation 
pressure -- in the precise sense of Burns [3, p. 8, second 
column] -- on dust particles orbiting about an idealized planet 
revolving as it were around the sun on a circle in a fixed plane 
(cfr e.g. [1, pp. 87 - 88]). In that context, the origin of 
coordinates is set at the center of mass in the pair sun-planet; 
the coordinate plane (x, y) is identified with the plane of the 
planet's orbit, and m stands for the mean motion of the planet 
around the sun. The plane of the planet is so oriented that, 
without loss of generality, m may be assumed to be ~ O. The 
particular case m = 0 was examined sixty years ago in classical 
quantum mechanics where (2) was meant to model the effect of a 
homogeneous electric field on a charged particle in a Coulomb 
field (see e.g. [2, pp. 262 - 269]). 

By virtue of Cauchy's uniqueness theorem, a particle starting 
in the planet's orbit with an initial velocity contained in that 
plane will never leave the plane. As a matter of fact, the class 
of co-planar orbits is the set of solutions for the canonical 
equations derived from the reduced version 

H = ! (X2 + y2) - ~ + e (x cos mt + y sin mt) 
2 r 

(3) 

of Hamiltonian (2). It describes a dynamical system with only one 
degree of freedom which admits an integral. Averaging it over the 
mean anomaly and retaining only the first order in the 
approximation, the obtains a model of the long term evolution that 
is integrable [13]. For m = 0, Mignard's solution reproduces the 
conclusions reached by a different method for the two-dimensional 
Stark effect in Hamiltonian (1). 

As one should expect from a perturbed Keplerian problem in 
three dimensions [14, 18] the orbit space after reduction by 
averaging is composed of two spheres in a three-dimensional real 
space. The outstanding feature of the title problem, gathered by 
Mignard [13] from from repeated numerical integrations, is that on 
each sphere the motions consist of rotations about a fixed axis at 
a constant angular velocity, the same on both spheres. The main 
motivation of the present ccmmunication ~to prove Mignard's 
conjecture. In an approach that is somewhat unusual in celestial 
mechanics, although it is routine in quantum mechanics, the 
Cartesian components of the angular momentum and of the Runge-Lenz 
vector serve as the coordinates for the reduced system. From the 
point of view of Geometric Dynamics, the result is an elementary 
application of the Reduction Theorem going back to Cartan [4] but 
nowadays named after Kirillov, Souriau and Kostant. Actually it 
will be demonstrated that the reduction can be carried out by 
constructing a pair of integrals generating a set of action - and 
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angle - variables. A more descriptive solution is obtained by 
rearranging the phase space so that the rotations on one of the 
spheres account for the motions of the particle's ascending node 
in the plane of the planet's orbit while those on the second 
sphere justify the angular displacements of the pericenter. In the 
extreme case when E = 0, movements of both node and pericenter are 
evidently all circulations; but as the frequency inherent to the 
radiation pressure increases with respect to the planet's mean 
motion, there arise librations both in node and in pericenter. 
Eventually, at the other extreme when m = 0, node and pericenter 
both librate for whatever set of initial conditions is selected. 
The transition from general circulation (pure Keplerian problem in 
a rotating frame) to general libration (pure Stark effect in a 
fixed frame) is smooth and exempt from bifurcations. 

With a view towards assisting astronomers in the 
assessing the impact of radiation pressure on orbiting 
initial value problem has been worked out in detail to 
complete solution in a form as simple as possible. 

task of 
dust, the 
present a 

Is there more than a fortuitous coincidence in the fact that 
the two-dimensional variant (3) after averaging over the mean 
anomaly corresponds strictly to the Hamiltonian by which Pauwels 
[16, eq. 34] models the.secular orbit/orbit resonance between the 
satellites Rhea and Titan of Uranus? The similitude seems to 
suggest that (2) is representative of a class of Keplerian systems 
in which the perturbation introduces a 1-1 semi-simple resonance 
between the mean motion of the node and of the perigee. 

2. The Synodic Frame 

The manner in which Hamiltonian (2) depends explicitly on time 
suggests adopting a frame of reference that rotates at the 
constant angular velocity m so as to maintain the moving axis of 
abscissae aligned in the direction of the radiation pressure [5]. 
To this effect, a time dependent canonical transformation 
(X, Y, x, y, t) + (U, V, u, v) is introduced by the implicit 
equations 

as 
Y 

as as as X = --, --, u --, v = ax ay au av 

from the generating function 

S :: S(U, V, x, y, t) U (x cos mt + y sin mt) 

+ V (- x sin mt + y cos mt). 

Attention ought to be paid to the meaning of 
variables. Let (~1' ~2' ~3) be an orthonormal basis with 

the new 
~1 and 
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~2 fixed in the planet's 
! = x ~l + Y ~2 + z ~3 is 

orbit, and ~3 normal to it. Then 
the particle's position vector; 

furthermore, since 

aH 
x = aX = x, y 

the vector ~ = X ~l + Y ~2 
relative to the inertial 
(fl, f2' E3) such that 

aH 
ay = Y, 

+ Z ~3 
frame 

£1 ~1 cos mt + ~2 sin mt, 

£2 - ~l sin mt + ~2 cos mt, 

£3 ~3· 

aH 
Z = az = z, 

is the particle's 
(~1, ~2, ~3). The 

velocity 
vecto.rs 

constitute an orthonormal basis of the rotating or 
of reference. On the one hand, by definition of 
mapping, 

synodic frame 
the canonical 

as 
mt + sin mt, u = au x cos y 

as sin mt + y cos mt, v = av = - x 

and these relations imply evidently that the position vector is 
the sum x = u !1 + v !2 + Z !3. On the other hand, 

X 
as 

u cos mt - V sin mt, Y 
as 

u sin mt + V mt, ax ay cos 

which means that the velocity vector is also the sum 
X = U !l + V !2 + Z !3· In words, the moments (U, V, Z) 

canonically conjugate to the synodic coordinates (u, v, z) are 
the synodic components of the velocity for the particle's 
motion relative to the inertial frame. The point insisted upon 
is that these moments are not the synodic components of the 
velocity relative to the synodic frame itself. 

The differential identity 

X dx + Y dy = U du + V dv - ~~ dt + deS + Uu + Vv) 

shows that as/at = - m (uV - vU) is a remainder of the 
transformation. Thus, in the synodic variables (U, V, z, u, v, z), 
the canonical equations are to be derived from the Hamiltonian 
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K 
a 

H + -~ = 1 (U2 + v2 + Z2) - ~ - m (uV - vU) + € U at 2 r 
(4) 

which, as it was intended, is now independent of the time. One 
may notice that the Hamiltonian admits a few discrete symmetries: 
the symplectic mapping (U, V, z, u, v, z) + ( u, V, -Z, u, v, -z) 
which is the reflection in the plane of the planet, as well as the 
contact transformations (U, V, Z, u, v, z, t) + (-U, V, Z, u, -v, 
-z, -t) and (U, V, Z, u, v, z, t) + (-U, V, -Z, u, -v, z, -t) in 

the phase space-time. However useful they may be in solving the 
problem by numerical integration, they are of no assistance in the 
geometric analysis. 

There are two particular situations in which the problem put 
by Hamiltonian (4) is elementary: when € = 0, the problem is 
separable in the cylindrical coordinates (r,~, z) such that 
x = r cos ~ and y = r sin ~, and when m = 0, it is "separable" in 
the parabolic coordinates (u, v ~) such that 

x = (u - v)/2, y = /~; cos ~, and z = /~; sin ~ 

[10, 171. Otherwise, the problem appears intractable in its full 
generality, and far - reaching restrictions must be imposed to 
make it fit for analytical treatment. 

a) It will be assumed that not only the acceleration € but 
also the angular velocity m is a small parameter, and that € and m 
are both of the first order. Such an asymptotic scaling of the 
parameters justifies decomposing Hamiltonian (4) into the sum 
K = KO + Kl; the first term 

KO = Vn(U V Z ) = ! (U2 + V2 + Z2) _ H .'V , , ,u, v, z 2 r 

represents an ordinary Keplerian system in the synodic frame, the 
second term 

Kl = Kl(U, V, u, v; m, €) = - m (uV - vU) + € u 

stands for a perturbation of the first order. 
b) Only those orbits along which KO remains < 0 at all times 

will be considered. Accordingly, with the synodic Cartesian 
coordinates (U, V, z, u, v, z) will be associated a set of 
Delaunay elements (L, G, N, !, g, v) in the usual manner. 
Nonetheless, to dissipate ambiguities one ought to review 
attentively how the Delaunay elements are defined geometrically. 
Variables G, N, v are attached to the vector 

~ = (vZ-zV) !1 + (zU-uZ) !2 + (uV-vU) !3 
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which, on account of the remarks made made earlier, is precisely 
the angular momentum (per unit of mass) x x X relative to the 
inertial frame. Then the moment G is the norm of the vector G, and 
N = g.~3 is the projection of 9 on the normal to the planet's 
orbit. Let n be a unit vector such that G = G n; the angle I such 
that f3.~; cos I with 0 < I <w/2 is~the inclination of the 
particle's orbital plane over the planet's orbit. Also let ~ be a 
unit vector such that f3 x ~ = ~ sin I. As a direction in the 
planet's orbital plane, it may be decomposed into the sum 
~ = !l cos v + !2 sin v, a relation which defines the longitude v 
of the ascending node for the 'particle's orbital plane reckoned, 
from the synodic axis fl. Decomposing the angular momentum in the 
synodic frame, one obtains readily that 

Gl g. !l G n1, n1 ~·!1 sin v sin I. 

G2 g·!2 G n2, n2 ~·!2 - cos v sin I, 

G3 g·!3 G n3, n3 ~·!3 cos I. 

Astronomers usually associate the angle g with the Laplace 
vector function 

A* = X x G - ~ ! 
r 

which has the same physical dimensions as 
parameter ~, namely length3/time2; but quantum 
the Runge-Lenz vector 

A = ~ (X x G - ~ x) 
~ ~ ~ ~ r ~ 

the Keplerian 
physicists favor 

not only for the reason that A and G are similar in dimensions, 
but mainly because the Poisson brackets involvingA and G are 
simpler than those in A* and G. In the above formula, i is 
the action defined by ~the relation Ko (~2/2L2), which is 
licit since Ko is supposed to be < 0 at all times. The norm of 
the Runge-Lenz vector is equal to Le, where e is the 
eccentricity determined by the relation G2 = L2 (1-e2). Let a 
be a unit vector such that ~ = Le~. Since G.A = 0, the 
direction ~ is perpendicular to n, hence it may be~decomposed 
into the sum a = ~ cos g + n x ~ ;in g. Simple projections yield 
the components~of the perice~ter~direction: 

~·!1 

~·!2 

~·!3 

Le aI, 

Le a2, 

Le a3, 
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al ~·fl cos g cos V - sin g cos I sin v, 

a2 ~·f2 cos g sin v + sin g cos I cos v, 

a3 ~·f3 sin g sin I. 

It will be convenient to consider also the direction 
b n x ~, and its components in the synodic frame 

bl j? fl - sin g cos v - cos g cos I sin v, 

b2 j?·f2 - sin g sin v + cos g cos I cos v, 

b3 j?·f3 cos g sin I. 

Finally the particle's semi-major axis a and its mean motion 
n are defined by the relations 

from which it is readily inferred that 

C = Lan with 

3. The Gyration Frequency 

Since the principal part of (4) is an ordinary Keplerian 
system, a Delaunay normalization is in order [Deprit, 81. This is 
a canonical transformation to make the new mean anomaly ~' 

(L, G, N, ~, g, v) + (L', G', N', ~', g', v') 

ignorable in the transformed Hamiltonian, thereby producing the 
new action L' as an integral -- formally speaking --, and reducing 
the normalized system to only two degrees of freedom. Since only 
the first order terms will be retained after averaging, it is 
adequate to carry out the normalization "merely as an infinitesimal 
contact transformation without deploying the full analytical 
machinery of a Lie transformation [Deprit, 71. So the elimination 
reduces to finding a generating function W(L', G', N', ~', g', v') 
and a first order Hamitlonian K'1 to satisfy the conditions 

The symbol (~; ~) denotes the Poisson bracket of the functions 
~ and ~,a function that may be built indifferently either in the 
Cartesian variables as the differential expression 
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or in the Delaunay variables as the expression 

The true anomaly being the angle f such that 

r cos f = x.a and r sin f = ~.1z, 

and the eccentric anomaly, the angle E for which 

r cos f = a (cos E - e), r sin f = a n sin E, 

the perturbation Hamiltonian turns out to be the function 

in the class of perturbation functions for which the Delaunay 
normalization is most expeditiously handled by eliminating the 
eccentric anomaly (Deprit, 1983). The algorithm prescribes that 
the first order term be written in the form 

a2 
(- I 1 

ale cos 2E Kl = - mG3 - €al ae + €-- 2" ale + al cos E 2 r 

+ bIn sin E - 1 
2" bIen sin 2E), 

and that the generator W and the normalized perturbation be 
determined to satisfy the conditions 

(KO; W) 
a aw 

- n r aE = K'1 - Kl, 

Separating the terms periodic in E and performing elementary 
quadratures, one satisfies the requirements by setting 

K'1 
3 

- mG'3 - 2 €a'a'l e ' 

w a' 1 
€ n,(a'l sin E' - 4 a'l e ' sin 2E' 

1 
- b'ln' cos E' + 4 b'le'n' cos 2E'). 

Because this study is concerned 
behavior of the dust particles, 
infinitesimal transformation 

exclusively with the long term 
the explicit equations of the 
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R.' + (R.'; W), L L' + (L'; W), 

g g' + (g'; W), G G' + (G'; W), 

v = V' + (V'; W), N = N' + (N'; W) 

will not be developed. Furthermore, for the sake of simplifying 
the notations, from here onwards accents will be dropped from 
all symbols designating averaged state functions. 

Insight into the long term behavior of the averaged orbits is 
gained by introducing the frequency 

(5) 

Although, in the sequel, wL will be simply noted w, it must be 
emphasized however that each level of averaged L determines its 
own rate w, or that w: L + wL specifies a spectrum of 
frequencies. At a given level of energy, major features of the 
solution are determined by the relative position of the 
frequencies m and wL in that spectrum. In fact the parameters 
that will turn up most often will be the gyration frequency 
k = (m2 + w2)1/2 and the phase A such that 

m = k cos A, W = k sin A with O(A(1T/2 •. 

The gyration frequency owes its paramount importance to the 
fact that, at each level of energy, the averaged perturbation 
Hamiltonian is the linear combination 

(6) 

of the basic frequencies m and w. Remarkably enough, the 
coefficients in (6) have immediate intrinsic meanings; to recall, 
G3 is the projection of the particle's angular momentum normal 
to the planet's orbit, and Al is the projection of the particle's 
Runge-Lenz vector in the direction of the radiation pressure. 

So far in the literature [3; 5; 6; 13 and 15], the motion has 
been analyzed in the equations for its Delaunay coordinates 

IlKl 11 
= w (- al - ~ n3 sin V sin g ), 

IlG e 11 



162 A. DEPRIT 

V 
elKI 

m + w ~ sin sin an- v g, 
n 

G 
elKI 

I.e bl' - ag- = w 

. elKl 
N - av- = - w I.e a2 

and their associate elements 

- w n b1, 
• e 
I = w n n1 cos g. 

One might get a handle on the geometry in the problem by 
following the evolution of the apsidal frame (2, ~, ~) in the 
equations 

D1 m n2 - w ~ n1 b1, a1 m a2 + w !l a1 b1, 
n e 

D2 - m n1 - w ~ nl b2, a2 - m a1 + w !l a1 b2, 
n e 

D3 - w ~ n1 b3, a3 w !l a1 b3, 
n e 

in fact equivalent to the vector differential equations 

D = ~ x !}, 
. 
~ 

with the Darboux vector 

Symmetric in form as they are, these equations are still quadratic 
in the components of the basis, which creates many analytical 
complications which obscure the intrinsic simplicity of the 
problem. 

A few classes of particular solutions are derived 
immediately from equations (7). For example, if there is an' 
instant at which I mod n = 0 and I = 0, then, by virtue of the 
uniqueness theorem applied to (76), I mod n and I will be equal, 
to 0 at all times; in words, the particle will stay in the plane 
of the planet. Coplanar orbits, as these solutions are called, 
have been thoroughly discussed by Mignard, [13]. Furthermore 
the system admits at least four singular solutions: 
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I. e = sin A, I 0, v + g 0; 

II. e = cos A, I 'IT /2, v = g 'IT/2; 

III. e = cos A, I 'IT/2, v = g "'- 'IT /2; 

IV. e = sin A, I 'IT, V - g o. 

These are solutions for which the right hand 
equations (7) vanish simultaneously. It will be shown 
that there are only four critical solutions, and that 
non-degenerate. 

4. Linear and Ouadratic Integrals 

163 

members of 
in Section 6 
they are all 

System (7) has two degrees of freedom, and it admits an 
integral, which is the Hamiltonian K1 itself. Naturally one should 
seek for a second integral. To this. end, one will recall the 
well-known Poisson brackets 

(Gi; Gj) = L e:i,j ,k Gk 
1 (k·O 

(1 ( i, j ( 3), 

(Gi; Aj) L e:i,j ,k Ak 
1(k(3 

(1 ( i, j ( 3), (8) 

(Ai; Aj) L 
1(k(3 

e:i,j ,k Gk (1 ( i, j ( 3); 

e:i,j k is the Levi-Civita symbol on the permutations of the set 
(1, ~, 3), it is equal to 1 if the permutation (i, j, k) is even, 
it is -1 if the transposition is odd, and is zero otherwise. The 
quantities 

and 

Give rise to an even simpler set of Poisson brackets 

(Si; Sj) L 
1(k(3 

e: i ,j ,k Sk (1 ( i, j ( 3), 

(Di; Dj) L e:i,j ,k Dk 
1(k(3 

(1 ( i, j ( 3), (9) 

(Si; Dj) a (1 ( i, j ( 3). 
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A 

Figure 1. The four singular solutions. 
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(10) 

In reaching for a second integral, one could begin by enquiring 
under what conditions the linear combinations with real 
coefficients 

J = L (ai Si + ei Di) 
l(i(3 

satisfy the relation (J; Kl) 
that 

o. But a quick calculation yields 

(J; Kl) 

For J to be an integral, it is therefore necessary to take 
a2 e2 = 0, and to choose the remaining four coefficients so as 
to satisfy the conditions 

and 0, 

or equivalently the conditions 

al cos A - a3 sin A = 0 and el cos A + e3 sin A = O. 

These relations are satisfied in terms of two arbitrary parameters 
by taking 

al y sin A, el 0 sin A, 

a3 y cos A, 133 0 cos A. 

Thus all integrals of system (7) linear in the actions Si and Di 
reduce to the linear combination J=y~+olf of the two action 
integrals 

~ S3 cos A + SI sin A, 

If D3 cos A - Dl sin A. 

Needless to say, among the linear integrals, one recovers for 
y = 0 = - k the perturbation Hamiltonian 

Kl = - k (~ + If). (12) 
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More integrals of the problem are found among the quadratic 
expressions 

where ai,j = aj,i and Yi,j = Yj,i' Indeed a rather long 
straightforward evaluation of Poisson brackets yields that 

(0 K) 2 ' S1 2 ; 1 = - al,2 cos A 

- 2 [(a1,1 - a2,2) cos>.. - a1,3 sin >..J Sl S2 

+ 2 (a2,3 cos>.. - a1,2 sin >..) Sl S3 

+ 2 (a2,3 sin>.. - a1,2 cos >..) S2 2 

+ 2 [(a3,3 - a2,2) sin>.. - a1,3 cos >..J S2 S3 

2 ., S32 a2,3 S1n A 

- (B1,2 + B2,1) cos>.. Sl D1 

+ [(B1,1 - B2,2) cos>.. + B1,3 sin >..J Sl D2 

- (B2,3 cos>.. + Bl,2 sin >..) Sl D3 

+ [(B1,1 - B2,2) cos >.. - B3,1 sin >.. J S2 Dl 
\ 

but 

+ [(BI,2 + B2,1) cos >.. + (B2,3 - B3,2) sin >..J S2 D2 

+ [BI,3 cos>.. - (B2 2 + 63 3) sin >"J S2 D3 , , 

- (63,2 - 62,1 sin >..) S3 DI 

+ [63,1 cos>.. + (62,2 + 63,3) sin >"J 83 D2 

- (62,3 + 63,2) sin>.. S3 D3 

2 ' 81 2 - Y1,2 cos A 

2 [(YI,I - Y2,2) cos>.. + YI,3 sin >..J SI 82 

+ 2 (Y2,3 cos>.. + YI,2 sin >..) SI 83 

- 2 (YZ,3 sin >.. + YI,2 cos >..) 82 2 

2 [(Y3,3 - Y2 2) sin A + Yl,3 cos >..J S2 S3 , 

+ 2 Y2,3 sin >.. S 2 3 
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The conditions for 0 to be an integral are thus that 

al,2 = a2,3 = 0, 

(al 1 - a2 2) cos A , , al,3 sin A, 

(a3,3 - a2,2) sin A al,3 cos A, 

~1,2 - ~2,1' 

~2,3 ~3,2' 

~1,2 cos A + ~2,3 sin A ~3,2 sin A - ~Z,l cos A, 

~1,2 sin A + ~2,3 cos A 0, 

~2,1 sin A - ~3,2 cos A 0, 

(Yl,l - YZ,Z) cos A -Yl,3 sinA , 

Yl,Z = YZ,3 = 0, 

(Y3,3 - YZ,Z) sin A = - Yl,3 cos A, 

and they are satisfied by introducing parameters El, EZ, E3, E4, 
E5, E6, E7 so that 

2 
al,l El - E2 sin A, 

az,Z El, 

q+ 2 
a3,3 EZ cos A, 

~1,2 ~2,1 E3 cos A, 

~2,3 ~3,2 - E3 cos A, 

~2,2 1::4, 

~l,l 
2 1::4 cos A 2 - 1::5 sin A, 

~1,3 - ~3,1 = (E4 + 1::5) cos A sin A, 

~3,3 
Z 1::5 cos A . 2A - 1::4 Sln , 
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Y2,2 

Y3,3 

2 
e:6 - E:7 sin A, 

2 
e:6 + e:7 Cos A, 

Eventually Q appears as the sum 

of the quadratic integrals Q2 
2 

~ , Qs = ~ 'l', Q7 
2 

'l' , and 

Ql S12 + S/ + 2 
S3 , 

03 (SI cos A - S3 sin A) D2 - (Dl cos A + D3 sin A) 

04 (SI cos A - S3 sin A) (Dl cos A.+ D3 sin A) + S2 

06 D12 + D/ + D32 

A.DEPRIT 

S2, 
(13) 

D2, 

Integrals 01 and 06 express the well known fact that the orbit 
s~acl of the averaged problem is the product of two spheres 
S (R ), each of radius L/2; together with the linear integrals ~ 
and 'l', they will lead to an intuitive solution of the entire 
problem. 

5. Angles and Actions 

In the KSK construction [19) the functional J = J(y, 0) acts 
as a co-moment mapping, from which characterization the 
Kirillov-Souriau-Kostant theorem deduces that system (6) is 
integrable. But the KSK construction does not provide a method 
for defining a symplectic map on the reduced manifold. So it 
remains to build a canonical transformation 

(G, N, g, v) + (~, 'l', ~, ~) 

that will convert Hamiltonian (6) to its normalized form (12). In 
the ordinary treatment by classical mechanics, the crucial 
consideration is not that the system is symmetric for the group of 
rotations SO(4), but that (~; 'l') = 0, i.e. that the integrals are 
in involution [12) • 

To the integrals ~ and 'l' are adjoined the state functions 
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~, = Sl COS A - S3 sin A and '1" = D1 cos A + D3 sin A, 

and a quick calculation yields the Poisson brackets 

(S2; ~) ~, , (~; ~, ) S2 , (~' ; S2) ~, 

(D2; '1') '1" , ('1'; '1" ) D2, ('I" ; D2) '1'. 

They confer a geometric meaning to the functions involved, for 
they prove that both triples (~, ~', S2) and ('1', '1", D2) are bases 
of Lie algebras (defined by Poisson brackets) isomorphic to so(3), 
viz the Lie algebra of the group SO(3) of finite rotations in a 
three - dimensional Euclidean space. In other words, ~,~' an~ S2 
are generators of infinitesimal rotations of the sphere Q1 = L /4. 
Likewi~e, '1', '1" and D2 are generators of infinitesimal rotations 
06 = L /4. But ~ and 'I' are integrals of system (7). Therefore it 
can alZeadY be concluded that the orbits of (7) on the sphere 
01 = L /4 consist exclusively of displacements on the small 
circles at the intersection of the sphere by the pl~nes 

S3 cos A + Sl sin A + ~ = 0; likewise, on the sphere Q6 = L /4, 
the orbits of (7) result solely from displacements on the small 
circles at the intersection of the sphere by the planes 
D3 cos A - D1 sin A - 'I' = 0. . In Figure 2 are depicted the 
problem's orbits on the S - and D - spheres from the extreme case 
where w = ° for pure Kep1erian systems to the other extreme where 
m = ° for pure Stark effects caused by a non-rotating field of 
force with constant magnitude. 

On the S-sphere, the points 

(~ L sin A, 0, ~ L cos A) and (- ~ L sin A, 0, - ~ L cos A) 

at the extremities of the diameter 

(S2 = O,SI cos A - S3 sin A = 0) 

are fixed; furthermore, the meridian plane containing the vector 
(Sl' S2, S3) rotates around the S3 - axis when 
I ~ I < (L/2) cos A, but librates when (L/2) COSA < I ~ I < L/2. 
There is a parallel classification of orbits on the D - sphere. 
The points 

(- ! L sin' ° ! L cos ') and (-21 L sin " 0, - -21 L cos ') 2 1\" 2 1\ 1\ 1\ 

where the diameter (D2 0, D1 cos A + D3 sin A = 0) intersects 
around the D3 - axis when I 'I' I < (L/2) cos A, and librates when 
L/2) COSA< I 'I' I < L/2. . 
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As A progresses from ° to n/2, the axis of rotation on the 
S - sphere tilts forward in the meridian plane S2 = 0, starting at 
the S3 - axis and ending on the Sl - axis. The same evolution 
occurs on the D - sphere except that the tilt is backward from the 
positive D3 - axis to the negative D1 - axis. What is remarkable 
is that the change is continuous, and free from catastrophic 
bifurcations. 

On account of the relations 

<f?2 + <f?,2 + S 2 
2 

it is consistent to parametrize the small circles by angles ~ and 
lji such that 

<f?' ( 1 L2 _ ... 2)1/2 4 'JI cos ~, (! L2 _ 1112)1/2 4 T cos lji, 

S2 (! L2 ... 2)1/2 ."' 4 'JI Sln ~, D2 (1 L2 III 2) 11 2 4 T sin lji. 

The claim is that the transformation 

(G, N, g, \I) + (<f?, 'l', ~, lji) 

defined implicitly by the equations 

S3 cos A + Sl sin A <f? , (141 ) 

S2 = (! L2 
4 

_ <f?2)1/2 sin ~, (142) 

D3 cos A - D1 sin A = 'l', (143) 

D2 = (! L2 
4 

_ 'l'2)1/2 sin lji, (144) 

Sl cos A - S3 sin A (1 
4 

L2 <f?2)1/2 cos ~ , (145) 

D1 cos A + D3 sin A (! 
4 

L2 _ 'l'2)1/2 cos lji ( 146) 

is canonical. In fact it is sufficient to prove that 

(~ ; lji) 0, 

(~; <f?) 1, (lji; <f?) 0, 

(~ ; 'l') 0, (lji; 'l') 1, (<f?; 'l') = O. 

These identities result from elementary properties of Poisson 
brackets. First 
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~, = (S2; ~) = (t L2 - ~2)1/2 (sin cp; ~) = (cp; ~) ~', 

which proves that (cp; ~) = 1; it is shown in the same manner that 
(w; ~) = 1. Then from the relations 

o (S2; ~) (_1 L2 _ ... 2)1/2 (. \II) 4 'It S1n cp; r (cp; ~) ~', 

o = (~'; ~) = - (CP; ~) S2, 

it is deduced straightaway that (cp; ~) = 0, hence, by analogy, 
that (W; ~) = O. Next, the relation (~; ~) = 0 follows immediately 
from (9) and (10). Finally 

(S2; D2) = ~, ~' (cp; W), 

which shows that (cp; w) = O. 

In the canonical variables (~, ~, cp, W), according to (12), 
the equations of motion are trivial: 

. 
= - k, = - k, ~ = 0, = O. 

They validate Mignard's contention [13, p. 362] that the system 
admits two angle variables whose frequencies are equal, the common 
period being 2n/k. 

The Ipeaning of integrals 03 and 04 may now be elucidated. Since 
cp = W = - k, the phase angle cp - W remains constant along an 
orbit, and so do the functions 

(! 
4 

L2 _ ~2) 112 (-! 
4 

L2 _ ~2) 112 cos (cp - W) °4' 

(1 L2 ~2) 112 (1 L2 ~2) 112 sin (cp - W) = °3' 4 4 

The momenta (~ + ~)/2 and (~ + ~)/2 correspond precisely to 
the actions Jl and J2 which Kramers [11] obtained by contour 
integrals in his analysis of the Stark effect. The calculation is 
reproduced in Born [2]. As a reminder of this connection, we 
propose to name the transformation (G, N, g, v) + (~, ~, cp, W) 
after Kramers. One should note however that, within the context of 
the Bohr-Sommerfeld quantum mechanics, Kramers was not interested 
in defining the angles (cp, W) associated with the actions 
(~, ~), even less in producing formulas of the type (14) to 
related the angles and actions to the Delaunay orbital elements. 
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6. The Singular Orbits 

The extrema of the function Kl on the sphere S3(R4) = 

{ (SI, S2, S3, Dl, D2, D3) I S1 2 + S2 2 + S32 = L2/4 and D12 + D22 
2 2 + D3 = L /4 } correspond to the singular orbits in the problem. 

By reason of the constraints 

S = S1 2 + S22 + S32 - L2/4 ° 
and 

D = D12 + D22 + D32 - L2/4 = ° 
one introduces the Lagrange multipliers 0 and 0, and look for the 
extrema of the function F = Kl + 0 S + 0 D with a view of 
determining the multipliers so as to satisfy the constraints. 
Thus, for the equations 

aF 
+ 2 0 SI 0, aF 

w + 2 0 Dl aSl 
- w 

aDl 

aD 2 o S2 0, aF 2 0 D2 aS2 ·aD2 

aF 
= - m + 2 0 S3 0, aF 

- m + 2 0 D3 as:3 aD3 

the solutions 

SI 
w 

S2 0, S3 
m 

2;1' --, 
20 

Dl 
w 

D2 0, D3 
m 

- 28"' --, 
20 

are substituted back into the constraints, and 
multipliers identifying the extrema of F which 
located on the sphere S4 are such that 

0, 

0, 

0, 

the Lagrange 
happen to be 

So there are thus four and only four critical orbits in this 
problem. At any critical point of F corresponding to the Lagrange 
multipliers 0 and 0, the Hessian of F is 

Hess F(SI, S2, S3, 20 0 ° ° 0 0 

° 20 ° ° ° 0 

Dl' D2, D3) ° ° 20 ° 0 o {ker «SI ' S2, S3, 

° ° ° 20 0 ~I -1 
0 ° 0 0 20 Dl' D2, D3)} 

1_° ° 0 0 0 2il 
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But, at any of the singular points, 

ker {(SI' S2, S3, Dl, D2, D3)}-1 
{ (cos 1, 0, - sin 1), (0, 1, O)} 

where the angle brackets denote the subspace spanned by the 
encl~sed vectors. Thus the Hessian restricted to the plane tangent 
to S at any critical point is the diagonal matrix 

20 0 0 0 
Hess F o 20 0 0 

o 0 21') 0 
o 0 0 21') 

which of course 
critical points 
at the end of 
~ = '¥ = L/2 will 

is non degenerate. It remains to show that the 
correspond to the four Singular orbits mentioned 
Section 3. As an illustration, the case when 
be analyzed in detail. The relations 

SI sin 1 + S3 1 
1 L, cos 2" 

D3 cos 1 - Dl sin 1 = 1 L, 2" 

imply that 

S3 = D3 
1 2" cos 1, 

from which there results that 

G2 = 0, 

L sin 1, 

2 2 Consequently L 11 sin2 I 
implies that n = cos 1 
sin I = 0, which makes I = 
that al = cos(v + g) = 1 
v + g = O. 

G3 

A2 

= 0, 
and 

O. 
and 

SI cos 1 - S3 sin 1 0, 

D3 sin 1 + Dl cos 1 0 

1 - 2 sin 1, 

L cos 1, 

A3 = O. 

2 = L2 112 = L2 2 
1, which hence G cos 

e = sin LBut then cos I = 1 and 
Finally Al = L sin 1 and A2 = 0 mean 

a2 = sin(v + g) = 0, hence that 

Table I presents the characteristics of the singular 
solutions. In the Keplerian case (00 = 0), orbits I and IV are 
circular while II and III are linear or collision orbits. This is 
exactly the opposite of what happens in the Stark effect (m = 0): 
I and IV in the plane of the planet's orbit are linear whereas II 
and III in the plane normal to the radiation pressure are 
circular. 
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!~1?!~ 1:. The Four Critical Solutions at a Given Energy 

I II III IV 

SI 
1 L sin A 

1 
L sin A 

1 L sin A 
1 

L sin A 2 2: - 2: - 2: 

S2 0 0 0 0 

S3 
1 L cos A 

1 
L cos A 1 L cos A 1 

L cos A 2 2: - 2: - 2: 

Dl 
1 L sin A 1 L sin A 1 L sin A 1 L sin A - 2: 2: - 2: 2: 

D2 0 0 0 0 

D3 !. L A 1 A 1 L A 1 A 2 cos - 2: L cos 2: cos - 2: L cos 

e sin A cos A cos A sin A 

(?) 
1T 1T 

(?) v 2: - 2: 

v + g 0 
1T 'IT 

g 2: - 2: v - g = 1T 

I 0 
1T 1T 

2: 2: 1T 

direct direct retrograde retrograde 

K'l - k L 0 0 k L 

~ ~ L ! L 1 
L ! L 

2 2 - 2: 2 

'¥ ~ L 1 1 
L 

1 
L 2 - 2: L 2: - 2: 
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7. Initial Value Problem 

Most astronomers would rather discuss the particle's motion in the 
Keplerian elements. As a matter of fact, transposition from the 
geometric variables (51' 52, 53, Dl' D2. D3) to the traditional 
coordinates presents no major problem. The components of the 
angular momentum and of the Runge-Lenz vector are solutions of two 
separate systems, each made of three l'inear homogeneous equations 
with constant coefficients. The first group, 

(Gl; Kl) 

(G2; Kl) 

(A3; Kl) 

m G2' 

- m Gl + w A3, 

- w G2' 

concerns essentially the motion of the node of the particle's 
orbital plane in the plane of the planet. Its solutions are curves 
drawn on the sphere 

2 (~ L2 + Q4 - ~ ~) 

L2 sin21 (1 - e2 cos2g) 

whose radius is evidently an integral. Notice that, 
orbits (I mod n = 0), the sphere collapses onto its 
integral 

for coplanar 
center. The 

A3 cos A + Gl sin A 

L sin I (e sin g cos A + n sin v sin A) 

restricts the motions on the sphere to being rotations around 
the fixed diameter of equations A3 sin A = Gl cos A in the 
the meridian plane G2 = o. Indeed, introducing the radius 

r = L sin I (I 
2 2 )1/2 - e cos g 

and the spherical coordinates (a, 8) such that 

A3 cos A + Gl sin A r sin y, 

Gl cos A - A3 sin A r cos y cos a, 

G2 r cos y sin a, 

one finds by substitution in the node equations (15) that the 
elevation y is constant, and that the azimuth a precesses at the 
constant rate a = -k. 
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Likewise,for the second system, 

Al (AI; KI) m A2' . 
A2 (A2; KI) - m Al + w G3, . 
G3 = (G3; KI) .., w A2, 

which deals basically with the motion of the pericenter, the 
solutions are curves on the sphere 

Note that the sphere collapses onto its center when the focal 
axis of the particle's averaged ellipse is normal to the orbital 
plane of the planet. Exactly as was done on the node-sphere, one 
recognizes that 

G3 cos A + Al sin A = ~ + ~ = - KI/k 

is an integral, hence that the orbits on the pericenter sphere 
consist of small circles in the planes defined by the integral. In 
the spherical coordinates such that 

A3 cos A + G1 sin A !J. sin <S, 

G1 cos A - A3 sin A !J. cos <S cos /3, 

G2 !J. cos <S sin /3, 

!J. 2 (i L2 - 04 + ~ ~) Jl/2, 

the elevation <S is consta~t, and the azimuth /3 precesses at the 
constant angular velocity 13 = -k. 

From the global behavior of the orbits as depicted in 
Figure 3, one gathers the general evolution from w = 0 to m = 0 
along a circle of fixed gyration frequency k. In the purely 
Keplerian case, the ascending node and the projection of the 
pericenter in the plane of the planet undergo circulations 
exclusively. As soon as A depart from 0, librations start 
appearing. Eventually, in the Stark case, all circulations have 
disappeared; node and pericenter's projection undergo exclusively 
librations about the direction of the homogeneous field. 

8. Conclusions 

In a Whittaker 
(L, G, N,!/', g, v), 
homogeneous field of 

map (R, e, N, r, 6,v) or in 
Keplerian systems in the 

force are most awkward 

a Delaunay map 
presence of a 

to handle. The 
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geometric simplicity of the model comes out most naturally in the 
map determined by the Cartesian components of the angular momentum 
and of the Runge-Lenz vector. 

Beyond the particular problem put by Bertaux and Blamont which 
turns out to be an extension of the Stark problem, this Note 
reaches an element of generality. For it introduces a 
one-parameter family of canonical transformations from the 
Delaunay elements (G, N, g, v) to a new set of phase variables 
(~, ~, ~,W) applicable in principle to any perturbed Kep1erian 
system in two or three dimensions. 

For the main problem in the theory of artificial satellites, 
Kramers' elements provide naturally a symplectic map on the 
two-dimensional sphere that is the orbit space obtained by 
eliminating the ascending node from the system after a Delaunay 
normalization. In particular, they explain most clearly the nature 
of the so-called critical inclinations. There may be other 
perturbed Keplerian systems to which the Kramers transformation 
could be applied, including the theory of minor planets modelled 
after the three-dimensional restricted problem of three bodies. 
Especially in ,resonance situations, Kramers' actions and angles 
present a definite advantage: they offer the possibility of 
normalizing the system about any critical frequency by routine 
techniques beyond the first order. 
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NON GRAVITATIONAL FORCES IN THE EVOLUTION OF THE SOLAR SYSTEM 

J. KOV ALEVSKY 

CERGA, Grasse, France 

ABSTRACT 

Among the numerous cases of resonnances encountered in the 
solar system, many of the satellite to satellite and spin-orbit 
couplings can be explained as the result of an evolution driven 
by tidal forces. Models of such evolution are described and it 
is shown that they all lead to a similar type of reduced equations. 

It is proposed to solve these equations in form of pertur­
bation of a simpler "restricted tidal problem". Such an approach 
gives a simple picture of the capture as well as conditions for 
a permanent capture into a resonant situation, as it is the case 
of the major satellite resonances and the Hercury rotation. In 
some other cases, involving higher order resonances, it is pos­
sible to have only temporary captures. This has probably happened 
many times to the Moon, inducing a lengthening of the evolutiona­
ry history of the lunar orbit as given by the classical secular 
deceleration theory. 

I. INTRODUCTION 

The contributions of Georees Lemaitre to Celestial Hechanics 
concerned essentially the domain of the classical three body pro­
blem. This problem - which is far from being fully investigated -
is the key problem in the Solar System and more generally in the 
Universe when only a few bodies are interacting. If, in addition, 
the masses are all small but one and if the distances between them 
are large, then the three body problem is used as the basis of the 
solution for relativistic Celestial ~fuchanics. Indeed, the effects 
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of General Relativity can be modelled in the frame of the pertur­
bation theory and they do not disrupt the overall dynamical pic­
ture of the system. So, one can say that the basic assomptions of 
the Celestial Mechanics to which Georges Lemaitre has so brillian­
tly contributed is the ones that allows the very refined descrip­
tion of the present motions of the bodies of the Solar System. 

However, this statement is true only if one is allowed to 
neglect all other forces that inevitably act on them. This is the 
case to very high accuracy - or, we should better say, to the pre­
sent accuracy of the observations of their positions - for planets 
and satellites. In that case, Newtonian classical Mechanics, 
based on the theoretical studies of the three body problem and 
slightly modified by the introduction of relativistic corrections, 
are effectively used for ephemerides and all astronomical and 
astronautical applications. 

There are exceptions. The major exception is the Moon. For 
more than a century it is known that it is not possible toaccount 
exactly for the observations through a purely gravitational theo­
ry. An empirical secular term is added to take care of the tidal 
friction that produces a secular deceleration of its motion in 
longitude of about 25"/century2. Actually all the bodies are un­
dergoing other forces than direct gravitati~n: radiation pressure, 
tidal friction (although it has a gravitational origin) aerodyna­
mical drag, encounters with solid masses, magnetic torques, etc •. 
The importance of these phenomena in the physics of the Solar 
System is significant only if the effects produced are directly 
observable or if one can somehow recognize their consequences. 
These situations can be summarized as follows 

I. The accelerations produced by these forces are not negligible 
in comparison of the gravitational forces. The most striking 
example is the Pointing-Robertson effect on very small parti­
cles. The tidal friction on the lunar motion and the solar ra­
diation pressure and mass loss effects on the comets are two 
other well known examples. 

2. The effect of the acceleration is negligible during the time 
span corresponding to observations but the infinitesimal ef­
fects build up and produce a secular evolution that transform, 
in a long term, the structure of the sub-system. This is the 
case we shall now concentrate upon. 

II. GENERAL DESCRIPTION 

The large number of resonances found in the Solar System has 
always been recognized: the coupling by pairs of Saturn satellites, 
the three first galilean satellites or the existence of gaps and 
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families in the asteroidal belt have been studied for many years 
and the resonance theory in Celestial Mechanics has gained consi­
derably from the research driven by these real cases. However, it 
is Roy and Ovenden (1954) who have first demonstrated that the 
mean motion commensurabilities in the Solar System are much more 
frequent than they would be if the periods were randomly distri­
buted. This non-random distribution could be due to some specific 
initial conditions in the early history of the Solar System and 
the physical interactions that would have then taken place. It 
can also be interpreted as the result of a later evolution. In 
both cases, one should also explain the stability of such situa­
tions. 

If, in the case of minor planets, many authors have shown 
that purely gravitational effects are responsible for the gaps 
and for the Hirayama families (see, for instance, Henrard and 
Lemaitre, 1984), this approach does not hold for satellites. This 
was first studied in detail by Goldreich (1965) and then develo­
ped by him and many other authors (see Peale, 1976, for bibliogra­
phy). Let us assume, for the sake of a qualitative description of 
the phenomenon, that originally two satellites of a planet revolve 
with the mean motions n6 and n~ • The well known tidal friction 
due to the planet increases continously their semi major axes and 
decreases the mean motions. The evolutions of nand n' are linear­
ly independent, since they are proportional to the 8th power of 
the semi major axes. So, the ratio n'ln varies with time and, at 
some stages of the evolution they become commensurable, so that 
one has 

in + i'n' = 0 (I ) 

where i and i' are small integers. 

It is well known that some of such resonant situations are 
stable and other are not. Among the stable conditions, the more 
important are those for which i and i' are small. This is the ca­
se of the i=l, i'=2 relationship for the couples Mimas-Tethys and 
Enceladus-Dione in the Saturn system or Io-Europa and Europa­
Ganymede in Jupiter. It is also the ease of i=3, i'=4 for Titan­
Hyperion. If the resonant situation is such that the interaction 
between satellites is sufficiently strong to impose a sharing of 
the angular momentum transferred by the tides, then the ration'ln 
will remain constant and the semi major axes will increase in a 
fashion governed by the constancy of this ratio. This was called 
by Goldreich "tidal stability". Similar descriptions can be made 
also of spin-orbit couplings and, more generally, whenever a re­
sonant situation appears in the course of the evolution of the 
main periods describing the motions. It is necessary, however, to 
understand why some situations indeed turn out to lock a sub-sys­
tem in a stable resonant configuration, while other resonances 
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encountered during the independent evolutionary stage did not lock 
the system and were bypassed. Only partial answers to this ques­
tion exist while practically nothing has been said on the evolu­
tionary perturbations that may be induced by such weak resonances. 

III. EQUATIONS OF THE PROBLEM 

Let us first show how the various cases lead to similar types 
of equations. 

I. Orbit/Orbit coupling 

Let us consider first the gravitational equations of motion 
of a system composed of two satellites Sand S' revolving around 
a planet P. It is well known that the equations of motion can be 
written in the form (see e.g. Kovalevsky, 1967) 

2 d x. au 
m. __ J = 

ax. J dt 2 J 

2 au d y. 
m. __ J = (2) 

J dt 2 ay. 
J 

2 d z. au 
m. __ J = 

J dt 2 az. 
J 

Here, j=1 and 2, and U is the force function. These equations can 
also be written in a HamiltoniJ.an formulatIDon 

dq. aH 
1 i dt = - ap. 

1 

1,2 ••. 6 (3) 

where, in the Hamiltonian H=T-V one introduces the kinetic ener­
gy T. 

In solving these equations of motion H is expressed in terms 
of the metric variables Pi and the angular variables qi in the 
form of a multiperiodic trigonometric expansion 

H = A(Pi)+ ~EBi(Pi)cos(ilql+i2q2+ ••• i6q6) (4) 
1 

where i~(il,i2 ••• i6) and EB.(p.) is at least of the order 1 of a 
small parameter E. Furtherm6re; the leading part of A is T and is 
consequently a quadratic function of the Pi. The methods most 
commonly used to solve equations (3) use infinitesimal contact 
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transformations where the new variables are some kinds of avera­
ges of the old ones, so that periodic terms are successively eli­
minated. In the general case, finally, only terms independant of 
the qi remain. If we denote with primes the final variables, the 
equations take the form 

dp' . 
__ J = 0 

dt 

the solution of which is 

p' . 
J 

and q' . 
J 

(5) 

n.(pO(.»t+QO. 
J 1 J 

n.t+Qo. 
J J 

The quantities nj are the angular velocities corresponding 
to the proper frequencies of the problem. Among them, we find n 
and n', the mean motions of the satellites. 

This procedure does not apply if there exists some term in­
s 

vol ving an.a-rgumen.t cp= E.i. q. that has an almost zero mean motion 
. . . j=lJ J'd" h nw=11nl+12n2+ •. isns' We are in resonant con iti0ns t at occur 

wnen n is of the order of the square root of the small parameter 
E of the Hamiltonian (ncp~k~). This term in 9 cannot be elimina­
ted as previously. By a simple linear change of variables, one can 
replace one of the q'i (say q' ) by cpo Let us call X the corres­
ponding conjugate variable. The reduced Hamiltonian is : 

H' = a(X,p' .)+ Eb.(X,p' .)cosjCP 
1 J 1 

(6) 

so that the equations take the form: 

dX - Ejb. s injcp 

I 

dt = j J 
( 7) 

ab. 
~= aa ~ a:i cosjcp dt - ax -

J 
dp' . dq' . aa E' ab . cp and 
__ 1 = 

0 
1 

dt d"t = - aq'. - J-a-,-cosJ 
1 j q i 

The p'i being constants, the variables are totally separated 
and the solution reduces to the resolution of equations (7), the 
typical form of the resonance problem. The orders of magnitude 
with respect to the small quantity ~=IE being those indicated 
above, and replacing the P'i by constants, one finally reduces 
the Hamiltonian to : 
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H = A + ~2 ~B.cosj~ 
j J 
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(8) 

A and B being functions of X. This form is generalized by 
Garfinkel (1976) what he calls the "Ideal Resonance Problem" in 
which 

H B(y)+ 2~2A(y)f(x) 

Let us now assume that an additional non-conservative force 
of tidal origin exists. Its essential effect is an acceleration 
of the mean longitude. The dynamical situation may be represented 
by replacing the semi major axes a and a' and the mean motions n 
and n' by quantities slowly varying with time a=aO+a1t+ .• ; '" The 
equations still hold but in order to proceed with the elimination 
of variables one has to add a pair of conjugate variables K, and 
k, where k=t. Formally, the Hamiltonian that one obtains after 
the elimination of all the resonant terms is 

H=A +Alk+A2k2+ •.. +J..I2~ (B. O+B. lk+ •. ) sinj~ 
o J J 

(9) 

and since all but one argument entering into ~ are now linear 
functions of time and consequently can be expressed in function 
of ~, we have another equivalent formulation of H as 

dX 
dt-

d~ 
cit 

H'=A' +A'1~+A'2~2+J..I2~(B.IO+B.11+ •• )sinj~ 
o J J 

The resulting equations are at the first order in t 

2 0 1 •• 
A' +A' ~-~ ~(B' .+B' .t)slnJ~ 

1 2 J J 

dA' dA' dB'~ dB'~ ° 1 2 J J - --ax-----ax-- ~-~ ~(--ax-- + --ax-- t ) cosH 

(10) 

2. Spin/orbit coupling 

When there is a possible interaction between the rotation 
and the orbital motion of a body (Moon, planets), the basic equa­
tion is that of the translational-rotational motion as described 
by Duboshin (1963). It depends upon a force function and conse­
quently a Hamiltonian formulation exists. The variables are the 
usual conjugate variables for the orbital motion and Andoyer an­
gles e*,~* and 1jJ*with their conjugate variables: L, Lcos~* and 
Lcose where t is the angular momentum of the rotation and 8 is 
one of the Eulerian angles. 

The solution of the equations can proceed as in the preceding 
case. The six independent angular variables are transformed into 
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linear functions of time among wQicQ tQe trans'formed variaple de­
rived from e* represents the rotation of the body, the direction 
of its axis of rotation being given by ~* and ~*. 

In the case of resonance, there will exist a commensurability 
between the time coefficient of e* and the mean motion n of the 
body ine-i'n=o. So if we set ~=ie*-i'l, the reduced Hamiltonian 
will ,take the form (6). 

The tidal friction will show in a slow secular decrease of 
L, so again, as in the preceding case, the coefficients of the 
Hamiltonian will slowly vary with time as in (9), and we shall 
.end up with equations of form (10). 

3. Higher order resonances 

In the two examples just given, the resonant argument ~ was 
a linear integer combination of mean orbital or rotational motions 
corresponding to well identified physical situations. However, this 
is not required by the mathematical formulation we gave. The ar­
gument ~ may a priori be any of the arguments created in the deve­
lopment of the Hamiltonian or in further transformations performed 
during the solution. Let us give an example in the lunar theory 
for which, presently, there is no such critical argument either 
in the main problem or in the planetary perturbations. But when 
the lunar orbit evolves with time, the periods change. Although 
it is impossible that any combination of lunar proper periods is 
zero for the normally used arguments in the lunar theory, this is 
not true when planetary perturbations are included since the pla­
netary mean motions do not change significantly. 

The main problem of lunar theory is a Hamiltonian problem 
with three degrees of liberty with a time depending external ar­
gument, the mean anomaly l' of the Earth's orbit. The general form 
of the arguments in the Hamiltonian is : 

where 1, g and h are the mean anomaly, the argument of perigee 
and the longitude of the nodes. If the planetary terms are also 
searched for, the disturbing function contains, in addition the 
mean longitudes lj of the planets, so that one has : 

n 
~ = ill+ i 2g+ i3h+ i 41'+ E i.l. 

j=1 J J 

The treatment of such a Hamiltonian system is analogous to 
the normal case, with the use of the already defined additional 
variables k and K. Consequently, it is possible to follow again 
exactly the procedure described in the first case and reduce the 
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resonance problem to equations (7) and, when tidal terms are in­
cludes, to (9) and (10), since n and a are then slowly varying 
functions of time. 

So, for all the cases, one many reduce the problem to the 
same type of equations. For the sake of a further simplification, 
we shall follow all the authors that have studied the subject and 
restrict the trigonometric series in ~ to their first term. Then, 
we remark that the transformations do not modify the O-th order 
part of the Hamiltonian, so that Ao is essentially T expressed 
in the new variables, and is consequently a quadratic form in X. 
Finally, we shall change X in X=Xo+x, where x is the variation 
of X around the equilibrium value Xo. Changing notations and ta­
king into account these assumption, one gets the following set of 
equations 

dx 
dt = A-Bx +(Q+ Q't)sine 

( II) 

dS = 2Gx 
dt 

Assuming Q'=o, this formulation corresponds to the equations 
used by Burns for the Mercury rotation problem (Burns, 1979) or 
for the study of the transient resonance in lunar theory 
(Kovalevsky, 1983). On the contrary, if one neglects B, one ob­
tains : 

d2S - = 2GA + (Q+Q't)sinS 
dt 2 

This is the equations used by Sinclair (1972) for his study 
of Saturn satellites. 

So the formulation (II) is common to all the actual tidal 
resonance problems and can be considered as typical. 

IV - REPRESENTATION OF THE SOLUTION 

Several methods have been proposed to study the evolution 
described by equations (11). In particular, Henrard (1982) has 
applied adiabatic invariants to a more general Hamiltonian and 
applied it to actual astronomical cases. We have proposed 
(Kovalevsky, 1983), a more analytical approach. 

Let us consider first the case B=Q'=O as a basic "restric­
ted case". The equations are: 

dx 
dt = A + QsinS 

dS 
dt 

2Gx (12) 
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There exists a Hamiltonian integral 

A8 - Qcos8 - GX2 = C ( 13) 

The trajectories can be studied 1n the 8-x2 or 8-x planes. 
Two cases occur : 

- If IAI<IQI, one may have libration orbits, symmetrical circula­
tion orbits or a limiting asymptotic case (fig. 1). 

----t"-- C 2 

C 

FIGURE 
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- If IAI>IQI , the x2 =f(8) curve has no horizontal tangent and 
only circulation orbits exist (fig. 2). 

Let us now consider the case when Bfo. The equations are: 

dx 
dt = A + Bx + Qsin8 

d8 - = 2Gx dt 
( 14) 

In this case, there is no more Hamiltonian integral. But one can 
still construct an expression similar to (13), namely: 

C(t) = (A-Bx)8 - Qcos8 - Gx2 (15) 
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FIGURE 2 

This quantity is a function of t. However, Bx is a very small, 
very slowly varying quantity, and it is legimimate to consider that, 
for some finite interval of time ~t, x is a constant equal to x • 
Then, during this particular interval of time, the solution beh~­
ves like a solution of (12) where one replaces A by A-Bxo and du­
ring that time C(t) can be considered as a constant. 

The "restricted case" plays the role of an osculating orbit 
for the general solution. Consequently it can be described as a 
continuously varying orbit in a family of orbits represented in 
figure 1. 

Let us assume, for instance, that IA-Bxl<Q and that when 
A-Bx varies with time, dc/dt<O. The evolution of the solutions can 
then be described in the following manner. 

1. Before entering the resonance region, while I ~1=12Gxl>k~, one 
can eliminate e from the equations and the evolut~on is a non re­
sonant one, with continuous variations of a and n. 

2. In the vicinity of the resonance region, one may use equation 
(15) and the path follows an ascending branch of an open curve of 
figure 1 shifting slowly from one to another, while C decreases. 

3. When x tends to zero, the limit of C(t) is Co. If Co>Cr, then 
the motion continues close to an ascending branch of an open cur­
ve of figure 1. If Co>Cr, then there is a trapping into resonance. 

In this situation, the capture probability (or better, follo­
wing Kyner, a capture measure) as introduced by Goldreich and 
Peale (1966) is directly applicable. We shall not repeat the de­
finition, but only illustrate in figure 3 the capture and no cap­
ture' cases. The curve ~ represents in the 8-x2 plane a common os-
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FIGURE 3 

culating path. Curve A is a perturbed path that leads to capture. 
Curve B is another perturbed path that does not lead to capture. 

4. If a capture has 0ccured and if the sign of ~ does not change, 
the motion is proceeding inside the resonant region inside the cur­
ve C=Cr in figure 1 and the path whirls into it as shown by 
Murdock (1978) so that the resonant situation is definitively es­
tablished: this is the tidal stability. If, on the contrary, dC/dt 
changes its sign, the path within the resonant region expands, and 
when C=Cr, it excapes, and follows again an open path in the x2=8 
plane. 

5. If no trapping has occured, the path along open curves of fi­
gure 1 is followed until 12Gkl>k~, when the normal evolutionary 
scheme takes place again. We have however shown by numerical simu­
lations that the time evolution has increased in comparison with 
what it would have been if there was no resonant term in the equa­
tions, especially if IQI is close to its critical value IAI. 

v - APPLICATIONS 

The cases already studied all enter in the scheme described 
above. 

1. Orbit/Orbit coupling 

For planets, the tidal forces are too small to have a sizeable 
effect. There should be no sign of non-gravitational evolution in 
the planetary system. The structure of the asteroidal belt is con­
sequently governed by gravitational properties of the solar system. 
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For the couples of satellite systems locked into resonance, the 
tidal origin has been assessed for Mimas-Thetys and Enceladus-Dione 
(Sinclair, 1972; Yoder, 1979). For Titan-Hyperion, this is not sure 
because a large value of the tidal coefficient would be necessary. 
For the Galilean satellites, it may be necessary to introduce tidal 
dissipation in the satellites themselves (Sinclair, 1975). 

2. Spin/Orbit coupling 

The tidal origin has been assessed by Goldreich and Peale(1966) 
for Mercury. For Venus, an interesting hypothesis was given by 
Lago and Cazenave (1979) who suggested that while the solid tidal 
torque despins the planet, a thermally driven atmospheric tidal 
torque could have changed the direction of the pole by 180 0 and 
then stibilize it at the present position. 

3. Earth-Moon system 

The co-rotation of the Moon has been proven to be of tidal 
origin (as well as for practically all satellites). However, there 
remains the gap between the computed and the actual value of the 
time necessary to drive the Moon at its present positions. The 
difference corresponds to a factor larger than 2. Littleton (1980) 
has suggested to explain this by a large secular variation of the 
Earth's moments of inertia. However, it is necessary to investigate 
other purely dynamical causes. One of them is the occurence of 
transient high order resonances involving temporary trapping in a 
resonant region. Just for the sake of giving an example, let us 
consider the lunar perturbation term due to Venus whose argument is 

e = 2V - 1'+ 2D - 2F = ne(t-to) 

The present value of n8 is 0.00772. But when the ratiom=n/n' 
varies, 2~ -2~ varies. One has, with the current notations of lunar 
theory : 

2(~- n ) = -2m - 1.5m2- 0.5625m3 + 3m'y2 
F +2.25m2e12+ 1.5m2e2 - 1.3828m4 

When m had 0.9 times its present value, ne was of the order 
of -0.018 so that e crossed the resonant value ne=O in between. 
Furthermore, the planetary perturbations of the Earth's orbit in­
duce large long periodic variations of the eccentricity e'. This 
suggests that during the crossing of the resonant region, dne/dt 
has varied greatly and changed sign several times. It means that, 
when the system was in the case 4 described in section IV, dC/dt 
may have changed sign several times and temporary trapping in re­
sonance may have occurred one or several times. During the trapping 
periods, the semi-major axis of the Moon does not change and the 
angular momentum lost by the Earth is gained by the planetary or-
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bits involved • I am presently studying this process which might 
explain at least partly the discrepancy just quoted. 

v - CONCLUS ION 

In the past 20 years, the investigations on the evolution of 
the dynamical behaviour of bodies in the Solar System were very 
efficient in explaining resonances and most of the rotation pro­
perties. Much is still left to be done, particularly on the evo­
lution outside the resonant region and the time scales. A more 
rigourous approach, following the papers by Kyner (1970), Murdock 
(1978) and partly of Yoder (1979), should be pursued since the 
theory is far from having the completeness and the unity of the 
non dissipative Celestial Mechanics. Such efforts are very impor­
tant since, while the classical gravitational approach is quite 
adequate for the present situation of the Solar System, the non­
gravitational effects are fundamental in studying its dynamical 
evolution, a domain that could also be called "Paleo-Celestial 
Mechanics". 
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GENERALIZATIONS OF THE RESTRICTED PROBLEM OF THREE BODIES 

Victor Szebehely, Arthur L. Whipple 

The University of Texas at Austin 

ABSTRACT. This paper offers several generalizations of the 
restricted problem of three bodies from an analytical and 
dynamical point of view. First, a short review of the classical 
restricted problem is offered which is followed by the most 
general reformulation of the problem. In this most general 
formulation we consider a dynamical system consisting of several 
large bodies and of several smaller masses. The influence of the 
large masses on the small ones can be arbitrary but in most 
practical cases we consider gravitational forces only. We also 
allow forces acting between the small bodies influencing their 
motion. The restriction comes in that we follow the basic idea 
of the restricted problem of three bodies and do not allow any 
influence of the small bodies on the motion of the large ones. 
This complete generalization is then followed with some special 
situations such as having two primary masses and two smaller 
masses. In this case we also establish a new Jacobian Integral 
which might be considered the generalization of the classical 
well known Jacobian Integral. 

INTRODUCTION 

It is a great honor for us to partake in Professor George 
Lemaitre's International Conference which is dedicated to his 
numerous discoveries in the field of Celestial Mechanics and of 
Cosmology. 

Professor Lemaitre's transformation applied to the classical 
restricted problem produces a global regularization of the 
problem and indeed this is a unique result since his global 
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regularization also is a rationalization of the equations of 
motion. By this we mean that other global regularizations of the 
classical restricted problem utilized transformations which when 
applied result in differential equations containing square roots 
or non-integer powers of certain expressions while Professor 
Lemaitre's transformation yields all rational functions without 
square roots. 

It is our pleasure and honour to present the following 
generalization of the restricted problem of three bodies in these 
proceedings since the restricted problem of three bodies was one 
of Professor Lemaitre's great interests. We are offering a 
physical generalization as opposed to a simple mathematical 
exercise and we believe that this is in what Professor Lemaitre 
would be most interested in. We are presenting a new integral 
of this new problem which is analogous and similar to the 
classical Jacobian integral. 

1. SHORT REVIEW OF THE CLASSICAL RESTRICTED PROBLEM OF THREE 
BODIES 

We are considering two primaries of masses Ml and M2 and one 
small third mass mI. The relation between these masses is given 
by the inequality ml« M2 2 Ml In the restricted problem we 
also consider only gravitational forces as well as we assume 
circular orbits for the primaries. As mentioned in the abstract 
and in the well known literature there is an effect of Ml and M2 
on ml but ml is not influencing the motion of the primaries. 

Since the motion of the primaries is given the problem is to 
determine the motion of the small body mI. This classical 
formulation of the restricted problem of three bodies is one of 
the famous.non integrable dynamical problems. Figure 1 represents 
the system in an x, y coordinate system which is rotating around 
the center of mass of the primaries so that Ml and M2 are fixed 
on the x axis. The distances between the primaries and the small 
mass are rl and r 2 • The equations of motion are given by 

. 
x 2y . 
y + 2x 

where 

n 
x 

n y 

n = 1:.[ (1-1l)r 2 + Jlr2] + l-ll + H-
2 1 2 r r 

1 2 

(1) 

(2) 
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y 

x 

Fig. 1. The classical circular restricted problem of three 
bodies. 

This system of equations is written in the two dimensional form 
in order to simplify the results but the three dimensional 
approach is equally possible. The famous Jacobian Integral [1] 
is given as 

2n(x,y) - C (3) 

where C is the Jacobian constant and v is the velocity. 

It is mentioned that this dynamical system has five equilib­
rium points in the rotating (synodic) coordinate system [2]. 

2. GENERALIZATION 

We now consider n primaries M1 , M2 , •.. Mi ' ... Mn • 

These primaries are under the influence of each other and they 
are influencing the motion of the small masses: ml , m2 ' ..• 

rna ' ••• mv· We note that any of the small masses are much 
smaller than the primaries so in general we have the inequality 
rna « Mi· This inequality is true for any values of a 

and i, which satisfy the inequalities 1 < a < v 
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and 1 < i < n. In the most general formulation the forces 
acting between the primaries are arbitrary. Also the forces 
acting between the small bodies are arbitrary but all forces are 
given. First we determine the orbits of the primaries since 
they are not influenced by the small orbits. The orbits of the 
primaries might be determined using the given forces which 
depend on the masses, on the position, on the velocities, and on 
the time in general. Consequently we have 

r . t) 
n' (4) 

Let's assume that the solution of Equations (4) are 

r. = r. (t) 
1. 1. 

(5) 

Since the primaries are not influenced by the small bodies part 
of the solution is represented by Equation (5). 

The orbits of the small bodies are determined by their 
mutual interactions and .by the effects of the primaries. This 
-might be written as 

t] ( 6) 

As we can see, the motion of the small bodies is determined 

by the masses of the primaries, the masses of the small bodies, 
the ~otion of the primaries, the location of the small bodies, 
the velocities of the small bodies, and of the time. In this 
Equation (6) we are supposed to know the function Go. ' we are 
supposed to know the location of the primaries, we are 
supposed to know all the masses, and we have to solve all these 
equations for the vectors p . The solution of Equation (6) 
will be a. 

and this Equation (7) is the solution of the generalized 
restricted problem of n+V bodies. 

(7) 
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/ 
/ 

o 
Figure 2 shows the general arrangement. The letters Mi 

represent the primaries and the figure shows only the first, 
the ith , and the nth primaries. The position vectors are 
r l ' r i ' and rn The figure also shows the small bodies 

ml ' rna ' and mv . Their locations are given by Pl 'Pa and 
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Pv The dashed lines in the figure show the forces inter-
acting between the primaries and the small bodies. The solid 
lines connecting the primaries on one hand and the small bodies 
on the other side,. represent the forces acting between the 
primaries and the forces acting between the small bodies. We 
remind the reader that this figure represents the generalized 
restricted problem of n+V bodies, where n represents the 
number of the primaries and v represents the number of the 
small bodies. 

3. THE GENERALIZED GRAVITATIONAL RESTRICTED PROBLEM OF 
n+V BODIES 

The previously discussed completely general situation will 
now be restricted to gravitational forces only. The equations of 
motion of the primaries may be written as 

n M. 
r. G E J r ij 1 j .. l 1

3 (8) r ij 
i+j 

where r .. = r. - r. and I < i , j .:. n, i =I' j . This is of 
1J 1 J 

course simply the representation of the many body gravitational 
problem. The equations of motion of the small bodies are not 
as simple as the same for the primaries because. they affect each 
other as well as their motion is· affected by the primaries. 
Consequently the equations of motion of the small bodies might be 
written as 

n ~1j v mf3 
Pa - G E Xaj - G E Paf3 

j=l I 6aj I S f3=1 I Paf3 I S 
(9) 

Sora 

where 

K. = Pd - r. PaS PaS - Pf3 aJ J 

I < a < v I .:. a, f3 .:. v 

I ':'j < n a ,; f3 
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In equation 9 we notice that the first term on the right hand 
side represents the effect of the primaries on the small bodies 
and the second term represents the forces acting between the 
small bodies. As a simple result we might mention that the 
formulation of the generalized gravitational restricted problem 
of n+l bodies is an immediate consequence of Equation (9). If we 
have only one small body (consequently having a = 1) we have 
the equation of motion of this small body: 

n Mj 
P == P1 G E Kij (10) 

j=l t, .. I 3 
~J 

where 

E .. = p - r. 1 < j < n 
~J J 

If in addition we would assume that we have n = 2 and these two 
primaries would move on circles Equation (10) would reduce to the 
equation of the classical restricted problem of three bodies. 

4. GENERALIZED GRAVITATIONAL RESTRICTED CIRCULAR PROBLEM 
OF 2+2 BODIES 

The geometry of this problem is shown in 
primaries M1 and M2 are located again on the 

Figure 3. The 
x axis which is 

rotating so that M1 and M2 describe circular orbits around the 

origin of the coordinate system. The small bodies are denoted 
by m3 and m4 with their respective coordinates. The distances 
between the primaries and the small bodies are denoted by 
r .. and the distance between the small bodies is 3. All these 
~J 

quantities shown on Figure 3 have a wavy bar representing the 
fact that these are dimensional coordinates. We note that the 
previously given Equations (1), (2), and (3) all contain dimension­
less coordinates. In order to change our system once again to 
dimensionless coordinates we introduce x3 , Y3"x4 , Y4' r 13 , r 14 , 

r 23 , r 24 and~, as dimensionless lengths which are simply 

obtained by division of the corresponding dimensional quantities 
by the quantity (a + b). The dimensionless time t = t*n, 
where t* is the dimensional time and n is the mean motion of the 
system. We also introduce dimensionless mass parameters which are 



202 v. SZEBEHEL Y AND A. L. WHIPPLE 

~~----------------~~~-&------------------~)( 

Fig. 3. Synodic dimensional coordinates for 2 primaries 
and 2 small bodies. 

given by Equations (11): 

-1 )1 = M2 (M1 + M2) 

-1 
)13= m3 (M1 + M2) 

)14= m4 (Ml + M2)-1 (11) 

In this system M1 and M2 are the primaries and their motions are 

circular orbits around the origin of the coordinate system. We 
now write the equations of motion of the small masses as 

influenced by corio1is forces, centrifugal forces, by the 
attraction exerted by the primaries, as well as by their mutual 
interaction. We again restrict ourselves to two dimensions but 
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the 3-dimensiona1 generalization is simple and trivial. 

The equations of motion become 

2 
d x3 _ 2 dY3 _ 

2 x3 
dt dt 

2 
d Y4 dX4 
--+2---
dt2 dt 

+ 

Y4-Y3 
]l --

3 1:.,3 

In these equations the distances are defined by 

[(X4-.3)2 + (Y4-Y3)2J 
1/2 

I:., r 34 = 

[ 2 2 J 1/2 

l r li = (xi-]J) + Y i 
i = 3,4 

[ 2 2 ]1/2 r 2i = (xi -l.J+1) + Y i 
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(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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We may eliminate the interacting terms between the small 
bodies by writing ~4 = 0 or ~3 = 0 In this way the 

classical restricted problem of three bodies is obtained. 

The generalized Jacobian Integral may be obtained by proper 
multiplication of these equations with certain quantities and by 
adding the results. This is quite similar with the'derivation of 
Equation (3) as it is obtained from Equation (1) except in the 
present general case Equations (12) and (13) will have to be multi­
plied by ~3dx3/dt and ~3dY3/dt. Equations (14) and (15) are 

multiplied by ~4dx4/dt and ~4dy/dt. 

Once these equations are multiplied by the proper quantities 
and the results are added we obtain the generalized Jacobian 
Integral in the form 

2 ·2 
~3 v3 + ~4 v4 = 2Q - C (18) 

where C is the generalized Jabobian constant, v and v4 are the 
velocities, and Q will be a generalization of ~he function given 
by Equation (2). In our case Q becomes 

Q = t ~3 EI-]1) r~3 + ]1r~3]+ 

t ]14 [(l-~) r~4 + ~ r~4] + 

]1 - + [
1-]1 

4 r l4 
(19) 

As we can see, the terms corresponding to the effect of the 
primaries on the small bodies as well as the interaction between 
the small bodies are all represented. The interaction between 
the small bodies is represented by the last term of Equation (19). 
As an interesting exercise we might consider the situation when 
the mass of one of the small bodies becomes O. If ~4 = 0 the 
Jocobian Integral becomes 

2Q - C (20) 
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where now ~ is identical with the function given by Equation 
(2) except for a slightly different notation: 
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1 2 2 + l-j.l + H-
2 (l-j.l) r 13 + j.l r 23 r13 r 23 

(21) 

Please note that the generalization of the Jacobian Integral is 
available for any number of small bodies which are interacting 
with each other provided that the primaries are still moving on 
circular orbits. Equation (18) is the final result of this 
paper and its applications are left for some future publication. 
Nevertheless, we might mention that if two asteroids are closely 
interacting with each other and the primaries are the Sun and 
Jupiter we might be able to treat with Equation (18) the so­
called binary asteroid problem mentioned in recent literature. 
Other applications can be easily thought of, especially interest­
ing are those using the so-called zero-velocity surfaces or Hill 
curves in the classical restricted problem. As the number of 
variables with the number of. the small bodies increases we have 
high dimensional surfaces representing the so-called zero 
velocity regions and the geometry and the topology of the sur­
faces can become increasingly complicated. 
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SECULAR PERTURBATIONS OF ASTEROIDS WITH COMMENSURABLE MEAN MOTIONS 
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ABSTRACT 

Secular perturbations of asteroids are derived for mean motion 
resonance cases under the assumptions that the disturbing planets 
are moving along circular orbits on the same plane and that criti­
cal arguments are fixed at stable equilibrium points. Under these 
assumptions the equations of motion are reduced to those of one 
degree of freedom with the energy integral. Then equi-energy­
curves in the phase plane are derived with given values of the two 
parameters, the semi-major axis and the z-component of the angular 
momentum, and the variations of the eccentricity and the inclina­
tion as functions of the argument of perihelion are estimated. 

The same method is also applied to Pluto-Neptune system and 
the results are found to agree with those by a method of numerical 
integrations and show that the argument of perihelion of Pluto is 
1ibrating around 90°. 

1. INTRODUCTION 

Secular perturbations of asteroids are treated in several text 
books of celestial mechanics by assuming that the eccentricities 
and the inclinations of both the disturbing planets and the aster­
oids are very small, namely, by neglecting fourth power terms with 
respect to the small quantities and squares of masses of the planet 
in the disturbing function. Then the equations are reduced to two 
independent sets of linear differential equations, one depending on 
the eccentricity and the longitude of the perihelion and the other 
on the inclination and the longitude of the node, each of which is 
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identical to the equation for pendulums. 

However, when the mean motion of the asteroid is commensurable 
with that of Jupiter and the critical argument is 1ibrating, the 
disturbing function for the secular perturbations cannot be derived 
by a conventional way of the power series expansion as secular terms 
are also produced from the critical term which 1ibrates. 

When the eccentricity and the inclination of the asteroid are 
not so small the differential equations are not linear any more and 
the equations of two degrees of freedom should be solved simultane­
ously even for non-resonant cases. However, if it is assumed that 
the disturbing planets are moving along circular orbits on the same 
plane the equations are reduced to those of one degree of freedom 
with the energy integral after averaging the disturbing function 
with respect to the mean longitudes of the planets and the asteroid 
as the z-component of the angular momentum is conserved. Therefore, 
they can be solved by quadratures(Kozai, 1962). 

General properties of the solutions thus derived for high 
eccentricity and inclination cases are different from those by the 
linear theory. Namely, the eccentricity and the inclination vary 
very widely as functions of the argument of perihelion because of 
e 2 sin2i cos 2g term(g being the argument of perihelion) in -the dis­
turbing function 1hich is.neg1ected in the linear theory. If the 
value of (1 _e 2 )1 2cos i which is constant takesia small value 
below 0.8 the argument of perihelion can librate around 90 0 or 270 0 

according to the non-linear theory. In fact there are a few aster­
oids, for which the arguments of perihelion are 1ibrating(Kozai, 
1979 and 1980). 

In this paper it is intended to extend the non-linear theory 
to resonance cases. However, as the equations cannot be reduced 
to those of one degree of freedom generally for resonant cases even 
after averaging the disturbing function with respect to the mean 
longitudes, it is assumed that one of the critical arguments is 
fixed at a stable equilibrium point to reduce the degrees of free­
dom by one. Then the same method as the non-resonant cases can be 
applied to derive the secular perturbations for resonant cases and 
the ranges of the variations of the eccentricities and the incli­
nations of existing asteroids can be estimated. This method is 
also applied to Pluto-Neptune system under the assumption that the 
critical argument is fixed at 180 0 and the results are found to 
agree with those by a numerical integration method with 1ibrating 
critical argument(Kinoshita and Nakai, 1983). 

2. EQUATIONS OF MOTION 

The equations of motion for an asteroid is formulated by using 
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De1aunay canonical variables as follows; 

dL/dt 

dZ/dt 

'dF/dl, 

-'dF/dL, 

dC/dt 

dg/dt 

'dF/'dg, 

-'dF/'dC, 

dB/dt 

dh/dt 

'dF/'dh, 

-'dF/'dH, 
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(1) 

where F is the Hamiltonian depending on De1aunay variables of the 
asteroid, the semi-major axes which are constant and the mean longi­
tudes of the planets which are known linear functions of time. 

As it is assumed that the disturbing planets are moving along 
circular orbits on the same plane, the longitude of the ascending 
node, h, does not appear in the disturbing function. Therefore, 
the following integral exists; 

cos i = const. (2) 

In order to derive the secular part of the Hamiltonian it is 
averaged with respect to the mean anomaly of the asteroid and the 
mean longitudes of the disturbing planets by a numerical method. 
By this way the method can be applied to any orbit including one, 
for which the heliocentric distance varies across those of the dis­
turbing planets. For non-resonant cases the averaging can be done 
by changing the angular variables independently. However, for 
resonant cases the averaging is made under the condition that the 
critical arguments are fixed at certain stable equilibrium points. 

Among resonant asteroids, there are some, for which the criti­
cal arguments are making complete revolutions and a few, for which 
they are 1ibrating. However, there is none, for which the critical 
argument is fixed. Therefore, the assumption made here is unrea1-
1istic. However, since the difference between this case and the 
1ibrating critical argument case is of the order of square root of 
the disturbing mass in the disturbing function, it is expected that 
by making this assumption the results are valid within the accuracy 
of this order. Also anY.resonance with planets other than Jupiter 
is not considered. 

After the averaging the equations of motion are reduced to 
those of one degree of freedom with C and g as the two variables. 
By the assumption made for the critical argument the semi-major 
axis, or L , is constant. Therefore, the integral (2) can be 
written as, 

(3) 

in this secular perturbation theory. And, since the mean longitudes 
of the disturbing planets have been eliminated the Hamiltonian is 
now constant, that is, the energy integral exists. 
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3. AVERAGED VAJ~UES OF THE DISTURBING FUNCTION 

As the main term in the Hamiltonian depends on L only and, 
therefore, is constant, it is omitted here. The averaging is made 
for the disturbing function which is the sum of the following terms 
for all the planets; , 

m / /). (4) 

where /). is the distance between the asteroid and the planet with 
mass m' and is given by 

, , 
/).2 = r2 + r 2 - 2 rr cos S, 

, , 
cos S = cos 2(i/2) cOS(f+g-A ) + sin2(i/2) cos(f+g+A ).(5) 

Here rand r' are, respectively, the heliocentric distances of the 
asteroid and the planet, i is the inclination of the asteroid to 
the o~bital plane of the disturbing planets, f is the true anomaly 
and A is the mean longitude of the planet measured from the ascend­
ing node. 

The averaged value of the disturbing function, that is, the 
sum of terms (4), is denoted by R. It is evident that R is a peri­
odic function of 2g as th~ argument of perihelion appears in (4) 
through (5) only as g + A and g - A'. 

In this paper the values of R are computed for various values 
of the argument of perihelion and X defined by 

(6) 

with given values of the semi-major axis and e and are plotted on 
(2g-X) plane and then equi-R value-curves which are trajectories 
of the solutions for the secular perturbations for various values 
of R are derived. The value of X is in the range of 1 and e. By 
the relations (3) and (6) it is clear that as X decreases the 
eccentricity increases and the inclination decreases. 

When both the eccentricity and the inclination are very small 
R depends on X only but not on g as R is analytically expressed as, 

(7) 

For a given value of the semi-major axis which determines A 
R increases as X decreases since for more eccentric orbits the 
smallest distance to Jupiter is smaller. For this case every equi­
R value-curve is parallel to 2g- axis as the expression (7) shows. 
And since 

dg/dt -aR/ac, (8) 
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the argument of perihelion progresses. 

As the value of 8 decreases,the term e 2 sin2 icos2g becomes more 
important in R. For this case also R increases as X decreases and 
for the same value of X it decreases as g approaches 2g = 180°, 
and vice versa for :the eccentricity. 

However, if 8 takes a value below a certain value around 0.8 
depending on the semi-major axis the dependence of R on the argu­
ment of pelihelion becomes stronger than that on X if X is nearly 
1. And, therefore, R takes a minimum value at a point at 2g =180° 
and nearly X = 0.8, and a libration region appears around this 
point on (2g-X) plane. Inside the region the argument of perihelion 
librates around 2g= 180° and the eccentricity and the inclination 
take their maximum and minimum values both at 2g = 180° as the equi­
R value-curves inside the libration region twice cross the line of 
2g = l80 0 (Kozai, 1962). 

For resonant cases the situations are different. If the cri­
tical argument is at a stable equilibrium point or librating around 
it, more eccentric orbits can avoid very close approach to Jupiter 
more easily. Therefore, generally speaking, R decreases as the 
value of X decreases and the argument of perihelion regresses except 
for Trojan case, for which more eccentric orbits have more chance 
to approach Jupiter very closely. Also for some cases the effects 
of other planets, particularly, that of Saturn which is not commen­
surable with the asteroid tends to cancel out the effects by Jupiter 
as the dependence of R on X is in opposite sense for the two cases. 
However, as the masses of the other planets are much smaller than 
that of Jupiter, their effects are usually very small. 

4. TROJAN CASES 

For Trojan case it is assumed that the difference of the mean 
longitudes of the asteroid and Jupiter is 60°. The value of R 
increases as X decreases and, therefore, the argument of perihelion 
progresses generally. However, when 8 is less than 0.87, R takes 
its maximum value at 2g = 120° and X = 0.87 which corresponds to 
e = 0.50 as the heliocentric distance of the asteroid at f = +120° 
where the difference between the true and the mean anomalies is 
nearly 60° is almost equal to that of Jupiter. Therefore, along 
any equi-R value-curve except that in a libration region around 
the maximum value of R X takes its maximum value at 2g = 120° and 
its minimum value at 2g = 280°. In fact when 8 is less than 0.87 
a libration region around the maximum value at 2g = 120° appears. 
When 8 becomes less than 0.65 another libration region which is 
shallow appears around the minimum point at 2g = 280°. 

Including the effects of the other planets does not change 
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general features of the diagrams except that the equilibrium points 
are shifted a little and the difference between the maximum and the 
minimum values of R are reduced. 

5. 4:3, 3:2 AND 2:1 CASES 

For the three cases it is assumed that the opposition takes 
plAce only when the asteroid is at its perihelion, that is, the 
critical arguments, 4A' - 3A - g, 3A' - 2A - g and 2A' - A- g, 
respectively, are always 0 0 , where A and A' are, respectively, the 
mean longitudes of the asteroid and the resonant disturbing planet. 

Under the assumption the critical terms which have a factor 
e produce additional secular terms which have more important effects 
than conventional ones having e 2 as a factor, and for more eccentric 
orbits R takes less values as for more eccentric orbits the smallest 
distance to Jupiter is larger because of the fixed value of the 
critical argument. Therefore, the eccentricity takes its maximum 
and the inclination takes its minimum at 2g = 0 0 and viae versa at 
2g = 180 0 • The argument of perihelion regresses and iits secular 
motion is very rapid near X = 1. 

R takes its minimum value at 2g = 180 0 and X = 0.96 for 4:3 
case, 0.91 for 3:2 case and 0.74 for 2:1 case. When 8 takes any 
value below these ones a shallow 1ibration region appears around 
the minimum value of R. As the value of 8 decreases the 1ibration 
region which is bounded by a curve through X = 8 corresponding to 
i = 0 0 expands and when 8 is less than 0.96 for 4:3 case, 0.89 for 
3:2 case and 0.59 for 2:1 case the 1ibration region touches off the 
1irie X= 8 and are combined with neighboring regions through singular 
points on 2g = 0 0 • 

The situation is very complicated, however, for 4:3 case when 
8 is below 0.75. In fact there is a sharp maximum of R at 2g = 72 0 

and X = 0.75, where the asteroid can approach Jupiter very closely. 
Then a 1ibration region around this maximum point appears. 

For numbered asteroids belonging to these resonant cases the 
eccentricities take their maximum and the inclination take their 
minima at 2g = 0 0 and viae versa at 2g= 180°. 

6. 3:1 CASE 

For 3:1 case it is assumed that the critical argument, 3A' -
A - 2g , takes the value of 180 0 corresponding to a stable configu­
ration, that is, any opposition takes place only when 2g = 180° and 
R takes smaller values at 2g = 0 0 than at 2g = 1800 , for which case 
the opposition takes place only near the orbital plane of Jupiter. 
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Although more eccentric orbits usually have smaller values of R, 
there is a sharp maximum at X = 0.998 and 2g = 180°, around which 
there is a libration region bounded by a line through X =l(circular 
orbits). 

When 8 is below 0.79 a shallow libration region appears around 
the minimum point at 2g = 180° and X = 0.75, and it is bounded by 
a line through X = 8. As 8 reduces further the libration region 
expands and it touches off the line X = 8 and is combined with 
neighboring libration regions through singular points on 2g = 0°. 
The effects of the other planets are usually small. 

7. 2:3 CASE 

In order to apply this method to Pluto-Neptune system 2:3 case 
is also treated here, by assuming that the opposition takes place 
only when the asteroid is at aphelion, in other words, that the 
critical argument, 3A - 2A' - g, is always 180°. For this case also 
R decreases as X decreases and, therefore, the argument of peri­
helion regresses. And usually the value of R at 2g = 180° is smal­
ler than that at 2g = 0°. When 8 is below 0.90 a libration region 
appears around the minimum point at 2g = 180° and X = 0.90. As 8 
is reduced the libration region bounded by a line through X = 8 
touches off the axis X = 8 and is combined with neighboring libra­
tion regions through singular points on 2g = 0°. 

For Pluto the value of 8 is 0.9315, and, therefore, the argu­
ment of perihelion cannot be librating as there is no singular 
point in the diagram corresponding to the value of 8 = 0.9315 if 
the effects of Neptune only are included. However, if the effects 
of the other planets, particularly, those of Uranus which has a mass 
comparable with that of Neptune, are included a libration region 
appears even when 8 is as large as 0.965. Of course a libration 
region appears for 8 = 0.93, and it is concluded that as the value 
of R for Pluto is inside the libration region the argument of peri­
helion of Pluto is librating between 67° and 113°. It will cease 
to increase soon and the eccentricity is decreasing and the incli­
nation is increasing. They will change between 0.223 and 0.273 
and between 17.°0 and 14.°4, respectively, the present values being 
0.248 and 15.°9 with g = 112°, where the inclination and the argu­
ment of perihelion are referred to the orbital plane of Neptune. 
The results agree with those by a numerical integration method 
(Kinoshita and Nakai, 1983) and those by a more exact analytical 
method including the effect of the librating critical argument by 
Nacozy and Diel(1974 and 1977) based on the analytical theory by 
Hori and Giacaglia(1968). In fact according to Kinoshita and Nakai 
the eccentricity, the inclination and the argument of perihelion 
change between 0.218 and 0.266, 16.°6 and 14.°6 and 64° and 116°, 
respectively. 
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8. CONCLUSIONS 

In this paper the secular perturbations of asteroids with com~ 
mensurable mean motions with Jupiter are derived under the assump­
tion that all the disturbing planets are moving along circular 
orbits on the same orbital plane and that the critical arguments 
are fixed at their stable equilibrium points and by drawing equi­
energy-curves, that is, trajectories in the phase space which is 
two-dimensional for 1:1, 4:3, 3:2, 2:1 and 3:1 cases. This method 
is also applied to Neptune-Pluto case and it is found that the 
variations of the eccentricity and the inclination as well as the 
amplitude of the 1ibration of the argument of perihelion for Pluto 
derived by this method agree with those by a method of numerical 
integrations. 

However, when the secular perturbations are derived for num­
bered asteroids with commensurable mean motions the amplitudes of 
the variations of the eccentricites and the inclinations are not 
so large for most of them and there are only three asteroids of 
3:1 case in 1ibration regions. General properties for them are 
summarized as follows: 

For Trojan asteroids the minima of the eccentricities and the 
maxima of the inclinations take place at 2g = 120° and vice 
vepsa at 2g = 280° and the arguments of perihelion move in direct 
direction. For 4:3, 3:2 and 2:1 cases the maxima of the eccentric­
ities and the minima of the inclinations take place at 2g= 0° and 
vice vepsa at 2g = 180° and the arguments of perihelion move in 
retrograde direction. For 3:1 case the minima of the eccentricities 
and the maxima of the inclinations take place at 2g = 0° and vice 
vepsa at 2g = 180° and the arguments of perihelion move in retro­
grade direction for most of them. However, for three of them the 
arguments of perihelion librate around the maximum points of Rand 
the maxima and the minima of the eccentricities and the inclinations 
take place both at 2g = 180°. And for other three asteroids the 
maxima of the eccentricities and the minima of the inclinations 
take place at 2g = 0° and vice vepsa at 2g = 180° and the arguments 
of perihelion move in direct direction as their value of 8 is small 
and for two of the three asteroids two 1ibration regions appear. 
In fact their trajectories are far below the high libration region 
and above the shallow 1ibration region around the minimum value of 
R if it exists. 

However, it has not yet been checked whether the critical 
arguments for the asteroids treated here are 1ibrating or not. If 
they are it is expected that the results derived here express solu­
tions of good approximation for the secular perturbations for these 
asteroids. 
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The computations in this paper were made by using the FACOM 
380R computor of the Computing Center of the Tokyo Astronomical 
Observatory and a computor program provided by Dr. H. Kinoshita. 
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An analytical model describing the effect of a displacement 
of the Jovian resonances in the asteroid belt is analysed. 

This model is based upon a truncated approximation of the 
averaged circular and planar restricted problem in the vicinity 
of a resonance. We investigate in details only the resonance 
2/1. The model leads to a one degree of freedom Hamiltonian 
system with a parameter a 

When the parameter a decreases slowly with the time (and 
thus the resonance moves slowly in the belt) the theory of the 
adiabatic invariant predicts that a truncated uniform density 
distribution of asteroids changes into a distribution showing 
a gap at the location of the resonance. The observed gap at the 
2/1 resonance corresponds to a change of the parameter of a 
few units. 

As a possible physical explanation for the decreases of 
the parameter a (and thus the displacement of the resonance) 
we investigate the effect of the removal of an accretion disk 
in the early stage of the Solar System. 

We first identify the important parameter for such an 
effect. It is the amount of material contained between the 
orbit of Jupiter and the orbit of the asteroid and not the total 
amount of material contained in the disk or in the proto-Sun. 
Models of proto-Sun and accretion disk can thus vary widely 
with respect to the two last parameters and still produces the 
same variation of a and the same gap. 

217 

A. Berger (ed.), The Big Bang and Georges Lemaitre, 217-218. 
© 1984 by D. Reidel Publishing Company. 



218 J. HENRARD AND A. LEMAITRE 

Removal of a disk containing a few percent of the 
present solar mass between the orbit of the asteroid and the 
orbit of Jupiter is sufficient to account for the observed 
Hecuba gap. Such a value is somewhat larger but not incompatible 
with Weidenshilling estimates. 

Details of this investigation can be found in a paper 
recently published by the authors in Icarus (55, 482-494, 1984). 



ON THE STABILITY OF THE SOLAR SYSTEM AS HIERARCHICAL DYNAMICAL 
SYSTEM. 

Andrea Milani and Anna M. Nobili 

Dipartimento di Matematica,Universita di Pisa, Italia 

ABSTRACT - The Stability of the Solar System as hierarchical dy­
namical system is investigated with analytical methods i) by 
using the topological stability criterion of the general 3-body 
problem for 3-body subsystems ii) by exploiting the hierarchical 
arrangement of the whole system to develop a new perturbation 
theory containing as smallness parameters both mass and distance 
ratios. At the first order in these parameters we get, for the 
inner Solar System, a minimum lifetime of ~108y. Most of the re­
sults presented here are discussed in detail in Milani and Nobili 
(1982,1983a,1983b) which we shall refer to as Paper I, II and III, 
respectively. 

N-body systems existing in nature, with N of the order of 
10, tend to arrange themselves in a hierarchical structure, thus 
suggesting that this kind of arrangement does minimize the mutual 
perturbations hence making the system more likely to survive. As 
an example, in the Solar System the planetary orbits (with the 
exception of the Pluto-Neptune system, that we shall discuss 
later) do not cross in a time interval much longer than the lon­
gest orbital period and close approaches are avoided (even in 
the Pluto-Neptune case). Moreover, 70% of all the observed 3 and 
4-body stellar systems are a close pair with a distant companion 
or two close pairs at a large distance. The 6-body stellar system 
Castor also exibits a hierarchical structure. Figures 1 and 2 
show 'a planetary and double-binary hierarchy respectively with 
their Jacobian radius vectors li. 

The stability of hierarchical dynamical systems can be inve­
stigated by using Jacobian coordinates and decomposing the system 
into N-l 2-body subsystems coupled by perturbations. Hierarchical 
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stability is defined as the property of preflerving the hierarchi­
cal arrangement of these 2-body subsystems in such a way that 
orbit crossing is avoided. 

12 
rtl..t 

Fig.l. Planetary 4-body hie-
rarchy .Each jacobian radius 
vector is centred in the cen­
ter of mass of previous bodies 

rtl.:I. 1'1'1.4-

~~,t \~~ 
1... I'Y\, rtL.1 .. .3 

Fig.2. Double binary hierarchy. 
13 goes from the center of mass 
of ml,m2 to the center of mass 
of m3,m4. 

Jacobian coordinates have been introduced in the past by the fa­
thers of Celestial Mechanics because of their formal properties. 
For instance, the total angular momentum and momentum of inertia 
of the N-body system (with respect to some axis) can be written 
as sum of the angular momenta and momenta of inertia of the bo­
dies Mi with position vectors Ji, Mi being the reduced masses: 

~ -
M1 = L. Wl.' 

~"1 

M 1 :: WI" WI ... 

""1.oj- "v\:z. 

M~ = >'VI:Io (Wlp·Wl~) 

"""1" VY\1" """3 

M4-= \l'l\4(WI""""2"""") 
""'1+ Wl2 ... ""':10 + W"\+ 

(1) 

In recent years Jacobian Coordinates have been re-introduced by 
Roy (1979) because, besides their properties, they allow to quan­
tify the hierarchical structure of the system, i.e. the fact that 
the more the system is hierarchical, the smaller are the mutual 
gravitational perturbations between its 2-body subsystems. The 
equations of motion are: 

M·S· ='ilU J .:::,j $. 
-J 

~ = 2, ......... N (2) 

where U is the gravitational potential: 

U::.L.. Ct WI.. Mol' (3) 

t4tj<k I'".tc 
(G is the universal constant of gravitation). By using Jacobian 
coordinates U can be expanded as a sum of 2-body terms plus in­
teraction potentials (Paper II): 
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tJ 
U = L "t'lj Nj -to?'- R. . . ( 4 ) 

J;l ~j 2S"'j<' N "J 

Nj is the total mass attached to the jacobian vector ij (e.g. for 
14 of Fig.l N4=ml+(ml+m2+m3); for J4 of Fig.2 N4=(ml+m2)+(m3+m4» 
and the Rij give the mutual perturbations. They can be written as: 

R··.., f. .. Cc Mj NJ p .. + ~~ o-c.kx. l1t1nVi (5) 
'cl-·J s. ... 

where P2 is t~e Legendre Polynomial of order 2 and ~ij are the 
smallness parameters first introduced by Walker et ale (1980) and 
then generalized for every possible hierarchy in Paper II. It is 
important to stress that they are a combination of both mass and 
distance ratios. For instance, in the 3-body planetary case, the 
smallness of the perturbation by ~2 on X3 is given by: 

while the perturbation by J 3 on ~ 2 is of the order of: 

t31 ::. _VVl--",'--__ 

W,1 + 1'\').2. 

(6) 

(7) 

These formulas show that scale ratios as well as mass ratios are 
relevant to assess the smallness of the perturbations. For instan­
ce, in the Earth-Moon-Sun system the perturbation caused by the 
Sun is of the order of: 

£32. ~ VY\, 0 (.1Ju=:... Y = 3" 10- 3 

vn.e + w\'r S eo 

i.e. it is small, even though the mass ratio is very large 
(~3~105), because the system is strongly hierarchical (J$0»S$,J. 
Moreover for fixed values of the mass ratio, the more the system 
is hierarchical, the smaller are the corresponding £ij' 

During the last 15 years a lot of interesting work has been 
done on the general 3-body problem so that it is now as deeply 
understood as the restricted one. 

In the restricted circular 3-body problem (2 primaries in 
circular orbits plus a massless third body; see Szebehely,1967) 
the level manifolds of the Jacobi integral J in the phase space 
~3,f3) are disconnected for: 

(8) 

(JeRIT being the critical value of J corresponding to the equili­
brium point L2) in 3 components. Their projections in the configu-



222 A. MILANI AND A. M. NOBILl 

ration space are also disconnected in a reference frame rotating 
with the primaries. The so called zerovelocity curves provide 
different regions of trapped motion and the well known Hill sta­
bility criterion (or "J criterion") can be formulated: if J<JCRIT 
and the third body lies in one of the 3 components (see Fig.3) 
at t=O, then it will stay there forever. 

Fig.3. 3 separate regions of motion in the restricted circular 
3-body problem (J<JC.RI,.). 

On the other hand, if J>JC.&I~ this does not necessarily mean that 
the third body will actually leave the region where it was at 
t=O. It simply means that we can't say anything. In fact numeri­
cal experiments do show that there is a region of empirical sta­
bility well above the analytical one (Nacozy,1977; Walker and Roy, 
1981). 

In the general 3-body problem, in which the gravitational 
action of the third body m3 is taken into account, there are still 
4 integrals (total energy and total angular momentum with respect 
to the center of mass): 
h=const. 
f;=const. 
It has been recently proved (e.g. Paper I) that the structure of 
the level manifolds h=const., ~=const. in the phase space (t2'~3' 
g2,j3) depends only on: 

z=c..2.h (9) 

The significant role played by this particular combination of in­
tegrals of motion can be understood by noting that it is not chan­
ged neither by rotations, nor by changes of scale: 

(10) 

that preserve the equations of motion provided that the length 
factor A. and the time factor 't' satisfy a "3rd Kepler law" rela-
tionships: 

(11) 

It is worth stressing that the universal constant of gravitation 
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G is also invariant under transformation (10) with condition (11). 
The z integral thus plays in the general 3-body problem the same 
role as the Jacobi integral in the restricted circular problem. 
In particular, it has been proved that if 

z. < Z C.RI'T' (12) 

(Z~RIT being the critical value of z corresponding to the equili­
br~urn point L2) the level manifolds in the phase space are discon­
nected in 3 components. Moreover, their projections in the confi­
guration space are also disconnected in a rotating pulsating re­
ference frame (rotating with the instantaneous angular velocity 
of the binary and with the unit of length equal to the instanta­
neous distance between the primaries). In such a reference frame 
the bounding curves which separate different regions of trapped 
motion are very much alike the zerovelocity curves of the restri­
cted circular problem and a "z stability criterion" (on the ana­
logy of the J criterion) can be formulated: if z<zc.:ltlT' and m3 
lies, at t=O, in one of the 3 disconnected components, then it 
will stay there forever. However we must point out that the mea­
ning of the connected components is different in the general and 
in the restricted circular case. In the restricted circular pro­
blem a zero velocity curve, enclosing a bounded region of admissi­
ble motion,means that the test particle cannot escape. On the 
contrary, in the general case, the rotating system is pulsating 
and the (x,y) plot must be multiplied by a variable scale factor, 
hence escape of one of the bodies is always possible but for 
Z<Z~I~ we can ensure that the hierarchy cannot be broken i.e. 
orbits will not cross. Again, nothing can be said about the sta­
bility of the system for Z)Z ('11.1" • 

It is hard to believe that the analogy of the z and J crite­
rion is just a coincidence and in fact they have been thought to 
be related to one another. The z criterion was first applied to 
Solar System subsystems like Sun-Jupiter-external (or internal) 
planet and quite puzzling results were obtained: stability (in the 

,sense of hierarchical stability discussed above) cannot be gua­
ranteed, with this criterion, for Mercury, Mars, Pluto and any 
of the asteroids. For instance, in the Sun-Mercury-Jupiter system 
it is not possible to guarantee that Mercury will not cross the 
orbit of Jupiter. Neither is possible to guarantee that anyone of 
the asteroids will not cross the orbit of Jupiter. All the other 
3~body subsystems can be proved to be hierarchically stable. How 
is it possible that Sun-Jupiter-Saturn can be proved to be stable 
while Sun-Mercury-Jupiter can not? After all, Saturn is much more 
perturbed by Jupiter than Mercury (e4~.=2.8~10~4 E~~=2.6.l0-6). 
Why should the z criterion "fail" just: when the th~rd body is a 
tiny one? When the third body is a tiny one we are probably 
"nearer" to the restricted case than we are to the full general 
one, in which the 3 bodies have comparable masses and this sug­
gests that the reply to such paradoxical results is hidden in the 
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relationship between z and J. But how to compare problems with 
different dimensionality? The phase space of the general 3-body 
p~oblem has dimension 12, and we must reduce this number up to 
d~mension 2 of the configuration space in the rotating reference 
frame of the restricted circular problem where the zero velocity 
curves are drawn. This is possible in 4 steps (Paper I): 
lst:velocities are eliminated by writing Easton inequality 

(13) 

with 

I <~:. Mi \ g.)( i ~12. 
;':2. d _J Co 

and we are reduced to a problem of dimension 6. 
2nd : 2 dimensions are eliminated by projection on the invariable 
plane. Since U increases in doing so, (13) is still satisfied. 
3rd : a scaleless configuration is chosen fixing 1=1 and the pro­
blem is now of dimension 3. 
4th: a reference direction is chosen (f2=(1.O), elimination of 
the nodes) and we are eventually in synodic pulsating coordinates 
(x,y). The two problems are now comparable and the obvious way of 
making apparent the relationship between the two is to expand the 
gravitational potential U(x,y) computed in the last step in power 
series of the mass ratio between the third and the secondary bo­
dy: [. =m3/m2. We get: 

U(x.ly) = G M~/2 (m,,+ VYll) (1 + ~ ~ Q 0<,y) -t- o (e.2.) ) (14) 
1+jW 

(f\-"- vYI,./(l"Il1 "'Wl.:t» 

where51(x,y) is the well known function whose level lines give 
the zero-velocity curves in the restricted circular problem.Equa­
tion (14) says that, at first order in E,the c0ufinementcurves of 
the general case are essentially given by the same function 12 
giving the zero velocity curves in the restricted circular case. 
The comparison between z and J criterion is now straightforward, 
and the condition for hierarchical stability is: 

bz.=z.-z. :'MJ(1_,M-)(ei + _~_(J-J(R )+O(E.2.)+O(~el2.))~O(15) 
C.RIT / 2 1-?-, 1'1"" 

(e 2 is the osculating eccentricity of the primaries). 
By neglecting terms of the order of £2 or ~e; an approximate z 
criterion is obtained: 

(16) 
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It says that if a 3-body system is stable in the restricted cir­
cular approximation (i.e. J-J'RIT'" -1), then hierarchical stabili­
ty can be ensured in the general case (neglecting terms of the 
order of t,'J. or ~t. ) only if the third mass is larger than a mi­
nimum value: 

(17) 

involving the reduced mass of the binary and its osculating eccen­
tricity squared. In the Sun-Jupiter case (17) gives 

which means that the z criterion is unable to ensure stability 
for masses smaller than ~O.4me • This is not unexpected,because 
a tiny third body does contribute very little to the total inte­
grals of the system, hence to z, and therefore a criterion based 
on z is simply unapplicable in this case. Inequality (17) is im­
portant because it quantifies this intuitive statement and de­
fines, for a binary of given reduced mass and eccentricity, the 
thresold m3~~ below which the z criterion of the general 3-body 
problem is unapplicable. No matter how small this thresold is 
(e.g. no matter how small is eZ), there is a range of values of 
m3 between 0 and m~~~ for which neither the general 3-body pro­
blem nor the restr1cted circular one will be the right framework 
to investigate the system. We will use then the ellipti9 restri­
cted model, in which the third body is massless but the eccentri­
city of the binary is taken into account. It is well known that 
in this case the Jacobi "integral" is not constant any longer, 
and therefore confinement curves do no longer exist. In fact, as 
far as close approaches are avoided the Jacobi function changes 
slowly and its level lines still provide a boundary. As an exam­
ple, if an approximation of the Jacobi "integral" is computed for 
real asteroids, far from Jupiter, the values are found to be 
below the critical value, with few exceptions that can be accoun­
ted for by librational protection mechanisms(Kres~k.l979). This 
means that regions do exist where the dynamical behaviour is 
almost the same as in the restricted circular model. On the con­
trary, when close approaches can happen only numerical integra­
tions in the elliptic restricted model can give an idea of the 
dynamical behaviour of the system, while the results obtained in 
the restricted circular model are certainly wrong (Paper III).But 
numerical experiments, while can show instabilities (such as the 
ejection of an outer belt asteroid from a chaotic region caused 
by Jupiter's eccentricity), can never ensure stability forever. 
They only show stability as long as they are meaningful , i.e. as 
long as the n,l.\.m..er-lcal error is small enough to leave some signifi­
cant figures, which means in particular that chaotic regions are 
necessarily excluded. 
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Let us now consider an N-body system with N~4. It can be pro­
ved (Paper II) that no stability criterion based on the ten classi­
cal integrals only and valid for an arbitrary span of time can be 
given for N~4. The main confinement condition (Easton inequality 
(13» is still valid, but it does no longer provide separate re­
gions of trapped motion. However, the z stability criterion ap­
plies to every 3-body subsystem whose Z "integral" will of course 
vary in time because of the other bodies perturbations. In the 
N=4 case we decompose the system into two 3-body subsystems(Fig.4) 
whose z functions, z~:3 and z3-4' at t=O are smaller than the corre­
sponding critical values z23'R ' zJ-4~R so that both the subsystems 
are initially hierachically stable. Then the hierarchical arrange­
ment of the 4 bodies cannot be broken until either z230r zJ~is 
changed by an amount z;'·'-R -z";j (0); i.e. the whole system is hie­
rarchically stable for ~ time span not shorter than the minimum 
betweenAt2 =(z 3(.1{ -zl3(0»/ZZ3 and At34 = (zJ4'-K -Z34 (O)/z.}+. We 
have given 3up tte idea of proving that the Solar System 1S stable 
forever; we are trying to prove that it is hierarchically stable 
for a time span of the order of its present age, i.e. a few times 
109y • 

Fig.4. A 4-body system split 
", into two 3-body subsystems. 

1'YI.4 : Ir: the 13 , ~+ st;bsystem the 
b1nary m1 , m2 1S concentra­
ted in the center of mass. 

A new perturbative theory has been developed (Paper II) to 
compute the secular time variations of z:Z3 and zJ04 in which the 
smallness parameters are the t~ instead of the classical mass ra­
tios. Since they contain also the scale ratios the asymptotic ex­
pansions are much more rapidly decreasing than the usual expan­
sions in powers of the mass ratios only. Both this new kind of 
perturbative theory, exploiting the hierarchical arrangement of 
the system, and the availability of the z stability criterion for 
3-body subsystems, make this new approach to the old problem of 
the stability of the Solar System very promising, despite of the 
large amount of work that is required. The secular time variation 
of the z functions is computed by using Poisson bracket formalism. 
For instance, if a 4-body system with planetary hierarchy is split 
at t=O into two stable (according to the Z criterion) 3-body sub­
systems (see Fig.4) we have: 

2. 2!1'(O) <. Z2~(.R. 

z.t?> = c.;!> h l.~ 
l..3+(o) < z. 34- c..R 

'3+ = c..~+ h3+ 
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L ~ M ' 2. G fv\2.. N:2. "M' l C. M N R L h 0 
'113 = -2 :dl- +- 3! - 3 3 - :23 = 'l2+ 3- "".:l3 

S2, 2 3 .13 

(18) 

(23 and 34 subscripts refer to the two different subsystems). 
While £.3' £3+' h;u and h34 change in time, the total energy and 
gular momentum of the 4-body system are constant: 

an-

he \-'2+ h3+ h4 - R.:z.3 - R.34 - ~4 = C.onr..t. 
(19) 

s;,. = f::l.'" &..3 -+ ~+ ::. (.Q\'VJt. 
We compute the Poisson brackets tZ2~ ,h}'lZ3+,h} and average over 
the angular variables. In the 4-body planar case we prove that,at 
first order in the smallness parameters the z~ do not undergo any 
secular perturbation because of the interaction with the other 
subsystem. After the long-period perturbations have been accounted 
for, and if resonances are avoided, only second order terms have 
to be considered in the computation of A t 13 ,~t34-' In the very pes­
simistic assumption that all the second order terms affect in a 
secular way the z~jan order-of-magnitude lower bound for the di­
sruption of the hierarchy of the whole system can be obtained. The 
same techniques can be used in 3 dimensions and the perturbations 
by other bodies can be included as well/although the computations 
become more troublesome • 

The results obtained in the 4-body planar case can be quite 
successfully applied to the Sun-Mercury-Venus-Jupiter system. The 
two 3-body subsystems are Sun-Mercury-Venus and (Sun+Mercury)­
Venus-Jupiter, which can both be proved to be hierarchically sta­
ble. But how long will Jupiter take to break the hierarchy of the 
Sun-Mercury-Venus system? (Of course, the perturbations due to 
the fact that Sun-Mercury is actually a binary and not a point 
mass does act much more slowly). Our method gives a lower bound 
of 1.1~108y, which is still 1 order of magnitude shorter than our 
goal but much longer than previous results. For instance, we can 
now rule out that Mercury has been a satellite of Venus, at least 
as far as hundreds of millions of years are concerned. Perturba­
tions by other planets, either internal or external, do not sub­
stantially change this result because at first order they simply 
add up to Jupiter's perturbations and the corresponding £'i are 
smaller than e~~ that gives the perturbation of Jupiter on Mercury. 
It is worth stressing that although Mercury is too tiny to apply 
the z criterion to the Sun-Mercury-Jupiter 3-body system, the very 
existence of Venus provides a kind of "gravitational screening" 
effect: when each of the 3-body subsystems is assumed to be iso­
lated, Mercury cannot cross the orbit of Venus, and Venus cannot 
cross the orbit of Jupiter; this allows to investigate the stabi­
lity of the whole system with the analytical methods discussed 
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above. 
What about Mars, which is too small for the z criterion to 

be meaningful and is not "screened" by any other .big enough pla­
net, as Mercury is by Venus? Since the Sun-Mars-Jupiter 3-body 
subsystem cannot be proved to be hierarchically stable there is 
no 4-body system including Mars and Jupiter that can be decompo­
sed into two initially stable 3-body subsystems; therefore our 
methods are simply unapplicable. The same is true for any of the 
asteroids, and from this point of view Mars is nothing but a big 
asteroid. Numerical integrations (either in the elliptic restri­
cted Sun-Jupiter-asteroid model or taking into account the per­
turbations by the Earth) are the only way of getting, if not a 
definitive answer at least an indication of the long-term beha­
viour of these objects. But we must not try to prove stability at 
any cost. After all, Earth and Mars crossing asteroids do exist; 
the outer belt has been largerly depleted because of close ap­
proaches to Jupiter (Paper III); the 3/1 gap has been found to 
give rise to strong instabilities (jumps·in eccentricity) that 
seem to explain the lack of asteroids there (Wisdon 1982,1983).On 
the other hand, dynamical protection mechanisms are known to pre­
vent asteroids from being ejected. This suggests that chaotic re­
gions, as opposed to ordered regions in the phase space must first 
be spotted (Paper III): orbit crossing is likely to happen in 
chaotic regions while long-term integrations are worthwile only 
in ordered regions. Pluto, being a Neptune crosser, is not hierar­
chically stable. It is known to be protected by a 3/2 libration 
with Neptune which avoids close approaches ,in the vicinity of 
Pluto's perihelion. Moreover, there are reasons to think (Farinel­
la et al., 1980) that Pluto is an escaped satellite of Neptune 
that ended up in an heliocentric orbit and "adjusted" itself in a 
protected region: just because it was hierarchically unstable it 
needed an ad hoc mechanism to survive or, better, it survived 
only because entered a dynamically protected region • The same 
probably happened for Apollo-Amor objects, and this suggests that 

many of them mus t be dynamically protected, (Ja.nit.:z.t.k t.t aQ'J {C!!1-2) 
Let us now consider the 4 outer planets. Jupiter, Saturn, 

Uranus and NeptJne. In this case all the 3-body subsystems are 
initially stable according to the z criterion but the gravitatio­
nal perturbation of Jupiter on Saturn is at least one order of ma­
gnitude stronger than any other £'j (t+~ -v 3_10-4 ) and this means 
that whenever the two main planets are included the lifetime esti­
mates obtained with our present first order theory are too short 
to be competitive with numerical integrations already available 
up to Sx106y. Moreover, our estimates being based on a perturba­
tion method, resonances -both in mean motion and secular- must be 
avoided as long as we want the method to be applicable. But are 
there exact resonances- with libration of critical arguments -
between the main planets of the Solar System? Cohen et al.(1973) 
published position and velocity of the outer planets every 40000y 
between -S.I05y and +S.I05y • We implemented these data on our pro-
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gram in order to compute the time variation of the z "integrals" 
of 3-body subsystems. For each subsystem with Jacobian vectors 
2. ,2~ the difference ~Z~j(t)"'z'.i(t)-zc..R was monitored.One expected 
that Llz.,.i should remain almost constant over a time span 3 orders 
of magn1tude smaller than the age of the Solar System. On the 
contrary, in both the Sun-Jupiter-Saturn and Sun-Uranus-Neptune 
subsystems we have found a clear oscillation with a period of 
about 106y (Fig.S). Moreover, the two oscillations were almost in 
opposite phase,as if the ~ubsystems were locked to one another 
exchanging angular momentum (no such long period oscillation ap­
pears in semimajor axis, hence in energy). We presently don't 
know what's the resonance responsible for such "locking", nor 
what's the critical argument involved. 

-+ -) 

Fig.s.~~\as function of 
time for Sun-Jupiter-Sa­
turn (normalized as in 
Paper I). The ephemerides 
used to compute Az+1i.. are 
from Cohen et al.(1973) 

As it might have been expected an attempt of using new po­
werful techniques to prove the hierarchical stability of the So­
lar System for a time span comparable to its age has arisen fun­
damental questions about its structure • 
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A RELATIVISTIC APPROACH TO THE KEPLER PROBLEM 

John G. Bryant 

Universite Paris VI 

ABSTRACT The classical Kepler problem can be modified 
so that the velocity is always bounded. This is done 
by using a new time variable. A new Hamiltonian func­
tion can also be constructed, and it receives a rela­
tivistic interpretation : Newtonian mass and energy are 
replaced by relativistic (proper) mass and energy. A 
classical model for the photon can also be given. On 
the other hand the reformulated Kepler problem can 
equally well be used in special relativity as a model 
for a relativistic particle in a gravitational field. 

1. THE CLASSICAL KEPLER PROBLEM 

1.1 The motion of a particle with mass m in the gravi­
tational field created by a second particle, which we 
assume fixed at the origin, can be described by the 
following Hamiltonian function 

i ~ P~ 
(1) H(Pi,q ) = ~ 2m - ~ 

i=l r 

where r2 = t(qi)2 and ~ is a positive constant. The 
i=l 

equations of motion are 

dg i ;)H Pi 
(2) d t = Cfp i = m 

written: 
dPi 
crt = -
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and they lead to Newton's equations when we eliminate 
the P,~ The Hamiltonian H(p, ,q~) is a constant of the 
motion, and the equation H = constant = h yields the 
following expression for the velocity v of the particle : 

(J) v2 = t(di i ) 2 = t(Pi) 2 = ~ + 2h 
i=l d i=l m r m 

This formula shows that in theory v has no upper bound. 
For a given value of r, v can be made as large as we 
want by increasing the value of h ; and for a given 
value of h there are motions for which r can become 
arbitrarily small (even if we exclude collision orbits). 

1.2 This problem can be avoided by adopting the for­
malism of relativity. However we then lose the simpli­
city of the classical problem, since ordinary 3-dimen­
sional space is replaced by 4-dimensional space-time 
and the Kepler orbits are replaced by more complicated 
ones, as in the case of the Schwarzschild model. 

Another way to avoid the problem, without radically 
changing the formalism, would be to modify the classical 
equations. The simplest way to do this is to introduce 
a new time variable. This is the possibility we shall 
now investigate. 

2. THE MODIFICATION OF THE CLASSICAL EQUATIONS 

2.1 We introduce a new time variable 'l" by the following 
equation : 

(4) dt = (1 + f(qi»d~ 

where f is some function of the qi only that we wish 
to determine. The Hamiltonian system (2) now becomes 

g2 i = --r"!,,P.,;;i'-T 
, m{l+-r) 

We see that : 
a) the trajectories are unchanged 
b) if we assume f« 1, then motion in time is 

practically unchanged 
c) H(p.,q~) is no longer the Hamiltonian. However, 

H is still a constant of the motion. 

2.2 We would like to choose f(qi) in such a way that 
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we can define a new Hamiltonian function E(Pi,q;) for 
the problem. We even assume the following very special 
fonn for E : 

(6 ) 

i.e. E is the product (and not th~ sum) of a function 
of the Pi and a function of the q'. We must then have 

Comparison with (5) yields the following equations 

(8 ) 

For the second group of equations to have meaning, it 
becomes necessary to restrict (7) to a given surface 
E = constant = k (this will in fact be equivalent to 
H = h as we shall see). We can then replace ~ by k/f 
and the second group of equations becomes : 

(9 ) 
mot d 1 k df(J 
l+f Jqi (x;) = - <p ;)qi 

It is clear from these equations that f(qi) must be 
some function of l/r, and we are led to the following 
choice 

(10) f(qi) 20( 
= c2r 

where c is the velocity of light. f(qi) is thus a 
dimensionless quantity, and we have f« 1 except when 
r is very small. (9) now becomes 

(11 ) 

and we make the following choice for o/(qi) 

(12) (l+f) 
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(this will be justified later on). We then have: 

(13) k = mc 2 

In other words, the Hamiltonian system defined by 
E(Pi ,q') must be restricted to a single surface E = mc2 • 
In fact it becomes too restricted. We must therefore 
modify our approach by assuming that E is of the form : 

(14) E = 'f (p l' a) <p ( q i) 

where a is some constant. We thus seek to obtain a 
I-parameter family of Hamiltonian functions (the para­
meter being a), each one being restricted to the 

surface E = mc 2 • 
To determine o/(p~ ,a), we must solve the first 

group of equations (8) which, when we take account of 
(12) and (13), has the form : 

(15 ) . d\ll 
= 'rap 

i 

This leads to the following solution 

(16 ) 

E is therefore written 

a + t p~ 
i=l 1. 

and has the desired form. 

2.3 The constant a is linked to hand 

3 
a = m2c2 (1 + 20() -L 2 

Pi 
c2r i=l 

a = constant 

m since we have 
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2 2 2m 201. 
a = m c + r 

2 
( 2m 0< + 2hrn) 

r 

(taking account of H = h) and thus 

(18 ) 

E = mc 2 is therefore equivalent to H = h. 
The expression for the new velocity VI of the 

particle is given by 

Thus, for VI to always have an upper bound, we have 
the following conditions on a and h : 

(20) 

which lead to 

(21) VI {( C 

Also, when r ~ 0, then VI ~ O. 

3. THE RELATIVISTIC INTERPRETATION OF THE MODIFIED 
EQUATIONS 

235 

3.1 We have achieved our goal of obtaining a modified 
Kepler problem, where the orbits are preserved, but the 
velocity is always bounded. The equations of motion 
keep their Hamiltonian form, but there is no globally 
defined Hamiltonian, only a I-parameter family of 
Hamiltonians (note that this situation is similar to 
the one we obtain when applying the Principle of 
Maupertuis) • 

At this stage a very useful comparison can be made 
with relativity. In the case of a free particle (~= 0), 
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the expression of E becomes 

If we write 

a = m~c2 mo ~ 0 

then E is identical to the Hamiltonian of a free rela­
tivistic particle with proper mass mo and energymc2 • 
Only the interpretation of the parameters is different. 
In relativity, mo is ~ characteristic parameter of the 
particle and m (= E/c ) is a constant of the motion 
whereas, in the preceding interpretation, mo (=/I[/c) 
is a constant of the motion (linked to h) and m is a 
characteristic parameter of the particle •. 

To give global significance to E(p~,q·) in this 
particular case, as well as in the general case (oC I: 0), 
we simply have to adopt the relativistic interpretation 
of the parameters (this is in fact possible owing to 
our choice of ~(q') given by (12)). In practice (i.e. 
planetary motion) this is not a2problem since we 
g'enerally have v' «c 2 0<. /c -r «1 , so that, 
according to (19) 

(23 ) mNm 
- 0 

i The Hamiltonian function E(Pi,q ), which we now 
write : 

m2c 2 + t p~ 
o 1=1 1 

1 + 20( 
c2r 

is no longer restricted to a particular value. We have 
thus obtained a formulation of the classical Kepler 
problem in relativistic terms, where : 

a) the Kepler orbits are preserved, with, according 
to (18) 

h < 0 
h = 0 
h > 0 

~ m < mo 
~ m = mo 
?=> m "> mo 

Elliptic orbits 
Parabolic orbits 
Hyperbolic orbits 
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b) motion in time is only slightly modified (at 
least when r is not too small). In the elliptic 
case, Kepler's third law becomes 

with: T: period A : semi-major axis. 

3.2 As an added bonus to this formulation of the Kepler 
problem, we can now define a classical model for a 
photon in a gravitational field. This corresponds simply 
to the case mo = 0. E(p, ,q~) becomes: 

(26 ) Ephoton = c 

3 L p2 
i=l i 

1 + 20( 
c 2r 

We then have h = mc 2/2 > 0, so the trajectories are 
hyperbolas. The "gravitational bending of light rays" 
is thus a classical phenomenon. 

3.3 Finally, if we· place ourselves in the context of 
special relativity, our reformulated Kepler problem can 
equally well be used as a model for a relativistic par­
ticle in a gravitational field. We have in fact a new 
derivation for the concept of the relativistic particle, 
which encompasses the free particle. 

The model is no longer valid however in general 
relativity. This is easily seen in the elliptic case 
where there is no advance of the perihelion since the 
orbits are closed ; and one can also show that the 
deflection of photons is too small by half. Nevertheless, 
it is possible to account for these effects by adopting 
a "perturbed" form of the Hamiltonian E(p.,q;') given 
by (24), whose orbits are in complete agreement with 
those of the Schwarzschild model. (See: Bryant J.G. : 
"Vari't's de contact et vari't's canonigues en m'cani­
que", These de Doctorat d'Etat, Universl.t' Paris VI, 
1983) 
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In studies of the three-body problem, bound orbits and espe­
cially periodic orbits have traditionally received much attention. 
Complementary to these, however, are the scattering orbits, where 
at least one body is unbound initially and (in the generic case) 
also at least one body escapes after a finite period of close 
three-body interaction. These scattering orbits play an impor­
tant role in stellar dynamics. Three-body interactions exchange 
energy and angular momentum between internal degrees of freedom 
of binary stars, and external degrees of freedom of both the 
single stars and the center of mass motion of binaries. In this 
way three-body scattering can significantly influence the evolu­
tion of a star cluster. 

The scattering of single stars off tight binary stars on 
average increases the binding energy of these binaries. The 
energy released heats up the star cluster, just as nuclear reac­
tions generate energy within a star. To describe these exothermic 
processes in detail, accurate binary - single star scattering 
cross sections are needed. Several million numerical orbit inte·· 
grations have been performed in order to determine differential 
cross sections and their dependence on the many parameters which 
characterize individual three-body scattering configurations. 

Several general conclusions follow from these detailed 
investigations. As an important example, quantitative results 
are presented to illustrate the role of the three-body scattering 
problem as a heat source in stellar dynamics. 
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1. INTRODUCTION 

Although the three-body problem is natural and simple to 
formulate, the richness and variety of its solutions is truly 
overwhelming. Despite its long history, with contributions made 
by many outstanding mathematicians over the last three centuries, 
many new developments have occurred during the last three decades. 
Far from being exhaustive, let me just mention a few areas before 
restricting myself to astrophysical applications. 

Qualitative methods such as developed by Kolmogorov, Arnol'd 
and Moser have resulted in a better understanding of the stability 
of the three-body problem (cf. Arnol'd, 1978). Specific examples 
of an unexpectedly rich spectrum of solutions to a very simple 
sub-class of initial conditions were found by Sitnikov and 
Alekseev, who studied the behavior of a single star oscillating 
along the symmetry axis perpendicular to the orbit of a double 
star (cf. Alekseev, 1981). Another recent development is the 
study of orbits near triple collisions. McGehee (1974) showed 
how a triple collision manifold could be defined and pasted onto 
the boundary of the regular energy manifold, and that the equa­
tions of motion induced a gradient-like flow on this boundary, 
significantly simpler than the regular flow (cf. Sirna, 1981 for 
more recent extensions). 

The use of electronic computers has also stimulated the 
renewed study of classic problems, by providing powerful ways to 
search for periodic solutions, for example. A completely differ­
ent class of solutions is formed by the scattering orbits, where 
a binary star and/or initially unbound single stares) meet each 
other in a close encounter. In the generic case the period of 
genuine three-body interaction is relatively short, and the system 
disperses in three unbound stars, or a binary and an unbound 
single star. There is a rich variety of qualitatively different 
types of scattering orbits, including exchange, temporary and 
permanent capture, total dispersion and oscillatory orbits 
(Alekseev, 1981). 

The topology of the set of all possible scattering orbits 
shows a bewildering variety, including an infinite nesting of 
orbits of qualitatively different outcome within a finite region 
of the space of parameters describing the initial conditions. I 
have reported an initial exploration of some of this variety, 
together with some more mathematical aspects of three-body scat­
tering, elsewhere (Hut, 1983c). In the present paper I will con­
centrate on more astrophysical applications. 

In Sect. 2.1 I will review our current understanding of the 
simplest type of the general N-body problem: the long-term 
evolution of large spherically symmetric systems of many point­
particles. This seemingly simple mathematical physics problem is, 
of course, far removed from real star clusters, where effects of 
stellar evolution (e.g. mass loss), external fields (from the 
galaxy) and non-gravitational effects (e.g. tidal energy 
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dissipation and physical collisions) can be important. However, 
many fundamental questions have not yet been answered even in 
this simple case, and it seems wise to try and understand this 
isolated problem first. 

In Sect. 2.2, I will emphasize the important role in stellar 
dynamics of binaries, which can be described as particles with 
internal degrees of freedom. In more advanced stages of star 
cluster evolution, the central star density quickly grows very 
large, leading to the formation of new binaries. Three-body 
scattering of single stars off these binaries provides an energy 
source for subsequent star cluster evolution, in a way analogous 
to nuclear energy generation which powers stellar evolution. This 
energy production might prevent further contraction of the central 
regions, balancing the continuing energy loss in the form of heat 
conduction into the outer regions which is caused by two-body 
interactions. 

In Sect. 3.1, I will give an outline of an extensive project 
of numerical orbit integrations to determine cross sections of 
scattering processes between single stars and binaries (for more 
details, see Hut and Bahcall, 1983; Hut, 1983a,b). The funda­
mental law of binary dynamics, that hard binaries tend to become 
harder while soft binaries tend to become softer, is illustrated 
in Sect. 3.2 with new quantitative results. A discussion of 
applications to the evolution of star clusters is presented in 
Sect. 3.3. 

2. EVOLUTION OF STAR CLUSTERS 

Take a large number of point masses, sprinkle them at random 
inside a limited volume of space, and let them interact via 
Newton's law of gravity. Here we have a recipe with simple 
ingredients and a simple prescription. Still, the evolution of 
such a simple system was very poorly understood before the advent 
of fast computers. And even today, the qualitative behavior of 
the later stages of evolution of such a system is the subject of 
considerable debate. 

From an analytic point of view, a major stumbling block is 
the long-range attractive character of gravitational forces, 
which precludes all standard statistical physics treatment. For 
example, each star undergoes encounters with many other stars 
simultaneously, with no intermediate nearly free motion. Further­
more, there is an infinite amount of phase space available since 
stars can escape from the bound system. Andworse, in very close 
encounters velocities can grow without bound.' These last two 
aspects of self-gravitating systems lead to a thermal distribution 
of binaries which formally diverges both for very wide and for 
very tight binaries! Yet another aspect of these problems shows 
up when we study deviations from equilibrium, which cannot be 
made arbitrarily small with an independent tuning parameter, 
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because a self-gravitating system has no real equilibrium state. 
Instead, small deviations from pseudo-equilibrium are governed 
by the same coupling constant (Newtons gravitational constant) 
which determines the overall characteristics of the pseudo­
equilibrium state in the first place. The situation is therefore 
inherently more complicated than that in the laboratory for a gas 
with short range forces where, e.g., an arbitrarily small temp­
erature difference can be imposed in order to study heat conduc­
tion. 

More fundamentally, gravity cannot be treated as a thermo­
dynamic system in the usual sense, because no extensive quantities 
can be defined; adding extra particles changes the overall 
pseudo-equilibrium in a strongly non-linear way. Still, when we 
look up at the night sky, equipped with a modest-sized telescope, 
we can find many globular clusters, aggregates of some 10 5 - 106 

stars, in which the stars seem to be distributed in a nicely 
smooth s)herica1 way. Moreover, these systems have an age of at 
least 10 0 years! If statistical mechanics tells us that these 
systems cannot be in true equilibrium, they certainly present to 
us the challenge of trying to describe their pseudo-equilibrium, 
which seems so well-behaved, all theoretical objections notwith­
standing. 

2.1 Evolution Towards Core Collapse 

To come back to our original recipe, let us sprinkle N point­
like stars at random within a limited volume of space, for 
simplicity giving them all equal masses. What will happen? A 
number of partial answers have emerged from many different 
approaches, analytical as well as numerical, in the last quarter 
century. It is impossible to give a complete description here, 
and I will merely point out some of the general results, together 
with a few references to reviews on particular aspects of the 
general problem. 

For small systems, N < 100, evolution proceeds on a dynamical 
time scale. In a few crossing times the density increases signi­
ficantly in the center, while stars escape steadily from the out­
skirts of the system. Soon the central density becomes so high 
that at least one tight binary is formed in the center, from a 
simultaneous encounter of three single stars followed by the 
escape of one star which carries away the necessary amount of 
kinetic energy to leave the other two in a tightly bound orbit. 
Shortly thereafter the tightest binary grows even tighter by sub­
sequent encounters with single stars, and quickly acquires more 
than half the binding energy of the whole system. The energy 
released leads to a slow expansion of the system, and the evolu­
tion slows down considerably. But single stars keep escaping 
through two- and three-body encounters, until the whole system is 
dispersed in single independent units, mostly single stars and 
binaries with occasional (meta-)stable triples or even higher 
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hierarchical objects. 
For somewhat larger systems, 100 < N < 1000, computer experi­

ments in which all ~ N(N-l) forces are-computed directly become 
very costly, and only few of them have been reported in the 
literature. The overall behavior seems to be similar to that of 
smaller systems, albeit on a somewhat longer time scale. Again 
one central hard binary· is formed which plays a major role in 
heating up its surroundings. Here and in the following a hard 
(soft) binary is defined as having a binding energy much larger 
(smaller) than the typical kinetic energy of the field stars. 
More details and references can be found in the review by Aarseth 
and Lecar (1975), while a comparison with the observations of 
open clusters is reviewed by King (1980). 

Of great interest, from a theoretical point of view, are 
much larger systems for which N 'V 10 5 - 106 • Not only do these 
correspond to observed systems such as globular .clusters, they 
also allow a clear distinction of time-scales. The two-body 
relaxation time is defined as the time scale on which the motion 
of a typical star is changed significantly through repeated 
(generally weak) interactions with individual other stars. Two­
body relaxation takes place on a time scale much larger than a 
crossing time, and the system stl:J.Ys relatively close to an equilib­
rium state. In the simplest case of a spherically symmetric star 
cluster the equilibrium distribution function of stars in phase 
space is a function only of energy and angular momentum. Two-
body interactions prevent such an equilibrium to be reached 
exactly, and these small fluctuating forces cause some stars to 
become more energetic and therefore to move away from the center. 
The remaining stars move slower which causes the core to contract. 
The resulting higher density causes a decrease in the two-body 
relaxation time-scale, and the whole process accelerates more 
and more. 

These large - N systems have been studied only indirectly, 
in a variety of elegant approximations. The methods used generally 
involve a scheme to solve numerically an appropriate Fokker-Planck 
equation for the distribution function of the stars under certain 
simplifying assumptions, using either Monte Carlo methods (e.g. 
Henon, 1972; Spitzer, 1975) or direct integration (Cohn, 1979, 1980). 
The general picture emerging from these works is that of an 
accelerated increase in central density, driven by two-body 
relaxation processes, resulting in a nearly homologous core 
collapse, seemingly to infinite density in a finite time. A 
simple and surprisingly accurate description of this development 
was given Lynden-Bell and Eggleton (1980, following earlier work 
by Hachisu et aZ., 1978), who used a gaseous model similar to that 
used to model the evolution of the fluid elements in a single star. 
A review of earlier work with applications to globular clusters is 
given by Lightman and Shapiro (1978). 
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2.2 Ev 01 u tion Beyond Core Collapse 

The end state resulting from core collapse is not really 
singular, or course. Although the density of the core keeps 
increasing, the number of particles in the core decreases. When 
this number falls below a hundred or so, statistical fluctuations 
become dominant and a description in terms of average quantities 
is not reliable anymore. A detailed numerical modeling of this 
situation is very difficult, because of the large dynamical range 
in densities and time scales. 

The pioneer in this field is Henon (1961, 1965, 1975), who 
was the first to construct simple analytical and numerical models 
to describe the evolution of a large N-body system after core 
collapse. He conjectured that some unspecified energy source, 
presumably in the form of binaries, would appear to replenish the 
energy lost continuously through conduction to the outer layers, 
and eventually lost by escaping stars. 

This picture was substantiated in more detailed investigations 
by Stod61kiewicz (1982), who found the reaction of the N-body 
system to be rather insensitive to the precise nature of the cen­
tral energy source. Very recently, a number of investigations, 
using different approximations have greatly expanded our under­
standing of post-core collapse evolution (Henon, 1961, 1975; 
Stod6lkiewicz, 1982; Inagaki and Lynden-Bell, 1983; Heggie, 1983; 
Goodman, 1983, Sugimoto and Bettwieser, 1983; Bettwieser and 
Sugimoto, 1983), but also raised several controversies, and many 
questions still remain to be answered. 

For systems with 105 - 106 stars, it is unlikely that one 
tight binary will playas dominant a role as for smaller systems, 
even when the finite size of the stars is neglected. It seems 
more plausible that several binaries form in the core, each 
giving off heat to the system until becoming so hard that a 
single encounter with a field star can give rise to a recoil 
velocity large enough to remove the binary into the halo, or even 
out of the cluster. To give a detailed statistical description 
of these effects, and to improve on the preliminary investigations 
mentioned above, accurate binary-single star cross sections are 
needed which describe, e.g.~ rates of excahnge of energy, momen­
tun and angular momentum. This is the subject of the next sec­
tion. An alternative approach to study the behavior immediately 
around the time of core collapse has been followed by McMillan 
(1983) who developed a hybrid N-body / Fokker Planck computer 
code to handle extremely large density contrasts. 

3. BINARIES AS A CENTRAL ENERGY SOURCE IN STAR CLUSTERS 

There is an analogy between stars, powered by nuclear reac­
tions, and star clusters, powered by gravitational reactions, in 
the form of binary-single star scattering. This analogy is 
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helpful in understanding the overall evolution of star clusters, 
although there are important qualitative differences. For 
example, nuclear reaction rates increase at higher density, and 
the same is true for gravitational three-body reactions. However, 
nuclear reactions rates increase steeply with increasing tempera­
ture, whereas binary reactions show the opposite behavior, re­
leasing less energy with higher dispersion velocities in the 
star system. 

Even without considering binaries, there are important 
differences between stellar dynamical systems and the gaseous 
interior of a single star. For example, increasing the density 
at constant temperature will make a star more opaque, thus 
lowering the conductivity. Increasing the density in a stellar 
system, while holding the velocity dispersion fixed, will increase 
the rate of two-body relaxation effects, and increase the effective 
conductivity of energy through the system. 

With these cautions in mind, I will describe below the approach 
I have taken to tackle these problems at a fundamental level. This 
approach consists of three steps, starting from a microscopic 
description of three-body scattering, I have derived local statisti­
cal quantities to describe the effects of binaries on their 
immediate surroundings, from which I hope to arrive at a global 
statistical description of the evolution of the whole system. 
Results from the first two steps are described in the next two 
subsections, while the last subsection summarizes work in progress 
on the last step. 

3.1 Three-body Reactions In The Laboratory 

An extensive project of numerical orbit integrations has been 
initiated by Hut and Bahcall (1983; paper I) to determine cross 
sections of scattering processes between single stars and binaries. 
All sca.ttering experiments are carried out over a full range of 
initial conditions, in which all parameters are allowed to change 
independently of each other. This exploration of the full dimen­
sionality of parameter space can be carried out in practice only 
by a Monte Carlo sampling of many different initial conditions, 
followed by a deterministic orbit calculation of the scattering 
process in each case. In this way several million numerical 
scattering experiments were carried out, exceeding by more than 
an order of magnitude the total number of experiments reported 
in the literature (the following papers describe more than a 
thousand experiments each: Saslaw et aZ.~ 1974; Hills, 1975; 
Valtonen (1975); Valtonen and Aarseth, 1977; Valtonen and Heggie, 
1979; Hills and Fullerton, 1980; Fullerton and Hills, 1982). 

Although the results of previous numerical investigations 
are interesting, especially in transition regions between different 
domains of validity of analytic approximations, their accuracy is 
difficult to estimate. All authors mentioned above adopted some 
form of constraint on the initial conditions in their scattering 
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experiments, such as zero impact parameter and zero eccentricity, 
or incoming velocity at infinity either zero or rather large. 
The significance of the large number of experiments conducted in 
the present project lies not only in the smaller statistical spread 
in the resulting cross sections, and the resulting possibility to 
exhibit the detailed dependence of (differential) cross sections 
on individual parameters, but more importantly in the guarantee 
that the error bars are only determined by statistical noise and 
not by systematic trends caused by non-uniform sampling. 

It is interesting that here classical mechanics causes compu­
tational difficulties in an area where quantum mechanics makes 
life easy. In classical mechanics there do not exist simple 
highly symmetric low-lying energy levels (let alone a spherically 
symmetric ground state). For any choice of star cluster parameters, 
all binary orbital parameters have to be taken into account; the 
only consistent simplifying choice allowed is that of equal masses 
for all stars. The effect is an all-or-nothing situation. If 
one wants to obtain reliable and accurate quantitative results 
in answer to any speoifio question, it is necessary to first build 
up a large data base containing the outcome of many individual 
experiments. This is the only way to acquire a statistical resolu­
tion large enough to simultaneously discriminate between the de­
pendence on the different parameters of interest. But from that 
point on many other questions, specific as well as general, can be 
answered using the same data base. 

Detailed results for the equal mass case are presented in 
paper I, together with an outline and background of the project. 
These results, in the form of a variety of total and differential 
cross sections, tend to asymptotic limits which are in excellent 
agreement with analytic estimates by Heggie (1975; for a review: 
1980), extended where necessary by Hut (1983a; paper II). The 
only limitation left in paper I concerns the case of resonance 
scattering in which the incoming star forms a bound system with 
the two binary members. A resonant bound state is unstable, but 
only weakly so: it; often will take thousands of original binary 
periods before one of the stars escapes. Since such complex 
orbits require orders of magnitude more computer time, the first 
few million orbit calculations were halted whenever the occurrence 
of a resonance was established. This still made possible the 
determination of total cross sections for resonance scattering in 
paper I, but no information was obtained about the amount of 
energy exchange since the outcome was left undetermined. Full 
resonance scattering calculations have been carried out subse­
quently, and will be reported in paper III (Hut, 1984), which will 
provide the first unrestricted and detailed description of equal 
mass binary--single star scattering. The case of unequal masses 
poses no extra computational difficulty, and in subsequent papers 
several other mass ratios will be explored. 

All experiments mentioned above involved aMonte Carlo sampling 
of initial conditions, in order to obtain a physicist's description 
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of gravitational three-body scattering in terms of cross sections. 
From the point of view of a mathematician interested in the 
three-body system as a dynamical system, additional insight into 
the extremely rich microscopic structure of the space of orbits 
has been obtained from a series of experiments for a grid of 
initial conditions, determined by stepwide varying several para­
meters independently while keeping the other parameters fixed 
(Hut, 1983c). Specific astrophysical applications, such as 
binary--single star exchange scattering as a formation mechanism 
for cataclysmic variables in globular clusters, are discussed 
by Hut and Verbunt (1983a,b). 

3.2 Three-body Reactions In the Field 

3.2.1 The Fundamental Law of Binary Dynamics 

Energy exchange between external and internal degrees of 
freedom is the most important feature of binary--single star 
scattering. Hard binaries, with an orbital velocity much larger 
than typical field star velocities, behave differently from soft 
binaries, for which the orbital velocity is much lower than that 
of the field stars. A fundamenta~ law of three-body stellar 
dynamics is: .hard binaries tend to become harder while soft 
binaries tend to become softer. This can be described 
heuristically by the following equipartition argument. 

A fast star moving past a slowly revolving binary will on 
average lose some energy to the binary. However, trying to speed 
up the binary members will put them in wider orbits with an 
actually Zower velocity (loosely speaking a Kepler orbit seems 
to have a negative 'specific heat', a general phenomenon for 
gravitational interactions, cf. Lynden-Bell, 1973). Hard 
binaries, on the other hand, can capture a slowly incoming field 
star under formation of a bound triple system. After some time, 
generally orders of magnitude longer than the initial binary 
period, one of the stars is ejected more or less stochastically. 
The velocity with which it reaches infinity is typically of order 
of the internal binary 'velocities, and therefore much larger than 
the initial field star velocity. The binary has to increase its 
binding energy in order to give off this energy, thereby shrink­
ing and increasing its orbital velocity. 

Of course, not all hard binaries harden during each encounter 
with a field star, nor do soft binaries loosen up monotonically; 
both processes take place for both types of binaries, but the 
net energy balance has a different sign. On the whole, soft 
binaries do not play an important role for the energy budget of 
a star cluster, since the kinetic energy of their center of mass 
motion already exceeds their binding energy. Even the complete 
dissolution of many soft binaries will hardly affect the tempera­
ture (i.e. the'velocity dispersion) of the cluster. Hard binaries 
cause much more dramatic effects, as is discussed in Sect. 3.3. 
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3.2.2 Cross Sections and Reaction Rates: Definitions 

The differential cross section 
do 
d~ (~; v, e, m1 , m2 , m3) 

gives the probability distribution for different amounts of 
energy exchange in a binary--single star scattering. Here ~ 

is the relative change in binary binding energy during one 
scattering event: 

~iri.(t ..... +oo) - Ebin(t ..... - oo ) , 

E.(t+_ oo ) 
bln 

(1) 

where bin stands for binary binding energy, and e is the initial 
binary orbital eccentricity. As in Paper I v denotes the 
velocity of the incoming field star with respect to the center of 
mass of the binary in units of the critical velocity vc ' 
given by 

v 2 c G 
m m (m + m + m ) 
12123 

m (m + m ) 
3 1 2 

1 

a 
(2) 

for which the total energy of the three-body system vanishes. G 
is the gravitational constant, a is the initial semimajor axis 
of the binary, m3 is the mass of the incoming field star, and 
mI , mare the masses of the binary components. 

in three-body scattering, three types of reactions can occur: 
1) a single star incident on a binary breaks up the binary, 
leaving all three stars unbound (ionization); 2) a binary emerges 
from abinary--single star scattering event with a different 
energy and possibly different stars (fly-by and exchange); 
3) three unbound stars can interact to form a new binary (creation). 
In the following we will discuss only the second process of energy 
exehange; destr-uetion (ionization) rates are given in paper I, 
which can be used to calculate ereation rates via detailed 
balance relations. The definition of the average energy change is 
formally 

-£ 00 

J ~~ M~+ J do ~d~ 
d~ (3) 

< ~ > lim -1 £ 
-£ 00 

£ ..... 0 J do d'" +J do 
d~ 

d~ d~ 
-1 £ 
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where the lower limit of integration ~ = - 1 is chosen to 
exclude ionization events. 
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Unfortunately, both terms in the denominator in Eq. (3) 
diverge for E ~ 0: there is an infinitely little energy exchange 
to take place. This type of infrared singularity always appears 
in classical mechanics, no matter how fast the interaction strengths 
drops as a function of impact parameter (even for an exponential 
drop off), as long as the interaction is not identically zero. 
The familiar fact that short range forces lead to finite total 
cross sections is a consequence of quantum mechanics. This follows 
directly from a partial wave analysis, and can be understood 
physically from the uncertainty principle (for a lucid description, 
see Landau and Lifshitz, 1965). 

The two terms in the numerator in Eq. (3), however, do 
approach a finite limit as E vanishes. The reason is that a 
field star passing the binary at large distance interacts with 
the internal binary degrees of freedom only via a tidal force, 
which nearly cancels out when averaged over a complete binary 
orbital period. It can be shown that the binding energy of the 
binary is an adiabatic invariant in this limit of very wide 
encounters (cf. Heggie, 1975). 

A useful expression with a finite limit for E ~ 0 is the 
product of the cross section weighted by the amount of energy 
exchange: 

! -E 

< a ~ > = lim J ~~ ~ d ~ 
E~O -1 

(4) 

For simplicity we will still refer to < a~ > as the average 
energy exchange, although it really is a quantity which enters 
in the average energy exchange rate n < a~ > v, where n is the 
density of field stars. 

3.2.3 Some Illustrative Results 

The average energy exchange in scattering processes between 
binaries and single stars of equal masses is plotted in Figs. 1 
and 2 as a function of binary hardness/softness, measured by the 
velocity of the incoming field star. Figs. la and 2a show the 
results for initially circular binary orbits, while Figs. Ib and 
2b are for the opposite extreme case, where the original binary 
orbit has eccentricity e = 0.99. The results for both cases are 
remarkably similar, and show that the dependency on eccentricity is 
relatively small, a situation which greatly simplifies application 
to realistic star clusters (cf. paper I). In practice, it often 
suffices to simply take the root-mean-square (r.m.s) value of a 
thermal eccentricity distribution, e = 0.7 (Hut, 1983b). A 
large range of binary energies is explored in Figs. I and 2: 
the ratio of initial binary binding energy versus incoming kinetic 
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Fig. 1 The average change oEb . in binary binding energy is 
plotted separately for the sca~~ering events with a binding 
energy increase (~>O) and for those with a binding energy 
decrease (~<O), for the two extreme eccentricity values e=O 

P.HUT 

and e=0.99. The watershed velocity, where the average energy 
increase and decrease are equal, is indicated by the dotted 
arrow. The incoming velocity v is given in units of the critical 
velocity (Eq.2), for which the total energy vanishes; in these 
units the r.m.s. binary orbital velocity is vorb = ! /3 ~ 0.87. 

2 
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Fig. 2 The net average change in binary binding energy. Hard 
binaries, at the left side of the watershed, will on average 
gain binding energy, thus moving to the left and becoming harder. 
Soft binaries, at the right, on average loose binding energy, 
move to the right and become softer. 
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energy, equal to unity at the center, drops to 1/256 at the right 
side and climbs to 256 at the left side, spanning sixteen octaves 
or nearly five orders of magnitude. 

A comparison with analytic approximations by Heggie, given 
by the dashed lines in Figs. 1 and 2, shows remarkable agreement. 
For soft binaries this has been noticed already in paper I (cf. 
Figs. 9-12 therein). For hard binaries Heggie's analytic approxi­
mations for close encounters only are plotted, which give the 
dominant contribution to the average energy exchange. When the 
analytic contribution from wide encounters is taken into account, 
it seems that the total analytic result is somewhat too large, 
but by less than a facaor two. A comparison of the differential 
cross section curves d~ (6) for hard binaries (not shown here) 
helps to account for tIhs. The numerical cross sections 
agree well in shape with Heggie's prediction for large 6, but 
are as a whole .displaced to somewhat lower values. Details of 
this comparison and a similar discussion for small 6 are 
presented in paper III. The main conclusion is that Heggie's 
assumption of an effective stochastic mixing (loss of memory of 
the initial state) for resonance scattering is a good approximation. 

The numerical results presented here are most useful in pro­
viding an accurate determination of the shape of the energy ex­
change curves near the watershed between hard and soft binaries. 
By definition the expectation values for energy gain and loss are 
equal at this point, indicated by the arrows in Fig. la,b. Experi­
ments at different eccentricity values give slightly different 
watershed velocities, and a good fit is v = 0.67-0.l3e +0.02, 
with a 10 estimated error. Fig. 2 indicates that the transition 
between the two asymptotic regimes of hard and soft binaries is 
very rapid: the total width of the transition zone spans only 
half an order of magnitude in incoming velocity for a given binary 
(equivalently: an order of magnitude in binary binding energy for 
given incoming velocity). This transition zone determines the 
f9rmation rate of hard binaries through hardening of a fraction 
of the soft binaries, via repeated encouriters with single stars. 

Note that the present definition of watershed is a local one: 
it is concerned with the average energy change in the next scatter­
ing event only. An alternative global definition might be more 
appropriate, which evaluates the combined result of all subsequent 
scattering events, leading ultimately to either a complete break­
up (ionization) of the binary or a continuing hardening. However, 
such a global definition requires the specification of the (in 
general time-dependent) distribution of field stars. In paper III 
values for a global watershed are presented for the simple case 
of a time independent Maxwellian background field. 

3.3 Three-body Reactions and the Evolution of a Large Star Cluster 

The cross sections discussed in Sect. 3.1 can be used as input· 
data in a statistical treatment of large N-body systems, where 
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direct integration of the equations of motion becomes impractical 
(i.e. N > 1000). The most widely used approach is the Fokker­
Planck treatment in which the effects of strong two-body scatter­
ing is neglected, since these become relatively less important 
with respect to those of weak encounters as N increases. 

A pioneering study in which three-body effects were added 
in a Monte Carlo Fokker-Planck treatment was carried out by 
Spitzer and Mathieu (1980). They used as input data analytical 
approximations by Heggie (1975) and numerical cross sections by 
Hills (1975). Starting with an initial fraction of the stars in 
the form of moderately hard binaries, they followed the initial 
stages of cluster evolution leading to the onset of core collapse. 
They found that the presence of binaries did slow down the rate 
of central contraction, but could not prevent core collapse. 

The logical next step is to try to follow the evolution through 
and beyond core collapse, starting for simplicity with a system of 
single stars only. Such a system will evolve until the core has 
contracted so much that it only contains few (30 - 100, say) stars, 
at which time the density will have become high enough to cause an 
appreciable rate of binary formation, directly from three-body 
reactions between unbound single stars. 

The simplest way to mimic the formation and subsequent energy 
generation of central binaries is to include an appropriate source 
term in a gaseous model for a star cluster (Inagaki and Lynden­
Bell, 1983; Heggie, 1983; Goodman, 1983, Sugimoto and Bettwieser, 
1983; Bettwieser and Sugimoto, 1983). Including energy generating 
terms in Monte Carlo Fokker Planck codes (Henon, 1975; Stod6lkiewicz, 
1982) is more realistic, but the dynamic range in star density is 
not as large in a Monte Carlo approach with a finite number of shells. 

A much better treatment could be given in a direct integration 
of the Fokker-Planck equation, as done by Cohn (1979, 1980) for the 
pre-core collapse phase for single stars, using a two-fluid approach 
for binaries and single stars. The interaction between the center 
of mass motion can be modelled with the standard Fokker-Planck 
terms describing the cumulative effect of many distant two-body 
encounters. The interaction between external degrees of freedom 
and internal degrees of freedom of the binaries can be described 
statistically using the data mentioned in Sect. 3.1 (Ultimately 
one would need binary--binary cross sections as well as binary-­
single star cross sections, but the gaseous models hint that few 
binaries will coexist in the core, at least in the first phase 
after core collapse; a first rough numerical determination of 
some binary - binary cross sections is given by Mikkola, 1983). 

A simpler approach which still allows a very large dynamic 
range is the use of a direct Fokker-Planck code with only one 
fluid of single stars, modelling the effects of binary generation 
and hardening with the average reaction rates discussed in the 
previous subsections_ Work along these lines is in progress, and 
the results will combine the large dynamical range (as in the 
gaseous models) with a more realistic stellar dynamical treatment 



254 P.HUT 

(as in the Monte Carlo Fokker-Planck models). 
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THE CRITICAL PERIODIC ORBITS IN THE STORMER PROBLEM 

R.A. Broucke 

University of Texas, Austin, TX, 78712, USA 

Abstract 

We study some of the periodic orbits, among the families 

fO,f1,f2,f3,f4 and f5 that were previously found by Goudas and 
Markellos. We concentrate on the periodic orbits which have a 
special value (= +2, -2, -1 or 0) of the stability index, 
because, for these orbits, the period of the periodic solutions 
of the variational equations is an integer multiple (1, 2, 3 or 
4) of the original period. We classify several such solutions 
according to the H~non type or the Contopoulos Resonant type. 
We also computed several bifurcations or trifurcations of new 
families out of these critical orbits, in order to illustrate 
the extreme complexity of the phase space, even in the quasi­
periodic regions. 

1. The St8rmer Problem 

The problem of the motion of a charged particle in the 
magnetic field of a dipole has been studied by C. Stormer 
(1907) since the turn of the century, especially because of its 
interest in relation to the Northern Light. From the 1930's 
until well in the fifties, these studies have been continued by 
G. Lemaitre and his group at Louvain, because of the connec-
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tions of the problem with cosmic rays, the eventual remnants of 
the big Bang, (Lemaitre, 1934, de Vogelaere, 1958, Bouckaert, 
1934 and Godart, 1938). 

The interest in the problem has very much remained alive 
in the last two decades especially in the Greek schools with C. 
Goudas and V. Markellos (1976). The aspect that has been stu­
died in most detail is the classification of the periodic 
orbits in the rotating meridian plane. Some detailed mathemat­
ical studies of the problem have also been published in the 

last few years (Braun, 1970, 1970, 1979, 1981) (Dragt, 1935). 
The problem can be considered a typical non-integrable dynami­
cal system with two degrees of freedom. We use it here as a 
model to illustrate the complex structure even in the regions 
of the stable motions. We show that many complex bifurcation 
phenomena actually occur. 

2. The Stability of the Periodic Orbits 

In the present work, we concentrate on the stability pro­
perties of the periodic orbits of the problem. We especially 
study the critical periodic orbits which are at the transition 
between stability and instability and which are at the origin 
of the bifurcations between families of periodic orbits as well 
as new families of periodic orbits. 

In order to determine the stability we used two difference 
methods: the standard variational equations in rectangular 
coordinates, leading to a 4 by 4-monodromy matrix R, and the 
Hill method with two normal variations, leading to a 2 by 2-
matrix H, called Hill or H~non matrix, (H~non 1965). The trace 
of . Hill matrix is what we call the stability index k, the sum 
of its two eigenvalues, (Deprit and Henrard, 1967): 

k = " + ,,-1 

If the monodromy matrix R is used, there are two additional 
unit eigenvalues, so that the stability index is obtained by, 
(Deprit and Price, 1965): 
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k = A + A-1 = Trace(R)-2. 

The interval -2<k<+2 corresponds to stability. This is the 
case wi th two eigenvalues on the uni t-circle 
{A,A-1} = cos8±isin8. The exceptional cases occur when k = +2 
or -2 or, more generally when 8 = 2~/n, for n integer. The 
integers n = 1, 2, 3, 4, which are the only ones that we stu­
died, corresponding respectively to k = +2, -2, -1 and O. They 
correspond to eventual bifurcations to new periodic orbits with 
the same, double, triple or quadruple period: 

Several classifications of the exceptional periodic orbits 
have been presented in the litterature, especially by H~non and 
Contopoulos. Henon has four types of periodic orbits with sta­
bility index k = 2 (H~non 1965) = 

Type One: 

Type Two: 

Extremum of Energy; no bifurcation. 

Bifurcation between two symmetric families of 
periodic orbits, but no extremum of the energy. 

Type Three: Bifurcation between two symmetric families; 

Type Four: 

extremum of the energy on one family. 

Bifurcation between a symmetric and 
symmetric family of orbits. 

a non-

Contopoulos has classified some additional types: his five 
resonant types, (Contopoulos 1970). These classifications are 
essentially based on the eigenvalues, the rank and the Jordan 
form of the matrices Hand R or R-I. More precisely, the fol­
lowing statements may be made in relation to these classifica­
tions: 

- The rank of (R-I) is usually only 3, due to the fact that 
R has a (double) eigenvalue. 

- The Rank of (R-I) is 2 on the critical periodic orbits 
with k = +2, where bifurcations between families may 
occur, (these are the 4 H~non types). 
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- The Rank of (R-I) may be , on some orbits that we call 
super-critical. These are the five Contopoulos resonant 
types. Bifurcations and trifurcations between 2 or 3 fam­
ilies of periodic orbits are possible. In the case of 
trifurcations, one of the families always consists of 
non-symmetric periodic orbits. We will now describe dif­
ferent examples of these special cases of exceptional 
periodic orbits. 

3. Stability of the Six Basic Families 

The periodic orbits of the six basic families 
fO,f, ,f2,f3,f4,f5 have many properties in common. First of 
all, the families f o ,f2 , and f4 contain all open orbits: they 
have a zero velocity point at each end and they cross the equa­
tor at a right angle. The other 3 families f"f3,f5 are 
branches out of the three previous families, but they contain 
only closed orbits, without any zero-velocity points. We com­
puted many members of each of the six families, in order to 
establish an accurate stability diagram (x ,k) for each one of o 
them. It turns out that the stability behavior for all the 
open orbits f o ,f2 , and f4 is fairly similar. Also, the stabil­
ity behavior of the closed orbits f"f3,f5 is very similar for 
each of the three families. We reproduce below the sketch of 
the stability diagram for the families fo and f, only (the four 
others being similar). 

+1r-.-----~----_. 

o 
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Some of the important features visible on these two stability 
diagrams are as follows. As for f there are two tangent 

o 
points to the stability limit k = -2. There are also four 
important intersection pOints with the other stability limit 
+2. These 4 points k=+2 have the following meaning, (from left 
to right on the x - axis): o 

- The first point is the beginning of the family. 

- The next point has the type 4, in the H~non classification 
and is at the origin of a new family of non-symmetric 
periodic orbits. We call this family r6 (or f~,f~) and we 
give a short description below. 

- The next point is of the H~non type 3 and is at the origin 
of the family f" of closed symmetric periodic orbits. 

The next point k = +2, is of the H~non type', It 
corresponds to the maximum Energy point of the family and 
there is no bifurcation with another new 
everything that was just said for the 
also holds for f2,f~,f3 and f 4,f',f5 
describe these features in more detail. 

4. The Three Maximum Energy Periodic Orbits 

family. Again, 
families fO,f~,f, 

We will now 

We mention here the first of the important common charac­
teristics of the three families fo,f2 and f4 : it is that each 
one of these families has a Maximum Energy Orbit which is a 
critical periodic orbit with k=+2 and Rank (R-I)=2. In the 
H~non classification this is the type one. 

We now give the summary of the most important numerical 
data of these three periodic orbits. 
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f f2 f4 0 

x = 1 .11261769 1.18703859 1.19723845 
.0 

0.39162092 0.24839729 0.20534800 Yo = 
E = 0.0808216 0.0396606 0.0305513 
T/2 = 4.738 8.703 10.451 
H = [~ 1 ~.18] g 4~.00] [~ 7~.81 

5. The Type-3 OrbIt of fO and the Bifurcation to ~ 

As we have said before, each of the three families f o ,f2 
and f4 of periodic orbits has a special member where the sta­
bility index k is +2, the H~non type is 3. the H~non matrix H 
has a zero element (H21 =c=0) and two units on the diagonal. 
Also for these orbits, the rank of R-I (where R is the mono­
dromy matrix) is +2. In fact R has a quadruple unit eigen­
value. These pOints are at the origin of the new symmetric 
families of closed periodic orbits, f"f3,f5• We give below 
the numerical data for all three critical periodic orbits. 

f -f o 1 f 2-f3 f 4-f5 

x = 0.993861565 1.13598137 1.1697032 
.0 

0.377117485 0.259065122 0.2130875 Yo = 
E = 0.07112811 0.0391093 0.0303953 
T/2 = 4.33380 8.28603 10.2052 
H = g -~.66] [~ -3~.1 j [~ -6~.4J 

We finally mention another property which is common to all 
three bifurcation points: At this pOint, one of the families 
(f1,f3 or f5) has an extremum of the Energy Constant. In fact 
this extremum is a maximum in all three cases. On the other 
three families, the energy is not a extremum at this pOint. 
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6. Bifurcations to Non-Symmetric Periodic Orbits 

We will now describe a few examples of bifurcation pOints 
corresponding to branches with new families of non-symmetric 
periodic orbits. These non-symmetric families can and do arise 
in two different situations. 

- At the stability pOints k +2 with the 
I 

Henon type 
+4, there is normally a branch of non-symmetric periodic 
orbits. At these points, the Rank of the matrix (R-I) is 
+2. We describe three examples below. 

- At the stability pOints with k = -2, -1, 0 (=2 cos 2 u In, 
where n is integer), where the matrix Rn-I is of rank +1, 
we can have a trifurcation rather than a bifurcation: two 
new failies of periodic orbits are born: one of them is 
symmetric and the other is non-symmetric. We will 
describe two examples later. We call these bifurcation or 
trifurcation pOints with a rank = 1, supercritical orbits. 

a. The Three Non-Symmetric Families f~,f~,ft 

The three basic families fo,f2,f4 each have a member 
with stability index k = +2 and a H~non type of 4. These 
are thus each at the origin of a family of a non­
symmetric periodic solutions with the same period, at the 
bifurcation point. 

We begin by giving the initial 
orbits three. symmetric , periodic 

Yo = xo = 0) 

f f2 0 

x = 0.890576 0.9301048 
.0 

0.132572 0.1243051 yo = 
E = 0.01830494 0.01098977 
T/2 6.283445 10.723763 
H = 

C1~ ~] G2~ ~1 

conditions of the 
of Type 4, (with 

f4 

0.94808426 
0.107710767 
0.074687445 

14.1962995 

~4~ ~] 
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On each one of the three non-symmetric 
about 20 periodic orbits have been computed. 

families, 
The table 

below summarizes the initial conditions of one member of 
each of the families, with y = 0: o 

fl 
0 

fl 
2 

fl 
4 

x = 0.97769140 0.97615105 0.979279 
.0 

0.17425781 0.105692 0.073453 x = 
.0 

0.11057837 0.11479595 0.102234 Yo = 
E = 0.02156902 0.01248059 0.008157 
T = 13.233376 21.459386 28.015419 
k = -5.8391 -3.7433 -2.5549 

The three non-symmetriC families fl ,f' ,f'4 have com-
o 2 

pletely similar stability characteristics: all three fam-
ilies are stable, at last they start of with stable 
orbits. The stability index k begins at 2 and decreases. 
It eventually crosses the value -2 and the orbits become 
then odd-unstable. 

x 0 
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b. ! Triple Period Non-Symmetric Periodic Orbit 

This is a family of Non-Symmetric Periodic Orbits 
that begins at a supercritical symmetric periodic orbit 
of the basic family f ,at the value -1 of the stability 

o 0 
index k and the argument S = 120 The initial condi-
tions of this symmetric orbit are 

(1.0203243, 0, 0, 0.38825176) 
E = 0.07556028 ; T/2 = 4.370994. 

The Hill or H~non matrix of this periodic orbit is 

[ 
-0.5 

H = 0.18886 
-3.9711 ] 

, H3 
-0.5 

The new non-symmetric family will begin at this 
bifurcation point with three times the above period. One 
of the members has the initial conditions: 

(1.02328 , 0, .0008, 0.388369) 
E = 0.075663 , T = 26.238. 

The Family is unstable 

c. ! Quadruple Period Non-Symmetric Periodic Orbits 

This family of non-symmetric periodic orbits ori­
ginates at a supercritical periodic orbit of faily f 

o 0 
with stability index k = 0 and argument S = 90 with ini-
tial conditions: 

(1.04853119, 0, 0, 0.3938845), 
E = 0.078546796; T/2 = 4.4522. 

, 
The Hill or Henon matrix of this periodic orbit is 

of the form 

H "[: -~.] ; H4 [: ~1 . 
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The new non-symmetric family begins thus at this point 
with a quadruple period. One of the members of this 
non-symmetric family has the initial conditions 

(1.0486579, 0, 0.003, 0.39386817) 
E = 0.07854502 ; T/2 = 17.808. 

The family is stable, with a stability index decreasing 
from the value +2, but tangent to the horizontal line 
k = +2 in the stability diagram. 
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A MULTIMODE INVESTIGATION OF GRANULAR AND SUPERGRANULAR MOTIONS I: 
BOUSSINESQ MODEL 

R. Van der Borght and P. Fox 

Monash University, Clayton, Victoria, 3168, Australia 

Two types of large-scale convective motions, granulation and 
supergranu1ation, are observed in the outer layers of the sun and 
their observed characteristics can be summarized as follows: 

Characteristic Granulation Super granulation 

Average Diameter 2000 km 30,000 km 

Horizontal and Vertical 1 km/sec 0.3 - 0.5 km/sec Velocities 

Average Life-Time 20 minutes 20 hours 

Intensity Fluctuation 15% not observed 

~ 

These convective motions take place in a highly turbulent 
medium, and in the outermost layers of the sun the eddy thermal 
diffusivity and eddy kinematic viscosity are well in excess of 
their radiative and molecular values. The therma1~diffusivity is 
evaluated usually by the mixing-length theory or its extensions, 
whereas there does not seem to exist an adequate-fheory to 
determine, a priori, the variations with depth of 'the eddy 
viscosity. 

The accuracy of the methods used to derive the eddy thermal 
diffusivity and kinematic viscosity could be tested if it were 
possible to compare the observed characteristics of granulation 
and super granulation with the theoretical ones derived from a 
model of deep convection in a compressible medium. Some progress 
has been made in this direction over recent years [1,2] with the 
help of the one-mode approximation. 
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So far, most attempts have concentrated on granulation or 
super granulation in isolation although a detailed theory should 
take into account the co-existence of these two types of convective 
motion. Such an approach requires the use of multi-mode expansions 
and in a highly compressible medium, such as the sun, one should 
consider multi-mode expansions with as few simplifying assumptions 
as possible. The full equations have in fact been derived but, in 
this preliminary investigation, we shall confine ourselves to a 
Boussinesq model to gain an insight into the behaviour of inter­
acting convective motions. 

The appropriate equations, within the multimode-approximation 
are given below and have already been integrated [3] for certain 
combinations of modes. Depending on the number of modes and the 
value of the Rayleigh number the motions have been found to be 
steady, periodic or aperiodic. These computations were carried out 
for a Rayleigh number which is not depth dependent, i.e. for the 
case of constant buoyancy across the layer. In the case of the 
sun however, the uppermost layers have a temperature gradient 
which is highly superadiabatic, whereas in the deeper regions the 
temperature gradient is only slightly super adiabatic. 

In what follows we shall assume that the Rayleigh number R 
varies with depth and is well in excess of its linear value R~ in 
the top 10% of the convective layer but is almost equal to its 
linear value in the remaining 90%. 

Within the framework of the Boussinesq approximation, the 
basic hydrodynamic equations to be solved are as follows 

div u = 0 (1) 

au 
1 -=-+ u.grad u + - grad p + g vV 2u 0 (2) 

at Po 
~+ 
at 

u.grad T - KV2T = 0 (3) 

where we have assumed that the kinematic viscosity v and thermal 
diffusivity K are constant and the effects of viscous dissipation 
can be neglected. 

The continuity equation (1) will be automatically satisfied 
if we assume that the velocity u can be expressed in the following 

form DW. af. DW. af. -
u = (I ~~, I ~~, I w.f.) (4) 
- i a i x i ai y i ~ ~ 

where the W. (z,t) are functions to be determined, the a. are 
horizontal ~ave numbers, the functions fi (x,y) satisfy Ehe 
following differential equations 
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(5) 

For instance, in the case of convective cells with hexagonal 
p1anform the functions f,(x,y) take the following form 

1. 

f i (x,y) = (~)~[ cos aiy + cos "(13 y) (13 y)] a i 2 x +"2 + cos ai 2 x -"2 

(6) 

Similarly, for the temperature profile we adopt the following 
expression 

T = TO(z,t) + ~ Fi (z,t)fi (x,y) (7) 
1. 

A process of horizontal averaging yields the following modal 
equations 

aT 
<at + ~.grad T - KV2T> = 0 (8) 

<fi[~~ + ~.grad T - KV2T]> = 0 (9) 

1 af, af, 
- ~ D <--2:. M + ~ M > + <fiM > = 0 (10) a i ax x oy y Z 

where Mx ' My and Mz are the components of the equation of motion, 

< (11) 

and the constant A is chosen in such a way that 

(12) 

A lengthy, but otherwise straightforward averaging procedure 
leads to the following system of partial differential equations 
in one space variable [3]. 

2 2 1. 1. 2 2 1 ( aw,) 1 C'jk { 
- (D - a, ) -;:;--t + - I ( ) 2 ak .. Wk (D - a, ) DW , 
a 1. 0 a j, k a j ak 1.J J J 

+ (akij + aijk)DWk (D2 - a/)wj } = - Rai 2F i + (D2 - a i 2) 2Wi 

(13) 
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(14) 

(15) 

where 

(16) 

and 

(17) 

Assuming that granular and supergranu1ar motions extend over 
the same depth we require at least a two-mode approximation, one 
with wave number a1 of order unity to represent supergranu1ation 
and another with a much larger wave number a to represent 
granulation which has a much smaller horizontal extent and would 
be represented by much more elongated convection cells. 

Other investigations [3] show that the most appropriate 
model is in fact a three-mode one with horizontal wave numbers 
a1 , a2 = ~a1 and a3 = (n + 1)a1 for which it can.be shown that the 
constants Ci'k van~sh unless i, j and k are either all equal, for 
which Cijk =J C = 1/16, or all different, in which case Cijk = C/2. 

Since we are trying to model both granulation and 
super granulation we shall assume that the horizontal wave number 
a1 , corresponding to supergranu1ation, has a value of TI/1:2 as 
suggested by the linear theory for maximum instability. This 
corresponds to an aspect ratio of 3.77 for supergranu1ar motion, 
i.e. to a depth of 7958 kmof the convective layer. 

Granules 
of 2000 km as 
corresponding 
and n = a/a1 
integrations. 

on the other hand have an average horizontal extent 
compared to 30,000 km for supergranu1es. The 
value a2 of the wave number is therefore much larger 
= 15. This is the value adopted for the numerical 

The eddy thermal diffusivity K varies from a value of 
1.66 10 14 at the top of the solar convective region to a value of 
8.03 10 10 at a depth of 8000 km. Since we are interested mainly 
in the behaviour of the granules we shall adopt here a 
representative value of K = 5 x 10 13 for the uppermost layers. 
We have also adopted for the Prandt1 number a a value of 0.1 as 
indicated by earlier investigations [2]. 
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The buoyancy in the uppermost layers of the sun's convective 
region is several orders of magnitudes larger than in the deeper 
regions. For the purpose of the present numerical calculations 
we have adopted the following values of R 

R when 0.9 ~ z ~ 1 

R 650 when 0~z~0.9 

In addition, the following boundary conditions have been 
adopted: 

z = 0 z = 1 

TO 0 TO -1 
}uniform temperature F. 0 F. 0 

at the boundaries 
~ ~ 

W. 0 W. 0 no overshooting 
~ ~ 

D2 W. 0 D2 W. 0 free boundaries 
~ ~ 

The results of the numerical integrations are given in the 
following figures and the main characteristics of the flow can be 
summarized as follows: 

In the initial stages the vertical velocity Wand the root­
mean-square horizontal velocity V = DW/a are considerably larger 
for modes a 2 and a 3 , associated with granulation, than for mode 
a l which represents super granulation. Ultimately the granular 
modes die out and the energy is transported mainly by super­
granulation motions (Figures la and lb). When numerical 
integrations are carried out even further oscillatory motions set 
in. 

In the sun, a particular granule has a short life-span of 
the order of 20 minutes on average. In the present model the 
granular motion reaches vertical and horizontal velocities of the 
order of 1 km/sec after an elapsed time-span of 27 minutes. 

It is seen, in Figure lc, that the flux modulation 
I = 3.2 DF/DT reaches a value of 10% after a time-span of 
27 minutes. ~he observed intensity modulation in granules has 
an average value of 12 to 15%. 

At the same epoch the flux modulation in the supergranules 
is only of the order of 1% and may not be large enough to be 
observed. 
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Time variation of the vertical velocity W. 
and the root-mean-square horizontal velocity 
V., in km/sec, at the top of the convective 
l~yer for modes 1 ( ), 2(- - --) 
and 3 (- - - - - -). 
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Time variation of the flux modulation at 
the surface r., for modes 1 ( ), 
2 (---~) and 3 (- - - - - -), and 
the fraction of energy N carried by the 
convective motions. 



GRANULAR AND SUPERGRANULAR MOTIONS I: BOUSSINESQ MODEL 275 

In addition (Figure ld) the flux carried by the convective 
motions is only a fraction of one percent. One-mode compressible 
investigations point to a value of 4% [2]. In any case it appears 
that large-scale convective motions do not modify significantly 
the transport equation and the energy transport in the outer 
layers of the sun seems to be influenced mainly by turbulent 
motions. 

The distribution of vertical velocities with depth as a 
function of time is illustrated in Figures 2a and 2b. We see 
that the granular motions overshoot significantly into the 
marginally stable layer and occupy, at maximum intensity, 20% of 
the entire layer as compared to 10% for the unstable layer. 
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Depth variation of the maximum vertical 
velocity W., in km/sec, for modes 
1 ( ) ~ 2 (- - - -) and 
3(- - - - - -) at two different times; 
t = 1021 secs (Fig. 2a) and t 2620 secs 
(Fig. 2b). Note that level z = 1 
represents the surface. 

2b 

I. 

This preliminary investigation has shown how the multi-mode 
expansions can be used to study convective motions in a medium 
with depth dependent buoyancy. The model used to illustrate 
this technique is based on the Boussinesq approximation and it is 
shown that it is possible to obtain numerical results close to 
the observed characteristic of granulation and super granulation 
for values of the parameters, such as eddy conductivity, Prandtl 
number and buoyancy which lie within the range of generally 
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accepted values. 

In order to use calculations of this type as a diagnostic 
test to decide on the validity of proposed models of the solar 
convection zone it will be necessary to extend the present work 
to a full compressible model which takes into account the depth 
dependence of the various parameters. Such work is now in 
progress and it is hoped that a report on this work will be 
available in the near future. 
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GALAXY FORMATION REVISITED 

Joseph Silk 

Department of As tronomy 
University of California, Berkeley 
California 94720, U.S.A. 

The statistical properties of galaxies are used to infer the 
distribution of specific binding energy with surface density for a 
range of Hubble types. It is argued that the inferred locus 
characterizes physical conditions at the end of the dissipative 
phase of protogalactic evolution. Cosmological fluctuations in 
density provide the initial conditions at the onset of galaxy 
formation, and the critical surface density for radiative cooling to 
have occurred in protogalactic gas clouds provides a necessary lower 
bound for star formation. If gas is supported in, and eventually 
driven from, galactic potential wells by energy input from forming 
and dying stars, many of the statistical correlations found for 
galaxies can be understood, including those involving luminosity, 
effective radius, velocity dispersion or maximum rotation velocity, 
and metallicity. 

I. INTRODUCTION 

'~hile the universe is statistically homogeneous and isotropic, 
the presence of the galaxies is essential if the big bang theory, 
based on the cosmological principle, is to truly confront the real 
universe. Georges Lemaltre was very much aware of this lack in the 
theory that he and Alexander Friedmann independently discovered, and 
he developed the first inhomogeneous model of the expanding 
universe. It is therefore appropriate in this symposium to return 
to the challenge of galaxy formation, and ask how theory has fared 
in the past half-century. 

In this undertaking, I will take a narrow view of galaxy 
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formation, and consider the formation of the galaxies themselves but 
not the evolution of large-scale structure, insofar as this involves 
the clustering of pre-existing galaxies. Beautiful computer 
simulations have been made of the development of large-scale 
clustering, where only gravitational forces are relevant for 
describing the motion of discrete points that are identified wi th 
galaxies. Unfortunately, galaxy formation necessarily involves 
complex and inadequately understood physical processes involving 
hydrodynamic dissipation and star formation. It is for this reason 
that our understanding of galaxy formation is far from complete. 

My approach will be twofold. First I will describe what big 
bang cosmology predicts for the conditions at the onset of galaxy 
formation.' There are constraints, in that one does not have total 
freedom, but the available options are numerous. One would be 
hard-pressed to predict that galaxies had to form if one did not 
already observe them. This is a well-trodden path, and my review 
will be a cursory one. The reader is directed to a recent 
comprehensive review (Efstathiou and Silk 1983) for full references 
and further details. 

It is the second approach that will be emphasized here. 
Galaxies are slowly evolving systems, and one can study them as one 
would a fossil record to unveil their properties immediately after 
the epoch of formation. Cosmology provides the initial conditions, 
while observations of the galaxies around us demarcate the endpoint 
of formation. Can we infer the evolutionary pathway that links 
these two phases? That is the goal of the first section of this 
article. 

II. COSMOLOGICAL ORIGINS 

Particle physicists have hastened to plough the fertile field 
of big bang theory, as the very early universe provides a unique 
environment where particle energies attain high enough energies to 
probe schemes of grand unification. The immense extrapolation back 
in time from the earliest epoch even indirectly observable, namely 
the epoch of primordial nucleosynthesis, has seemed a glorious 
fairy tale to hard-headed astronomers, and inevitable to many 
cosmologists. Lemaltre himself devoted much effort to concocting a 
schem'e that ultimately failed to avoid the past singularity. We 
know now that the singularity was inevitable under rather general 
conditions, and this has set the scene for the extremes of energy 
that occur toward the Planck time at 10-~3 sec, when 

19 
kTN 10 GeV. 

Of prime interest for galaxy formation has been the prediction 
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of the amplitude and spectrum of density fluctuations which arise at 
the epoch of grand unification. TWo complementary schemes have 
emerged. One involves a slow roll-over at symmetry breaking from 
the false vacuum of grand unification to the true, asymmetric vacuum 
state. The slow roll-over allows a phase transition in which while 
the energy of the false vacuum dominates, the universe enters a 
de Sitter phas!. Once the transition is completed, the 
Friedmann-Lemaitre phase resumes. This novel beginning solves a 
number of puzzles in the standard big bang, possibly including that 
of the origin of fluctuations. Quantum fluctuations in the de 
Sitter phase are amplified to the same level on all scales when they 
enter the particle horizon of the Friedmann-Lemal tre universe--as 
the phase transition is completed. While a scale-invariant 
fluctuation spectrum is predicted, the amplitude is uncertain. 
Excessively large amplitudes (op/p»l) are predicted unless the 
potential that determines the .phase transition is carefully 
fine-tuned; alternatively, supersymmetry may come to rescue the 
situation. This latter approach introduces a second scale, mpl' 
into the supersymmetric gotential in addition to McUT' and predicts 
op/p - (mGUT/mpl)2 - 10- , just what is required to form large-scale 
structure. 

A second scheme invokes strings. These topological survivors 
of grand unification symmetry are expected to be generic to 
unification groups larger than SU(5), and proton decay limits have 
now effectively ruled out SU(5). Inflation would dilute the string 
density to an" uninteresting level, but if inflation did not occur, 
one would be left with a universe now containing many strings. 
Other considerations suggest that string-like effects may also 
develop much later, at kT - IGeV. Simple estimates of string 
production rates (essentially one per horizon volume) and decay 
rates (of order. 105_108 expansion time-scales due to gravitational 
radiation) enable the spectrum of baryonic density fluctuations that 
are generated by the strings to be computed. 

In either scheme, baryosynthesis follows grand unification 
symmetry breaking, and one therefore ends up with isentropic or 
adiabatic fluctuations, predicted to have a scale-invariant 
spectrum, where the density fluctuation is measured when a given 
scale first enters the particle horizon. Observational constraints 
from the large-scale isotropy of the cosmic microwave background, 
combined with the need to form galaxies, fix op/p-10-4. From the 
particle physicist's perspective, this input allows him to specify 
mGUT. Little if any further consequence occurs until the universe 
first becomes dominated by non-relativistic matter at redshift Zeq. 
The scale-invariance now breaks: unless massive neutrinos dominate 
the universe, fluctuations of scale ~cteq undergo growth within the 
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horizon, while smaller-scale fluctuations do not. Actually, the 
uninterrupted growth guarantees constant curvature. For the 
smaller-scale fluctuations, the associated curvature perturbations 
are decreased, essentially because they were radiation-dominated at 
horizon crossing, and the radiation redshifted away. The 
asymptotic limits for a scale invariant spectrum are curvature 
fluctuation 6K=constant, 6plp cc L-2 for comoving wavelength L»cteq 
and 15K cc L2, 6p/p=constant for L«cteq , provided that damping of 
baryons by radiation diffusion or of collisionless particles by 
free streaming is unimportant on small scales in affecting 6p/p. 
These latter effects simply impose a short-scale cut-off to the 
fluctuation spectrum. If massive neutrinos dominate the present 
universe and Q=l, say, the horizon scale at the relevant epoch znr 
when the neutrinos first become non-relativistic also fixes the 
maximum scale over which free streaming erases density 
fluctuations. The only surviving fluctuations have scale ~ctnr' 
and reflect the initial fluctuation spectrum, with an exponential 
cut-off on smaller scales. 

The only scale-invariant spectrum of fluctuations in accord 
with observational constraints from the galaxy distribution, galaxy 
peculiar velocities, and the microwave background isotropy is one 
with a coherence length substantially smaller than cteq • In fact, 
it must be smaller than or comparable to the galaxy clustering 
scale, -5h- l Mpc. The limiting case of a scale-invariant spectrum 
with zero initial coherence length is especially simple, and arises 
if cold collisionless particles, which decoupled non-relativisti­
cally, dominate the universe. It is also produced by very massive 
collisionless particles, such as GeV photinos, or by primordial 
black holes. Such a spectrum leads to a hierarchical model of 
galaxy formation: small scales corresponding to the Jeans mass 
after decoupling «106 Me) form first, and aggregate into larger 
and larger systems. 

On the other hand, if one drops the assumption of a 
scale-invariant spectrum, massive neutrinos satisfy most, if not 
all, constraints, and lead to a pancake theory of galaxy formation 
in which large scales (Mv~1015 Me, the horizon mass at tnr) collapse 
and fragment to form galaxies. 

We shall make use of these two alternative scenarios for the 
emerging fluctuation spectrum in a later section. No details of how 
anything resembling the observed galaxies can be directly inferred 
from these considerations. Hence in order to ascertain how the 
fluctuation spectrum, once it becomes nonlinear, transforms itself 
into galaxies, we turn now to consider the observational constraints 
on galaxy formation. 
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III. GALACTIC ORIGINS 

Three pathways to observationally constrain galaxy formation 
are possible. Direct observation of a protogalaxy would be the 
ideal probe, but this approach has hitherto been unsuccessful. 
Large-scale structure, specifically the galaxy correlation function, 
has provided useful limits, but these do little more than normalize 
the various theories of density fluctuation spectra described in the 
previous section. Some theories survive the normalization and meet 
the other large-scale constraints, while others fail, but the amount 
of freedom is depressingly large. We cannot say, for example, 
whether the first nonlinear structures are much larger or much 
smaller than a characteristic galaxy scale. Galaxies, as we now 
observe them, .evolve remarkably slowly. Their characteristic 
properties can therefore shed considerable light on the formation 
process. It is this line of reasoning that will be pursued here in 
some detail. 

The two-body relaxation time-scale in a system containing N 
stars is tR-{N/log N) crossing times, and generally far exceeds a 
Hubble time for galaxies. However, the galaxy bulge could have 
formed from amalgamations of stellar subunits· each cont~ining _106- 7 
s tars, say: the evolu tion would initially have been· sufficiently 
rapid for morphology to develop. This type of inhomogeneous 
collapse is the basis of van Albada's (1983) simulations of density 
profiles in elliptical galaxies. In the absence of dissipation, the 
final binding energy changes by at most a factor of two (if no mass 
is lost). In this case, the observed dynamical state of a galaxy 
tells us its mean state at formation. Dissipation by gas cloud 
interactions provides another way to accelerate the evolutionary 
time-scale. However, for significant evolution of the observed 
galaxy to have occurred, it must have been predominantly gaseous. 
Then, the dynamical state one now observes specifies the mean state 
of the galaxy at the end of the dissipative phase. 

For the spheroidal component of a galaxy, if an isotropic 
velocity distribution is assumed and rotation is neglected, any two 
of the following quantities, mass M, half-mass\radius R, mean 
velocity dispersion a, suffice to determine its equilibrium state. 
In· practice, it is the luminosity L and half-light radius that are 
directly measured. Adoption of a universal initial stellar mass 
function allows us to calculate the mass-to-light ratio for a system 
containing,any specified mix of populations I and II, as long as we 
are only concerned with the luminous mass of the galaxy. Since it 
is the spheroidal component that probes the formation phase, we 
define an equivalent spheroid for disk galaxies by using the maximum 
rotational velocity to infer the velocity dispersion of the 
sphe~id. The light from the old disk stars and any bulge 
contribution can then be used to specify the luminous mass initially 
in the spheroid at the formation epoch. 
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2 
From the condition of virial equilibrium a ~GM/R, we deduce 

the re la tion 

'+ 2 2 a ~ L(L/R ) (MIL) • (1) 

From this, we see that rather than use individual determinations of 
a, L or R, we can make use of the statistical correlations found 
between L and a or Land R. Adoption of a mean MIL means that these 
two correlations are equivalent: if both are available for a given 
Hubble type, one can infer the appropriate MIL value for the 
luminous component. The parameters that one chooses are velocity 
dispersion a and surface mass density E = M/R2. Plotting E against 
a then provides a way of displaying the various Hubble types, which 
have a dispersion over both parameters. The spheroid surface 
density is computed, according to (1), from the (L,a) or, 
equivalently, the (L,vmax) correlations, for ellipticals and spirals 
respectively. These relations distinguish between Hubble types, 
which correlate with vmax ' with surface brightness, and with L (at a 
given value of vmax). For ellipticals, the wide range in luminosity 
(and by inference, mass) is reflected in a possibly significant 
flattening in the (L,a) relation (L~a3 rather than ~a'+) at low 
luminosities, but first-ranked cluster ellipticals are 
indistinguishable within the considerable scatter from the typical 
elliptical. Moreover, there is no data on the '(L,a) correlation at 
L<lOl°Le. However, the (L,R) correlation spans a much wider range, 
incorporating dwarf spheroidals, and clearly reveals that at both 
extremes of luminosity, ellipticals decrease in surface brightness 
(Figure 1). Hence for the dwarf ellipticals and for the brightest 
cluster members, we have utilized the (L,R) correlation with 
equation (l) to infer the (E,a) distribution. In fact, there is no 
need, where there is adequate data on L,a, and R, to assume a mean 
MIL: it can be evaluated statistically from combining the two 
corre la tions. 

The resulting (E,a) correlations are displayed in Figure 2. 
The two-dimensional parametrization of Hubble type clearly separates 
early-type from late-type galaxies. It is especially interesting 
that the dwarf ellipticals and spheroidals continue the Hubble 
sequence to low surface density and velocity dispersion. At the 
other extreme, after early~type spirals, SO's and E's, the cD 
galaxies are found. In general, all galaxies are found to fallon a 
statistically well-defined region in the (E,a) plane. A similar 
track is also found for groups and clusters of galaxies. Again, a 
ratio of mass to light appropriate only to the luminous matter has 
been adopted. The region occupied by groups and clusters in the 
(E,a) plane lies parallel to that of the galaxies, but substantially 
displaced towards lower surface density. These tracks reflect the 
distribution of binding energy in systems of different mass, and we 
turn now to an explanation of them. 
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Consider the evolution of gas that fills the potential well of 
a collapsing protogalactic cloud. It is irrelevant for the 
following argument whether this gas is initially a coherent cloud of 
galactic mass, or consists, more plausibly, of a number of smaller 
clouds responding to the protogalactic gravitational field. 
Furthermore, we assume only that the initial gas distribution has 
mass equal to that of the old stellar population in the galaxy: it 
is of little import, for the moment, whether or not the gas itself 
is self-gravitating. Gas motions in the protogalactic potential 
well will initially be highly supersonic, until shock fronts 
develop. Under most plausible cosmological initial conditions, the 
gas is initially neutral. Now a necessary, although not sufficient, 
condition for star formation is that radiative shocks develop. The 
ensuing density increase does not guarantee gravitational 
instability of the gas: whether or not this occurs depends partly 
on the shock geometry. For example, a three-dimensional compression 
will be destabilizing, whereas a one-dimensional compression will 
not be, in general, until enough mass is swept up for the compressed 
layer to become gravitationally unstable to modes normal to 
direction of shock propagation. 

The condition for a shock to be radiative in the least 
favorable, namely plane shock, geometry can be expressed as a lower 
bound on the cloud surface density that depends only on the 
post-shock temperature. This, in turn, depends only on the specific 
binding energy a 2 of the potential well, since the relative velocity 
2 1/2 a between colliding clouds will yield a similar post-shock 
temperature to the virial temperature of gas filling the potential 
well. This minimal surface density for a planar radiative shock is 

(2) 

where the post-shock cooling time-scale 

tcool = 3/2kT (A(T)P)-l (3) 

and A(T) is the atomic cooling function (in erg cm3s-1). The 
'cooling column density Ecool is shown in Figure 2 for two cases, 
corresponding to a primordial abundance mixture of H and ten 
percent He, and to a gas of solar abundance. Heavy element cooling 
enhances the cooling rate over l05STS107K and at T(104K, 
consequently reducing Ecool • 

Comparison of Ecool with the locus of galaxies in the (E,a) 
plane reveals the striking fact that dissipation must have occurred 
during galaxy formation. For the luminous matter to have attained 
its column density in excess of Ecool' there must have been a 
preceding phase of gaseous dissipation and radiative cooling in the 
protogalactic era. While dynamical relaxation during collapse 
could also have enhanced E, there would be no reason for the 
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observed distribution of L to hug the critical surface density curve 
for there to have been substantial cooling. On the other hand, the 
surface density of luminous matter in galaxy groups and clusters is 
less than Lcool over the appropriate range in a. Evidently 
dissipation was unimportant over large scales. This distinction 
between galaxies and clusters in the dissipation diagram was first 
realized by Faber (1982) and Gunn (1982), and further extended by 
Silk (1983). 

The dissipation argument was originally applied to 
protogalaxies by Rees and Ostriker (1977) and Silk (1977), who 
inferred an upper limi t of _1012 Me to the mass of a 
self-gravitating gas cloud that is capable of undergoing radiative 
cooling. It is also apparent (Silk 1983; also Figure 4 below) that 
there is a lower bound to the mass of such a cloud amounting to 
_106 Me if there has been no heavy element enrichment. However, 
one can do far more than simply evaluate critical mass-scales, as 
will now be described. 

IV. STAR FORMATION IN PROTOGALAXIES 

We would like to understand the underlyin& correlations of 
galactic dynamical parameters responsible for the locus of galaxies 
in Figure 2, namely the (L,a) and (L,R) relations. I will argue 
here that star formation provides the key, and enables one to also 
infer the chemical evolution of galaxies. 

While we are far from a full understanding of how stars form, 
the significance of at least one aspect of star formation is being 
realized. This is that interstellar clouds do not fragment and 
form stars over a free-fall time-scale, but are relatively 
long-lived for -100 free-fall time scales. The most likely means 
of support against collapse is energy input from ongoing star 
forma Hon. Clearly, this is likely to be a stabilizing, if not a 
disruptive process, and numerous observations of outflows from 
premain sequence stars testify to the role of star formation. 

Conditions in a protogalaxy are sufficiently different that 
one should exercise caution before drawing too close an analogy 
with conventional star formation. However, the nucleosynthetic 
evidence from our halo suggests that the initial mass function of 
the first stars did not differ too drastically from the present 
one. Theoretical arguments support this inference. Moreover, 
there are important observational correlations that can most simply 
be understood if protogalaxies were predominantly gaseous. At the 
same time, dynamical relaxation elegantly explains other aspects, 
most notably the Hubble profiles of spheroids. One can most easily 
reconcile these demands with the natural assumption that, just as 
at present, stars formed from gas clouds of mass -106 Me. Such 
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masses are also more or less expected from cosmological 
considerations (Bond and Szalay 1983). With such masses, the 
overriding consideration is to avoid premature collapse and star 
formation on a cloud free-fall time which is much less than the 
dynamical time scale over which a galaxy can be built up. Energy 
input associated with ongoing star formation again provides the 
likely resolution of this problem. 

In fact, cloud collisions in a galactic potential well will be 
supersonic and cause considerable disruption. Silk and Norman 
(1982) argued that cloud collisions will be inelastic and trigger 
star formation. However, simulations of supersonic cloud collisions 
(Chieze and Lazareff 1981; Hausman 1982) suggest that only the 
overlapping portions of clouds colliding at atypically oblique 
angle can radiate bulk energy of motion and coalesce: the bulk of 
the gas is disrupted and fills the potential well of the 
protogalaxy. This effect increases the gas lifetime against 
dissipation by' up to an order of magnitude (Scalo and Pumphrey 
1982). 

It is crucial to decide whether the gas remains bound and 
provides a potential source of new clouds, or is ejected from the 
galaxy. The relevant criterion is whether or not energy input from 
forming and dying stars is sufficient to drive the gas out in a 
steady wind from the protogalactic potential well. If this occurs, 
one depletes the gas supply and rapidly cuts off star formation 
within a few crossing times. Renewed infall could then occur. 
Hence it seems logical to hypothesize that the rate of star 
formation will tend to regulate itself so as to maintain a gas 
reservoir, or at least, to deplete the gas very slowly. This 
certainly is the situation at present in spirals, when the gas 
fraction is 1-10 percent of the stellar mass. Moreover, following 
Larson (1974), the simplest way to understand why lower mass 
galaxies are systematically metal poor is to assume that the gas 
enriched by early star formation was somehow driven out before it 
could form stars. A galactic wind is one possibility, and stripping 
by interaction with other galaxies or intergalactic gas is an 
alternative possibility, although this would seem to create possible 
differences in metallicity between cluster and field galaxies that 
are not observed. 

Suppose then that stellar energy sources, which we illustrate 
with the example of supernovae, keep the primordial gas from 
prematurely collapsing. It is unlikely that a wind can be driven 
from a predominantly gaseous massive protogalaxy, because the high 
gas density will guarantee that cooling occurs. Indeed, the 
relevant criterion for a radiatively unstable wind is equivalent to 
~>~cool. Likewise, the presence of a massive halo inhibits any 
possible wind. The condition that star formation via stellar energy 
input to the gas is self-regulating is 
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(4) . 
where M* is the rate of star formation, 

~SN = (1051 erg/100yr) (1MG/yr)-l (5) 

is the specific energy input per unit star formation rate, presumed 
to be (but this is not essential) from sU'pernovae, vs - 300 kJn/s is 
the velocity below which a spherical shock wave enters the 
momentum-conserving phase and sweeps up a dense shell, and the 
free-fall time-scale 

(6) 

Numerical calculations show that Vs is insensitive to density, 3 
increasing by a factor 2 if the density increases by a factor -10 
but Vs may be expected to depend more on metallicity. 

Since M*= -Mgas , we can integrate (4) to yield 

Ii = a4 (--Ys-) exp( -1 aV s _t _), 
* 2m.:SN 2 ~SN tff 

(7) 

a/100 kJn s-l. Hence 

In our galaxy at present M*/M ~ (3M0/yr)(1011 M9 )-1 = 3 x 10-11yr-l • 
Also M10=(M/1010M9) = alOO is the approximate normalization for the 
(L,a) relation. Thus equation (8) implies that the star formation 
rate per unit mass is about 20 times larger in young gas-rich 
systems than at the current epoch. Moreover, the star formation 
rate declines exponentially over -30 a- l dynamical times. Since 

100 
M* during the protogalactic phase measures the luminosity in the old 
stars, we finally infer that 

4 
L a: a (9) 

The protogalactic star formation computed in this manner also 
yields the enrichment. If y is the yield (net heavy element 
production per unit mass of forming stars), then the fractional 
heavy element abundance 
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z yM 1M 
* y(1-exp(-1/2 ~Vs~ »). 

SN ff 

(10) 

The enriched gas must be lost before the exponential term is 
appreciable, that is to say, at t~30 tff/alDO' In this case, the 
final heavy element abundance is 

'" 0.15 Y alOO' (11) 

Some recent metallicity determinations for ellipitcals are 
plotted versus luminosity in Figure 3. If M* is linearly 
proportional to L, equation (10) predicts Z~L-1/4, a slightly 
weaker dependence than is observed. The same trend is found for 
irregular galaxies with strong emission lines, and continues 
down to Z-0.03 of the solar value (Comte and Stasinska 1983). 

Perhaps the most significant inference from Figure 2 is 
that galaxies, apart from the most luminous systems, lie along a 
locus equivalent to 

( 12) 

A simple explanation can be given for this result in terms of a 
threshold density for star formation following suggestions by 
Mathews (1972) and Tayler (1976). Consider a self-gravitating 
mixture of inert dark matter, taken to be universally present at 
the same density in all systems, and gas. In order for the gas 
to be unstable to perturbations of wave number k, 

(13) 

where P gas ' Pdark are the densities of gas and dark matter, and 
a gas ' a are the velocity dispersions of these two components. For 
a universal halo density, Pdark constant implies 

3 
M ex a • (14) 

If agas=a, the gas self-gravity dominates and allows star formation 
once P gas>P dark; more generally, we require 

(15) 
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Combining equations (9) and (14) yields 

MIL a: a- l a: L- 1/ 4 and 
1+ 

L a: R 

293 

(16) 

At fixed Pdark' one can tolerate proportionally less luminous, star 
forming gas in the weaker potential wells of the low a galaxies. 
This effect accounts for the decrease in surface brightness at low 
luminosities of Figure 1 (and for the galaxy locus in Figure 2). 
There is tentative evidence in favour of an enhanced MIL ratio in at 
leas~ one nearby dwarf spheroidal: the inferred value (M/L-30, 
L-10 De for Draco) (Aaronson 1983) is consistent with (16). This 
latter relation eVidently saturates (Pdark becoming negligible), 
and leads to MIL - constant at L > 108 De. 

v. COSMOLOGICAL CONFRONTATION 

Since the gas density must locally exceed that of the dark 
matter, or a considerable fraction of it, according to (15), this 
immediately explains how one can avoid the fractionation problem. 
That is to say, despite the fact tha.t one may have, say, a universe 
with Q=l in which the average baryonic mass fraction is only of 
order a percent, the luminous stars will necessarily contain a 
baryonic component comparable in mass to that of the dark matter in 
order for stars to have formed via gravitational instability. 

However, our explanation of relations (16) does rely on the 
assumption that Pdark has a universal value for all galaxies. 
There is one attractive cosmological scenario that leads to 
preCisely this conclusion. This is when cold collisionless relics 
dominate the mass density of the universe. In this case, 
oPdark/pdark '" constant on scales well below Meq, or the comoving 
scale Leq"'30 Mpc. Hence for both galaxies and galaxy clusters 
alike, we infer a scale invariant density at formation 
(oPdark/pdark"'l), provided that appropriate epochs of formation are 
selected. If Pgf denotes the dark matter density at galaxy 
formation, then we infer that 

(17) 

over L<Leq • The hierarchical clustering locus for cold relics is 
shown in Figure 4, with Pgf set equal to the present density. This 
is only appropriate for large-scale structure that is still in the 
linear or weakly nonlinear regime. Fitting (17) to the region 
occupied by galaxies yields an upper bound on the redshift of 
galaxy formation: Zgf<40. This is only an upper bound, because 
dissipation acts to raise the galaxy locus to higher L. For groups 
and clusters, dissipation is unimportant: the epoch of cluster 
formation is inferred to be at z-2. Since the microwave background 
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temperature ~lOO K at galaxy formation if Zgf<40, Compton cooling 
can be neglected. 

Utilization of the mean density of luminous matter to infer an 
upper bound on Z f is a well known argument. What is novel about 
the present resurt is that the binding energy distribution, or 
equivalently the approximate ~R4 locus in Figure 2 or 4 for 
luminous matter in galaxies and in clusters, can be explained in 
terms of a unique cosmological origin. 

Pancake theory does not fare so well in this regard. A 
schematic track for pancake collapse at z=3 is shown in Figure 4. 
Fragmentation leads to smaller and smaller mass scales. Evolution 
along locii of constant mass eventually reaches the regime in Figure 
4 occupied by galaxies. However, there is no compelling reason for 
6p/p, and hence Pdark' to be scale invariant, and no simple 
explanation for equation (16). 

Either pancake fragmentation or hierarchical clustering of 
cold relics ensures a prolific gas supply at the galaxy formation 
epoch. This is because galaxies form from smaller gas clouds that 
are produced at precisely the epoch of galaxy formation. Of 
course, galaxies form very recently in the pancake theory, since 
one has to wait for the large scales to go nonlinear, but this in 
itself is not necessarily a fatal objection. Dissipation on 
galactic scales is therefore a natural implication in either 
scenario. 

Whether galaxies are still substantially gaseous when clusters 
form is more problematical. This would be expected in the pancake 
model, and be likely to occur in the cold relic picture if the 
dissipational collapse of a protogalaxy is sufficiently slow. The 
various arguments of the previous section suggest that it will be: 
note that duration of collapse for 

9 
- lOT fr 10 yr 

for a typical galaxy yields a timescale comparable to the typical 
cluster crossing time. Moreover, supersonic cloud collisions 
naturally yield such a time-scale for dissipation of bulk kinetic 
energy (Scalo and Pumphrey 1982) even if energy input from forming 
or dying stars plays a lesser role than envisaged in §IV. 

If indeed gas-rich protogalaxies are present when clusters 
form, then other outstanding problems may be resolvable. Silk and 
Norman (1982) accounted for the dependence of morphological type on 
local galaxy density found by Dressler (1980) with a model involving 
protogalactic mergers, a prerequisite for which was the dominant gas 
content. Predominantly steller systems do not merge to yield 
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sufficiently deep potential wells (Ostriker 1981), as confirmed by 
Merritt (1983) in his study of cD galaxy formation. Another 
interesting effect recently addressed by Wang and Scheurle (1983) 
is that of tidal torque generation between neighboring 
protogalaxies. This can be enhanced during a prolonged gas-rich 
phase as clusters form, and may explain why spirals acquire more 
specific angular momentum than ellipticals, provided that the 
latter are stripped of gas more rapidly. 

In summary, dissipation may be the key process that enables 
one to make a connection between the density fluctuations emerging 
from the early universe and the gaLaxies around us. Many of the 
fossilized properties of galaxies arose long ago when galaxies were 
forming out of gas-rich clouds. I suspect that Lemaltre would have 
appreciated this result, for he spent many years fruitlessly trying 
to establish that cosmic rays were a relic of the big bang. One 
week before his death, he was delighted to learn about the 
discovery of the cosmic microwave background radiation, the faded 
remnant of the primordial fireball. Galaxies, stared at in awe by 
astronomers for over a century, might yet provide an equally 
impressive relic of, as well as evidence for, the big bang theory. 
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CLUSTERS AND SUPERCLUSTERS 

J.H. Oort 
Sterrewacht, Leiden, The Netherlands 

The problem of the formation of galaxies and clusters of ga­
laxies has intensely occupied Lemaitre's thoughts. It is therefore 
of interest to compare his ideas with what is at present thought 
about the birth of galaxies and about their distribution in space. 

Twenty-five years ago, on June 9, 1958, Lemaitre described 
his theory at the lIe Conseil de Physique Solvay in Brussels, 
where some 40 physicists and astronomers had gathered to discuss 
the structure and the evolution of the universe. The attendance 
included the physicists Bragg, Klein, Oppenheimer, Pauli, Perrin 
and Wheeler, while among the astronomers were Ambartsumian, Baade, 
Bondi, Gold, Heckmann, Hoyle, McCrea, Shapley, van de Hulst, Le­
doux and Schatzman. Ledoux, McCrea and myself are the only scien­
tists at the present meeting who where at that Solvay Conference. 
Lemaitre gave the opening lecture. He held the opinion that the 
"cosmological constant" played an essential role in the evolution. 
This formed an important aspect of the discussions at the meeting, 
as did also Hoyle's theory of the steady state Universe and the 
continuous creation of matter. 

The introduction of a cosmical force of repulsion proportion­
al to the radius R of the Universe led Lemaitre to consider in 
particular the phase in which the repulsive force was equal, but 
opposite in sign, to the gravitational attraction, and the Universe 
was therefore temporarily in equilibrium. The equilibrium is un­
stable and the Universe re-assumes its accelerated expansion after 
a certain time. During the equilibrium phase, which he assumed to 
have taken place when R was about 1/IOth of its present value, 
conditions would, as Dr. Peebles has discussed, have been favourable 
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for the formation of gas clouds, for their gathering into galaxies, 
and finally for the formation of galaxy clusters. Lemaitre pic­
tured the latter as a sort of waves, populated by galaxies moving 
through. In this picture the virial theorem cannot be used direct­
ly to estimate masses. 

The duration of the equilibrium phase cannot be determined 
from observations. Lemaitre estimated that it might have been of 
the same order or even longer than the Hubble time, and that there­
fore the age of the Universe might be sensibly higher than had 
been previously thought. 

During the last 25 years important developments have occurred 
in our knowledge of clusters of galaxies. These concern princi­
pally two aspects: 
(a) The structure of clusters and the motions of cluster galaxies; 

and in particular the discovery that many clusters contain a 
large mass of hot gas, of which the temperature as well as the 
distribution has been measured by X-ray observations. The new 
observations have shown rather definitely that most of the ga­
laxies we see in a cluster are essentially permanent members, 
and not just passing through. 

(b) The continually growing evidence that the clusters are part 
of much larger structures, "s'uperclusters", which may pervade 
the entire Universe as a kind of "network". 

(a) STURCTURE, DYNAMICS AND EVOLUTION OF GALAXY CLUSTERS 

Examples of the structure are shown in Figures la, b taken 
from an investigation by Geller and Beers (1982), and Figure 2 
from an article by Dressler (1980). From the former it is evident 
that several clusters have highly irregular structures. Geller and 
Beers estimate that approximately 40% of their clusters show sig­
nificant substructures, while many of the remaining clusters are 
elongated. Dressler's picture illustrates the great differences 
in central concentration which occur. 

I 

Obs'ervations with the Einstein X-ray Observatory have shown 
that the hot gas in clusters has generally a similar distribution 
as the galaxies (cL Forman & Jones 1982; Jones 1983). 

In the regular, centrally concentrated clusters the X-ray data 
permit an independent determination of the gravitational potential. 
This appears to agree approximately with that derived from the 
distribution and motions of the galaxies. Both lead to total masses 
between 10 15 and 10 16 Me for the '.ri-ch.e.r clusters, and even higher 
for the richest ones. Thes'e values are an order of magnitude higher 
than what had been expected from the mass'es of the member galaxies 
as estimated from their luminosities', and indicate the presence 
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Figure I. Contours of galaxy distribution in rich clusters 
(Geller and Beers 1982). 
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of large non-luminous masses, and unexpected large values for the 
ratio of mass to light (MIL). Not more than a small fraction of 
the "dark" mass can be provided by the intracluster gas. Most of 
it may reside in the galaxies. In fact, the rotation curves of 
spirals, as well as the velocity dispersions in giant ellipticals 
show that matter with a very high MIL ratio dominates in the outer 
regions of galaxies. The nature of this matter has been the subject 
of much discussion. Probably it is largely non-baryonic, because 
if it consisted of baryons the abundance of deuterium produced in 
the early Universe should be lower than what is observed. 

From the evident irregularities in their structures we infer 
that we live in an era where the galaxy clusters are being formed. 
This does not imply that they are very young. From the few cases 
of irregular clusters where sufficient velocity data are available 
we infer that they might well have been in existence for a major 
fraction of the Universe's age. 
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in clusters. Left: high-concentra­
low-concentration, irregular clus-

That structures exist which are much larger than the rich 
clusters has long been evident. It is shown most clearly in the 
plots made 50 years ago by Harlow Shapley and Adelaide Ames 
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Figure 3. The distribution of galaxies brighter than the 13th 
photographic magnitude. The right-hand panel shows the north 
galactic hemisphere, the left-hand the south galactic hemisphere. 
The galactic poles are at the centers, the circles are at inter­
vals of 100 latitude; 9,11 is shown at the circumference. A, Band 
C are probably Emall separate superclusters. (Adapted from 
Shapley and Ames 1932). 

(Figure 3). The picture, which I used also at the Solvay Conseil 
of 1958, illustrates all the various characteristics of the dis­
tribution of galaxies, from the smallest-scale clumpiness to 
their concentration in a large cluster, the Virgo cluster, and 
finally the very uneven distribution on a still larger scale, 
with particularly a "filamentary" structure stretching from the 
Virgo cluster through the north galactic pole in the direction of 
roughly 1400 galactic longitude and a similar extension from the 
cluster in the opposite directioh, towards 9, ~ 3100 • The cluster 
has a diameter of about 100 , or 2.5 Mpc, while the extended struc­
ture has a length of ~ 30 Mpc. This is called the Local Super­
cluster. It has been studied extensively, by de Vaucouleurs (1956, 
1978, 1983), Tully (1982) and many others. It has a complicated 
structure, part of which is concentrated towards a plane, which 
de Vaucouleurs has termed the supergalactic plane. The intricate 
structure is illustrated in Figures 4 and 5 which show the dis­
tribution projected on planes perpendicular to this equator. The 
plane in Figure 4 passes through the Virgo cluster and its ap­
peRdages, the plane in Figure 5 is perpendicular to this. The 
space co-ordinates were determined by assuming distances roughly 
proportional to the radial velocities. The Sun is at the centre, 
and is the origin of the rectangular co-ordinates. Figure 5 
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Figure 4. All 2175 galaxies in the Nearby Galaxy Catalog (Fisher 
and Tully 1981) projected onto the SGY-SGZ plane. The SGY-axis is 
directed toward supergalactic longitude 90°, supergalactic lati­
tude 0° (~II = 227°, bII = +8397), the SGZ-axis toward supergalac­
tic latitude 90° (~II = 47?4, bII = + 6?3). The radius of the outer 
boundary is 60 Mpc. The galactic zone of avoidance (b < 15°) is 
contained within the opposed wedges tilted by 6° with respect to 
the SGZ-axis. There is a zone of incompletion (8 < -45°) which is 
projected across most of the southern supergalactic hemisphere. 
Reproduced by courtesy of R.B. Tully. 

contains only the galaxies in the north galactic hemisphere. The 
concentration toward the supergalactic plane is further illustrated 
in Figure 6. This contains all galaxies brighter than MB = -19.5 
in a cylinder perpendicular to the supergalactic plane with a 
radius of about 20 Hpc around the Virgo cluster. The galaxies in 
the Virgo cluster itself have been omitted. 

If we penetrate to larger distances it becomes increasingly 
difficult to outline the superstructure, even if apprQximate dis­
tances are known from radial velocities. As an example I show two 
Figures taken from a large radial-velocity survey made at the 
Harvard Center for Astrophysics (Huchra c-/; at 1983). It extends 
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SGZ 

NORTHERN HEMISPHERE 

Figure 5. Projection on the SGZ-SGX plane for the galaxies in 
the north galactic hemisphere. 

DISTRIBUTION IN SOZ (h-1Mpc) 
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Figure 6. The distribution of Tully and Fisher's NBG galaxies in 
the surroundings of the Virgo cluster normal to the plane of the 
Local supercluster. 
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Figure 7. An equal-area plot in galactic co-ordinates of galaxies 
brighter than mB = 14.5 above b = +400 • The galactic pole is at 
the centre, the circles are at b = 300 , 500 , 700 • Right-ascensions 
and declinations are indicated by dotted curves. Galaxies whose 
absolute magnitudes are fainter than -20.0 (on the Ho = 50 dis­
tance scale) have been omitted. The various symbols denote the 
following velocity bins: x (6000-8000), 0 (8000- JO 000 km s-I). 
Reproduced by courtesy of Davis et aZ (1981) and the AstrophysioaZ 
JournaZ, except for the contours. 

to approximately twice the distance to which the Shapley-Ames 
Catalogue extended, but covers only part of the sky. Figure 7 
shows the distribution of galaxies with velocities between 6000 
and 10 000 km s-I in the north galactic hemisphere above 450 

latitude; Figure 8 shows a specimen of a plot of radial velocity 
against right-ascension for galaxies in the declination zone 
200 to 300 • I have made an attempt to outline the principal 
superstructures that can be distinguished. This evidently in­
volves considerable arbitrariness. Several may well be just chance 
configurations. The plots fail moreover to show the interconnec­
tions which probably exist. 

The superclusters indicated have major diameters ranging 
roughly from 10 to 100 Mpc. The larger ones contain one or a few 
dense clusters like, for instance, the Coma cluster and Abell 1367 
in the Coma supercluster. The structures seem to have a tendency 
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Figure 8. 
velocity 

o 

km .-1 

20<8<30 
212 GALAXIES 

Distribution of galaxies in right-ascension and 
in the declination zone 200 - 300 (cf. Figure 7). 
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for elongated sh'apes. There are indications that whenever a super­
cluster contains rich clusters these appear to be elongated in 
the direction of the supercluster branch in which they are situ­
ated; a striking example is the Coma cluster, which is strongly 
elongated in the direction of Abell 1367, the other rich cluster 
in the Coma supercluster. A similar phenomenon is observed in the 
Perseus supercluster, where the three dense clusters Abell 426, 
347 and 262 are elongated along the direction of the principal 
branch of the supercluster. That such preferential orientations 
are probably a general phenomenon has been shown in an investi­
gation by Binggeli (1982) who has indicated that cluster major 
axes in general have a tendency to point in the direction towards 
their nearest neighbour cluster. 

The difficulty of outlining large structural features in the 
distribution of galaxies can be significantly diminished by look­
ing at the distribution of clusters instead of individual galaxies. 

The two principal lists of clusters are those by Abell (1958) 
with 2712 clusters, and the Catalog of Galaxies and Clusters of 
Galaxies by Zwicky et al (1961-1968). Both were made from the 
Palomar Sky Survey plates, but they differ greatly in character: 
Abell's criteria for defining a cluster were much stricter than 
those applied by Zwicky and his co-workers whose catalogue con­
tains an order of magnitude more entries, but is less homogeneous. 
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Figure 9. Perseus supercluster. The distribution of Zwicky clus­
ters with velocities between 3500 and 6500 km s-I (a), and between 
6500 and 10 000 km s-I (b) in the south galactic hemisphere. Solid 
contours show the clusters with measured redshifts, dotted contours 
indicate those with distances estimated from magnitudes and cluster 
diameters. The numbering is from Nilson (1973). 
Abell clusters are indicated by solid circles and by their numbers 
in Abell's catalog (1958); A 426 is the Perseus cluster. 
~: ~X-ray sources), +: (radio sources). Reprinted by courtesy of 
Einasto et at (1980). 
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The Zwicky data have been used extensively by astronomers 
at the Tartu Observatory to investigate the supercluster struc­
ture of the Universe. As an example Figure 9 shows two plots for 
a region of about 900 x 600 in the south galactic hemisphere 
(Einasto et aZ 1980); the upper is for velocities between 3500 
and 6500 km s-I, the lower for those between 6500 and 10 000 km s-I. 
The Zwicky clusters are indicated by contours; the three Abell 
clusters mentioned earlier are in the upper left-hand part. The 
supercluster is defined by the slanting row of Zwicky clusters 
in the upper part of (a), an almost vertical branch extending 
from A 347 to A 194 at the bottom, and a third branch extending 
from A 194 towards lower right-ascensions. 

The distribution of individual galaxies having radial velo­
cities between 3000 and 7500 km s-I is shown for approximately 
the same region in three panels of Figure 10, due to Giovanelli 
et aZ (1983). Probably most of the galaxies plotted belong to 
the Perseus supercluster. They show much the same distribution 
as the Zwicky clusters. They indicate an interesting phenomenon, 
viz., that the earlier types appear to define the structure of 
the supercluster more sharply than the Sc, Sd and Irr typeS. This 
is confirmed in the upper left panel where E and SO systems have 
been plotted; this panel contains a number of galaxies with un­
known radial velocities. 

An extensive analysis of Zwicky clusters has likewise been 
made by the Tartu astronomers for the region surrounding the Coma 
supercluster (Tago et aZ 1983). In this article the authors ela­
borate on the interconnections between the Coma complex and other 
surrounding large agglomerations: the Local Supercluster, and the 
Abell 779 and Hercules superclusters; they conclude that the super­
clusters "merge to a single connected network". 

Structures of very large scale have been studied with the 
aid of Abell's clusters. Unfortunately radial velocities are 
presently available for only a small fraction of these clusters. 
N. Bahcall and R. Soneira (1983) have analysed correlations in a 
complete sample of 104 clusters with known velocities up to a 
distance of ~ 500 Mpc, in which they listed all agglomerations 
with a minimum space density enhancement factor of 20 (Figure II). 
They found some extremely large superclusters; the largest (No. 12 
of their catalogue) has a diameter of 360 l1pc, and contains 15 
rich Abell clusters. Whether this ia a unique case, and whether 
it represents a limiting size can only be decided when radial 
velocities of many more rich clusters will have been determined. 
There are indications that No. 12 may indeed be not far from the 
largest structures existing. 
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Figure 10. Distribution of galaxies from the catalogue by Zwicky 
et aZ (1961-68) in the region of the Perseus supercluster. 
Top left: E-SO,a for all velocities; the other panels are limited 
to galaxies with velocities between 3000 and 7500 km s-1 
(Giovanelli et aZ., in preparation). I am greatly indebted to 
the authors for putting their most recent material at my disposal 
in advance of publication. 
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Figure 11. Giant superclusters in the north galactic hemisphere 
above 300 latitude. The outermost contour is b = 300 ; the inner 
contour is the completeness limit of the sample. Small contours 
show the space density enhancement factor over the mean space 
density at the distance of the supercluster. Numbers refer to the 
authors' list of superclusters. The elongated contour number 10 
is the Coma supercluster. Reproduced by courtesy of N. Bahcall 
and R. Soneira (1983). 

We have observed that many galaxy clusters are still in the 
period of their formation. Superclusters are aZZ still in a rudi­
mentary stage of development. Except for their collapse they are 
unlikely to have changed their structure since their origin. In 
a sense they reflect the ori8inal "waves" in the Universe. 
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SPECULATIONS ON THE ORIGIN OF SUPERCLUSTERS 

What can superclusters teach us about the history of their 
formation? The problem is intimately connected with that of the 
origin of the galaxies. As is well-known two different scenarios 
have been proposed for this origin (Zeldovich et aZ 1982). The 
one, which has been first discussed by Zeldovich and the Moscow 
school, is that the density fluctuations in the Universe which 
gave rise to its structure were "adiabatic", matter and radia­
tion density fluctuating together. In this case the only fluctu­
ations which can have survived the radiation period are those 
with masses in excess of 10 14 to 1015 Me, which corresponds with 
the mass range of superclusters. After decoupling these fluctu­
ations separated out from their surroundings, and finally collap­
sed. The collapsed regions will generally be flat (Zeldovich' s 
"pancakes"), or filamentary. It is tempting to identify the 
strongly aspherical superclusters with such features. In this 
scenario galaxies would have formed as a consequence of the large­
scale collapse. Because galaxies are old (most quasars were born 
between z = 2.5 and 3.5) the collapse should have occurred not 
much later than z ~ 5, when the Universe was roughly 1 milliard 
years old if Q = I, or about 2 milliard years if Q = 0.1. 

The alternative scenario is one where there would have been 
isothermal fluctuations, presumably most numerous for small 
masses. In this scenario the first objects to condense after de­
coupling would have masses of the order of 106 Me, the Jeans 
mass at the time of decoupling. Gravitational interaction between 
these earliest condensations would lead to their agglomeration 
into larger and larger masses, finally into galaxies. Clustering 
could continue among the galaxies, and lead to the clumpy Universe 
we see around us. The hierarchical clustering process might by 
the present time even have formed the large clusters and perhaps 
superclusters. 

The fundamental, as yet unanswered, question is: Did galaxies 
form firs t and superclus ters' afterwards, or were superclus ters the 
first structures to form, and did galaxies form as a consequence 
of their collapse? 

Apart from the question of whether isothermal fluctuations 
have existed, the hierarchical clustering hypothesis is faced with 
two specific difficulties: Could it in the time evolved since the 
formation of protogalaxies have led to structures as large as the 
largest known superclusters, and, secondly, could it have formed 
the strongly flattened and filamentary shapes indicated in some 
superclusters? Dekel, West and Aarseth (1983) have shown by a 
numerical many-body simulation that the orientation of the long 
axes of clusters along supercluster chains cannot be understood 
in the purely hierarchical scenario, but requires that the clus-



CLUSTERS AND SUPERCLUSTERS 313 

ters have been formed in conjunction with these chains. But the 
evidence for this preferential orientation is not yet entirely 
compelling. Moreover, the galaxies might very well have existed 
previously, formed from isothermal fluctuations. The only require­
ment is that superimposed on the isothermal fluctuation spectrum 
there would have existed large waves leading to the formation of 
the superstructures. 

It should be stressed that even if the purely adiabatic 
scenario is adopted hierarchical clustering must have played a 
decisive role in later stages, and must be responsible for the 
smaller-scale clumpiness of the Universe and for the form of the 
covariance function as observed today. 

Some insight into whether superclusters formed in the gaseous 
phase of the Universe might ultimately be obtained from phenomena 
such as the segregation of galaxy types which was mentioned in 
connection with the Perseus supercluster. 

The extreme smoothness of the microwave background radiation, 
with an upper limit aT/T < 10-4 for fluctuations on the scale of 
superclusters and large clusters, puts interesting constraints on 
their origin. If density fluctuations corresponding to the above 
limit started to separate out at the time of decoupling they could 
not have collapsed in time for the formation of quasars and galaxies. 
Other phenomena, such as the large virial masses of clusters, the 
large rotation velocities in the outer region of spirals, the 
abundance of deuterium, have suggested that most of the mass of 
the Universe consists of invisible, non-interacting particles 
(for instance, heavy neutrinos). These same particles might also 
explain the discrepancy between the smallness of the background 
fluctuations and the epoch of supercluster formation. 

For more detailed information on superclusters, see Oort (1983). 
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COSUIC RAY SOURCES AND CONFINEMENT IN THE GALAXY 
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ABSTRACT 

Recently the Saclay-Copenhagen spectrometer on board 
the satellite HEAO 3 has provided extremely accurate data on the 
elemental composition and energy spectra of cosmic ray nuclei 
from Be to Zn in the energy range 0.7 to 25 GeV In. These data 
have been interpreted in the framework of galactic diffusion 
model, either homogeneous or with a halo. The data tend to favor 
a rather flat halo, ~ 1 kpc thick. The mean escape pathlength 
from the Galaxy is found to decrease with the magnetic rigidity 
of the particles R as R-o· 6 • The momentum spectra at the source 
for the main primary elements between C and Fe are well fitted 
by a single power law with an exponent y = -2.41 ± 0.05. 
Implications for cosmic ray sources and confinement of recent 
results on high energy cosmic nuclei, electrons and gamma rays 
are reviewed. 

INTRODUCTION 

Most of the present results in cosmic ray 
astrophysics agree with a galactic origin for cosmic rays. It is 
generally assumed that cosmic ray sources (CRS) are uniformly 
distributed in the galactic disk and that particles diffuse 
rapidly in a confinement volume with relatively slow leakage 
accross the boundary: this is the so-called leaky- box model 
(Davis, 1959; Cowsik et aI, 1967). But wether cosmic rays are 
(i) free to wander around in the Universe, (ii) confined in a 
galactic halo, in the galactic disk or (iii) compelled to stay 
close to sources, are still open questions. 
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The relevant observations are the cosmic ray 
composition and momentum distribution, the anisotropy in arrival 
directions at Earth, the gamma ray diffuse galactic emission and 
the radio synchroton diffuse galactic emission. 

COSMIC RAY COMPOSITION AND MOMENTUM SPECTRA FROH HEAO 3 

The experiment results from a collaboration initiated 
in 1968 between the Danish Space Research Institute headed by 
B.Peters and the Centre d'Etudes Nucleaires de Saclay in France. A 
detailed description of the instrument can be found in Bouffard et 
al (1982), and the main observational results in the Proceedings 
of the 17th and 18th International Cosmic Ray Conference held in 
Paris (1981) and Bangalore (1983). 

The main results are the following: 

1) Cosmic ray composition 
Very accurate measurements of the relative abundances 

of 27 elements between Be and Zn as a function of energy in the 
range 0.7 to 25 GeV/n have allowed us to study the propagation of 
cosmic rays in the framework of galactic diffusion models, either 
homogeneous or with a halo (Koch-Miramond, 1981). The mean escape 
length A of cosmic rays from the confinement volume has been 
derived from the measurement of the secondary over primary ratios 
B/c and (Sc + Ti + V + Cr)/Fe; the best fit to these data is given 
by: 

A (22 ± 2) R-0.60±0.04g/cm2 for R > 5.5 GV 
e 

A = 7.9 ± 0.7 g/cm2 for R< 5.5 GV 
e 

where R is the magnetic rigidity of the particle in GV and the 
medium traversed assumed to be pure hydrogen. Surprisingly enough 
the simple leaky-box formalism appears to fit adequately all the 
available data. In terms of diffusion models these results can be 
interpreted as implying that either the diffusion coefficient K is 
ex vRo. 6(v is the cosmic ray velocity) or that the size H of the 
confinement volume decreases with R : H ex R-O. 6(H is the height of 
the halo in one-dimens ional models; Cesarsky ,1980) • The 
radioactive cosmic ray clock 54Mn has been used to derive the size 
of the galactic halo as seen by cosmic rays in the GeV In range. 
The data tend to favour a rather flat halo ~ 1 kpc thick, Le. 
only ~ 10 times thicker than the galactic gas disk. 

The abundances of 16 elements have been derived at 
the cosmic ray source with an accuracy only limited by our 
knowledge on formation and destruction cross sections of cosmic 
ray nuclei in the interstellar medium. There are large differences 
be.tween the source composition and the local galactic and solar 
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system composition. However the overabundances in the cosmic ray 
source seem to be correlated with the first ionization potential 
of the elements (Casse and Goret, 1978). It is significant that 
the same correlation holds for the nuclei accelerated during solar 
flares (Meyer, 1981). All nuclei between C and Ni in cosmic ray 
sources and in solar energetic particles have identical 
overabundances as compared to solar system abundances, with the 
remarkable exception of C which is twice as abundant in cosmic ray 
sources. 

The data are compatible with the suggestion of an 
injection of cosmic ray particles by stellar flares in a two-stage 
acceleration process (Meyer 1983). The acceleration to high energy 
has to be prompt i.e must take place on a timescale short with 
respect to the cosmic ray mean escape time from the galaxy which 
is ~ 8 million years at 1 GeV /n (Wiedenbeck et al, 1981). The 
inferred mean density seen by cosmic rays is ~~ 0.3 cm- 3 , 
similar to the interstellar density within 1 kpc around the sun. 
The overabundance of C mentioned above may be related to the 
anomalous neon isotopic composition of cosmic rays (22Ne being 
found 3 to 4 times more abundant in cosmic ray sources) , if a 
minor component of cosmic rays is accelerated from material having 
undergone a specific nucleosynthetic process, such as quiescent 
helium burning in massive stars (Meyer 1983, Casse, 1984). 

But the main acceleration stage requires much more 
energy than can be provided by the flaring of ordinary stars. 
Since supernova explosions provide most of the energy into the 
interstellar medium, the resulting shock fronts have recently been 
suggested to be the sites of acceleration of supra thermal stellar 
flare particles (Axford et al 1977, Krimsky 1977, Ellison and 
Eichler 1984). 

2. Energy spectra 

The distribution in energy of He nuclei appears to 
follow the same power law from 20 to lOb GeV/n. The spectral index 
is Y'''-2.83±O.20 between 5.10 3 and 5.10 5 GeV/n (Burnett et al, 
1983) and y"'-2.77±0.05 between 15 and 500 GeV/n (Ryan et al, 
1972). The H differential spectrum exhibits no drastic change of 
slope from 50 to 10bGeV: y"'-2.7±0.2 over the whole range. 

The HEAO 3 data have been used to deduce the source 
spectra of C,N,O,Ne,Mg,Si,Ca and Fe at source after appropriate 
corrections for solar modulation, energy losses and nuclear 
interactions in the interstellar medium, and escape from the 
confinement region. The observed spectra of B,O,Si and Fe are 
shown in figure 1. Figure 2, shows the observed spectrum of 0 
between 0.5 and 300 GeV/n using all the available data. The curve 
is the propagated source spectrum dJ/dE a y p-2 • 4 (P = momentum of 
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Figure 1.: Examples of energy spectra observed at Earth by the 
Saclay-Copenhagen experiment on-board HEAO 3 for mostly primary 
(Iron, Silicon and Oxygen) and for secondary _ (Boron) nuclei. 
Differential spectra have been multiplied by E2 5. The curves are 
drawn only to guide the eye. 
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the particle), using a deceleration parameter in the solar cavity 
~ = 600 MV. The energy spectra at the source for the main primary 
elements from 0 to Fe are well fitted between 1 and 25 GeV/n by a 
single power law in momentum with an exponent y =-2.41 ± 0.05 
(Engelmann et al,1984). At higher energies the spread in 
experimental data for Z > 2 particles is too large to draw any 
conclusion about the behaviour of their spectral shape. Only the 
He and H spectra are sufficiently well known between 50 and 5 10 5 
GeV/n. They show a constant slope within the experimental errors. 
In the leaky-box model, the mean confinement time of particles 
~ is proportional to the mean escape length A. 
A~suming that the confinement time of all nuclear species is tlie 
same, ~ (R) must be a single power law at least up to ~ 10° 
GV (whiclI seems likely considering the constancy of the slope of 
the observed spectra in the energy region where the escape losses 
are dominating). It follows that the He spectrum at the source has 
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Figure 2: Comparison of the Oxygen intensities versus energy 
measured by different experimenters. The varius data sets have 
been normalized at 10 GeV/n. The differential spectra are 
multiplied by E2• 5. Continuous curves are propagated spectra for 
source dJ/dE a p-2.4 and a solar modulation parameter ~=600 MV. 

an index y ~ -2.45±0.1 between 10 and 30 GeV/n and y ~ - 2.25 ± 
0.1 between 50 and 5.10 5 GeV/n. Hence the He source spectrum 
seems to become flatter when the energy increases. This is 
probably true also for the heavier nuclei since, as shown by 
extensive air shower measurements the average primary mass of 
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cosmic rays does not vary appreciably up to 105 GeV (Lindsley, 
1983). 

This variation of the shape of the distribution of 
cosmic rays with energy could be explained in the framework of the 
acceleration by shock fronts if the Mach numbers are larger than 
3.5 (Ellison and Eichler,1984), but this solution is not unique. 

COSMIC RAY ELECTRON SPECTRA AND GALACTIC RADIO SYNCHROTON DIFFUSE 
EMISSION 

1. Electron Spectra 

The best recent results on the intensity of cosmic ray 
electrons versus energy (see Webber, 1982 for a review) show that 
the slope of the electron spectrum at earth is ~ - 3.0 at 10 GeV 
and becomes steeper ~ - 3.3, at higher energies. Below 10 GeV the 
solar modulation effects obscure the true spectrum. It can be 
estimated from the galactic radio emission which is mainly due to 
the synchroton losses of a few hundred MeV electrons moving in the 
galactic magnetic fields. Thus a measurement of the spectrum and 
spatial distribution of this radio emission provides a direct 
measure of the electron spectral shape in interstellar space. 

r being the exponent of the electron spectrum power 
law, the radio spectrum spectral index a =!t'z. (r+l). The radio 
spectrum from our galaxy is well known from 1 MHz to ~ 10000 MHz 
corresponding to electron energies of ~ 150 MeV to ~ 15 GeV. At 
100 MHz, corresponding to electron energy of 1.5 GeV, one has a=-
0.62 ± 0.04 giving r = - 2.2 ± 0.1 for the electron spectrum. To 
deduce the electron spectrum at source i.e after acceleration it 
is necessary to correct for all the losses. Since synchroton 
losses dominate at E ) 30 GeV, from the exponent of the electron 
spectrum observed at high energy, r ~ -3.3, one deduces the 
exponent at source r ~ -2.3. It is quite similar to the exponent 
of the nuclear component of cosmic rays at source. But many 
problems remain in the interpretation of radio continuum data and 
in the evaluation of energy losses. 

2) Electron Distribution in the Galaxy 

In our Galaxy, the synchroton radio emission is partially 
co'rrelated with spiral arms. It gives us some ,indications on the 
distribution of cosmic ray electrons in the galactic plane, but 
their interpretation is heavily hindered by our lack of knowledge 
of the magnetic field distribution. Although difficult to 
ascertain the presence of a radio halo in our Galaxy is suggested 
by the data and would imply that the half-thickness of the 
el~ctron distribution perpendicular to the disk is ~ 1 kpc. In the 
disk itself both radio continuum and gamma-ray diffuse emission 
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maps (Fichtel et al,1978) suggest a moderate intensity contrast (~ 
a factor of 2) between the spiral arms and the interarm regions. 

COSMIC RAY NUCLEI AND ELECTRON GRADIENTS AND GAMMA RAY DIFFUSE 
EMISSION 

Detailed observations of the galactic gamma radiation 
have now been obtained by instruments on board of two satellites, 
SAS 2 and COS B, in the energy ranges 35 to 100 MeV and 50 to 5000 
MeV respectively, (Fichtel et aI, 1978, Mayer-Hasselwander et aI, 
1982). Two main processes contribute to the diffuse galactic 
gamma ray emission in this energy range: i) the decay of neutral 
pions generated by collisions of nuclear cosmic rays of energy 
greater than ~ 700 MeV with interstellar medium particles, mainly 
atomic and molecular hydrogen, ii) bremsstralhung emission which 
involves electrons of energy comparable to that of the gamma 
rays. 

Lebrun et al (1983) have shown that the gamma ray 
emission at E> 300 MeV follows the interstellar matter density as 
given by the Berkeley 21 cm line HI survey (Heiles and Habing, 
1974) and the CO line survey (Dame and Thaddeus, 1983) , CO being 
the tracer of H2 Gamma rays at E > 300 MeV originate mainly 
from cosmic ray proton interaction and can be explained if 
uniformly distributed cosmic ray proton interact with the 
inters tellar gas. No cosmic ray proton gradient (wi thin a factor 
2) was found within the disk from the galactic center to 20 kpc 
from the center, in the anti-center direction (Bloemen et al 
1984). 

From the gamma ray emissivity at E < 100 MeV (an 
energy range where gamma rays originate mainly from electron 
bremstralhung), the same authors found that the relativistic 
electron density in the disk falls rapidly for galactocentric 
distances greater than 10 kpc (the solar distance), being ~ 0 at 
18 kpc. Hence a strong cosmic ray electron gradient seems present 
outside the solar circle within the galactic equatorial plane. 
Significant variations in the intensity of cosmic ray electrons 
over the galaxy are also found with the SAS 2 data by Issa et aI, 
1980: a fall of at galactocentric distances greater than 10 kpc 
and a reduction by at least an order of magnitude, compared with 
the local intensity, for galactocentric distances smaller than 2 
kpc. 

ANISOTROPIES AT HIGH ENERGY AND CONFINEMENT 

The COS B result argue in favor of a very big halo of cosmic ray 
protons of a few GeV in our galaxy. Is it still true at very high 
energy ? The recent results from anisotropy measurements have been 
put together by Hillas in Figure 3 and show very small 
anisotropies ~ 0.2% up to E ~ 106 GeV. This result gives 
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confidence in the diffusion models used to interpret the 
observations. At higher energy a significant anisotropy appears, 
increasing as EO• 5 at least to ~ 1010 GeV. In the range 2.10 8 -
1010 GeV there is an intensity gradient in galactic latitude 
(Astley et al, 1981; Efimov et al, 1983), amounting to 0.2% per 
degree of latitude at 4 109 GV and corresponding to a deficit of 
flux from the north. The origin of the knee in the anisotropy and 
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Figure 3: According to Hillas (1984) the observed values 
(corrected for solar motion below 1015 eV) of the amplitude A of 
the first Fourier component (24 hour sidereal period) of the 
cosmic ray intensity variation as the sky passes overhead (the 
simplest measure of anisotropy) versus energy. The inverse of A, 
as a measure of the mean residence time of cosmic rays in the 
confinement volume, is compared with variation in differential 
flux J(E) versus energy. As pointed out by HUlas the continuus 
curve E2 • 47 • J(E), which is in good agreement with the observed 
points, might suggest a single power law source spectrum E· 2 • 47 

extending to 1019 eVe 
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differential flux vs energy around a few 106 GeV is unclear. Is it 
due to a leackage from the galaxy becoming more rapid for the more 
energetic particles or to a specific physical process arising in 
the sources (e.g. photonuclear reactions as particles from a 
pulsar escape through the radiation field of a very young 
supernova, Hillas,1983) ? As shown by Berezinsky and Mikhailov 
(1983), the amplitude of the anisotropy is in reasonable agreement 
with cosmic rays originating in the galaxy up to 1010 GeV if one 
assumes a small component of the galactic magnetic field normal to 
the disk, even without requiring very much of a halo. 

CONCLUSIONS 
1) Cosmic ray nuclei abundances and momentum spectra for 30 
species in the range 0.7 to 25 GeV/n can be consistently 
interpreted in the framework of the simplest homogeneous diffusion 
model in the Galaxy with escape mean free path A. 0: R- O• t>1:0.1 
for 5.5 < R ( 50 GV and A. constant below; and sources 
uniformly distributed in the galacfic disk. 

2) Identical source momentum spectra are found for all (Z > 2) 
primary nuclei, the spectral index at source being -2.41 ± 0.05 
from 1 to 25 GeV/n.In this energy range, the spectral index 
obtained for He is in good agreement with that of heavier nuclei 
if the same escaEe law is assumed. This escape law holds probably 
at least till 10 GeV/n; hence spectrum at source should have the 
same exponent, -2.2 ± 0.1, for all nuclei at energy greater than ~ 
300 GeV /n (including H at energy greater than 50 GeV) .Thus the 
source spectrum might become flatter when the energy increases. 

3) This variation in spectral index at source versus energy could 
be explained in the framework of shock acceleration, with the 
efficiency of acceleration increasing with energy for strong shock 
fronts. 

4) The cosmic ray electron spectrum at source appears similar 
(exponent -2.3 at 30 GeV) but the difficult evaluation of losses 
in the interstellar medium weakens this conclusion. 

5) Gamma ray astronomy results from COSB tend to argue for a very 
big halo of relativistic cosmic ray protons in our galaxy with no 
apparent cosmic ray gradient from the galactic center to 20 kpc 
away. In contrast a very sharp relativistic electron gradient is 
seen outside the solar circle. 

A galactic origin for cosmic rays even at the highest 
energies is favored by the present data although the smoothness 
of the energy spectrum from 107 to near 1010 GeV presents a great 
challenge to physicists working on cosmic accelerators. Hence the 
question "where do cosmic ray originate"? is still open to a 
lively debate. 
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Finally I would like to point out that our cosmic ray instrument 
on board the NASA Observatory HEA03 was heavily relying-in order 
to derive the isotopic composition of cosmic rays from flux 
measurements-on the pioneering work done in the early 1930's by 
Georges Lemaltre on the interaction of cosmic rays with the 
geomagnetic field (Lemaitre and Vallarta, 1936). 
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Explosions of quasars and young galaxies are 
believed to proceed at large redshifts - an assumption 
which is examined in the present work. When occured 
these explosions should create blast waves which are 
propagated in the metagalactic medium. The shock wa­
ves formed can produce, during radiative cooling 
stages, dense cold spherical shells around the epi­
centres of explosions. But even before that, at the 
stage of adiabatic expansion , each spherical shock 
wave front if it lies on the line of sight with a 
more distant quasar , can imprint into the quasar 
spectrum a specific absorption "doublet" with a di­
stance petween the components (in the rest frame) (} "o~ 3 1. The components of each doublet have a small 
but the same equivalent width Wo-6 0.3 1 , the ratio 
Wo /t.Ao weakly depending on Wo. We demonstrate here that 
such doublets of L~ lines are really present among 
the 'Ly~fore.t· in the absorption spectra of distant 
( z- 2-3 ) quasars which are now commonly believed 
to be of mostly intervening (and not intrinsic) origin. 

Further accumulation of data on absorption dou­
blets , which can serve as direct indicators of meta­
galactio shock waves , may provide valuable informa­
tion about physical conditions in the intergalactic 
gas at large redshifts. 

A full account of this work is published in 
Astrophys. Space Sci. 2l,19 (1983). 
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ALGEBRAIC PROGRAMMING IN GENERAL RELATIVITY AND COSMOLOGY. 

ABSTRACT. 

* Y. De Rop, A. Moussiaux, P. Tombal, A. Ronveaux 

Departement de Physique 
Facultes Universitaires N.D. de la Paix 
61, rue de Bruxelles, 5000 NAMUR - Belgium. 

J. Demaret, J.L. Hanquin* 

Institut d'Astrophysique 
Universite de Liege 
4200 COINTE-OUGREE, Liege - Belgium. 

* Boursier IRSIA. 

Some algebraic programs,. developed recently in the frame­
work of a collaboration between two teams of physicists from 
Liege and Namur, are briefly described. 

They deal with topics in general relativity and cosmology 
such as : the field equations for Bianchi cosmological models, 
the general relativistic Hamiltonian formalism and its application 
to some vacuum inhomogeneous space-times and the search for me­
trics of stationary axisymmetric space-times. 

These programs are written in the algebraic languages 
REDUCE 2 and 3 as well as in LISP (in the framework of the gene­
ral program SHEEP developed in Stockholm and London). 

INTRODUCTION. 

The recent development of algebraic programming methods on 
computer has made possible the direct calculation of the explicit 
form of many analytic expressions and equations which are syste-
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matically present in miscellaneous topics of mathematical phy­
sics. 

A collaboration between two teams of physicists, one from 
the "Departement de Physique" of Namur, the second, from the 
"Institut d'Astrophysique" of Liege, is recently born; its aim 
is, on the one hand, to apply some existing algebraic programs 
to theoretical problems in general relativity, group theory and 
gauge theories and, on the other hand, to develop with the help 
of available algebraic languages (REDUCE 2 and 3 [ 1] , LISP, 
SHEEP [2] and, coming soon, MACSYMA) new original programs in 
mathematical physics. 

More particularly, in the fields of general relativity and 
cosmology, we have recently implemented in Namur and Liege, the 
program SHEEP (written in LISP and developed in Stockholm and 
London), which constitutes an indispensable tool for the relati­
vist. 

We describe here briefly some programs recently developed 
in the framework of this collaboration : they deal with the field 
equations for Bianchi cosmological models, the Hamiltonian for­
malism in general relativity and its application to some vacuum 
inhomogeneous space-times and with stationary axisymmetric me­
trics. 

Some other applications, in the field of general relativity, 
are also in progress and, especially, the extension of the Hamil­
tonian program to non-vacuum space-times (perfect fluids, electro­
magnetic and Yang-Mills fields). 

BIANCHI MODELS. 

Investigations of these spatially homogeneous cosmological 
models by computer were systematically done by one of us and 
published in a book [3] • Let us summarize briefly the standard 
approach [4]. 

The Bianchi-type metrics are written in a synchronous re­
ference frame in the following way 

(a.,S = 1,2,3) (1) 

The physical hypothesis of space homogeneity leads to the Killing 
equations, expressing the vanishing of the Lie derivative of the 
spatial part of the metric, with respect to the generators of 
the corresponding isometry group : 

(2) 
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The Killing vectors, solutions of the Killing equations, define 
the vector fields 
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X a 
a 

f,;aa 
ax 

(a 1,2,3) (3) 

with commutation relations written as 

(4) 

The systematical search for isometry groups is done by investi­
gation of all real three dimensional Lie algebras which generate 
the nine Bianchi types. Using these symmetries, the metric for 
each model is written : 

Z 
a 

ea dxa , where the invariant basis vectors, a 
a a 

e --
a axa 

are defined by [~,Za] = O. 

(5) 

For each of the nine Bianchi models, the structure constants 
of the corresponding algebra are introduced in the computer (in 
REDUCE). The next choice refers to the diagonal Or non-diagonal 
character of the Yab's. 

The program gives directly the form of the Ricci tensor in 
terms of the Yab's and their two first time derivatives: 

R S 
a 

S •.. 
R (y .. , Ykl , Y ) a 1J mn 

(6) 

For instance, for Bianchi IX model (homogeneity group = SO(3)), 
the input of a diagonal Y (t) in Misner's parametrization [5] 
(n,S+, functions of t) : aa 

- 2n 2 [S + + I3S ] -
Yll = e e 

- 2n 2 [S + - I3S ] -
Y22 e e (7) 

- 2n - 4 S+ 
Y33 = e e 

gives for the non zero mixed components of the Ricci tensor 
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R2 
2 

R3 
3 

'2 '2 '2 
3(- 2 6_ - 2 13+ - n + n) 

1 
-"2 e 

2n + 1 2n + 4 13+ - 413 13_ 
+"2 e 

2n - 213 13_ - 2 13+ 1 2n - 8 13+ 
- e +"2 e 

~ _ 3 ~2 
.. 

- 313 13 n + 3 13+ +1313 - 13+ + n - -

1 2n + 413+ + 413 13 - 2n + 413+ - 413 13 -
+"2 e e 

2 

:m + 213 13_ - 213+ 1 2n - 8 13+ 
- e +-2 e 

' '2 1 
2n + 4 13+ + 413 13 

- 6 13+ n - 3 n + 2 13 + n +"2 e + 

2n + 4 13+ 1 
2n + 413+ - 413 13 - 2n - 813+ 

- e + "2 e - e 

The field equations in a vacuum or non-vacuum case can 
therefore easily be constructed, 

(8) 

-

The 200 pages Moussiaux's tables [3] give the Ricci tensors 
in almost all situations : a fully non-diagonal Y b matrix for 
some Bianchi models and a non-diagonal Y b matrixa with at 
least one off-diagonal element for all a Bianchi models, 

The extension of this problem to spatially homothetic me­
trics [6] is also investigated and is in progress. 

HAMILTONIAN FORMALISM, 

The Hamiltonian formulation of general relativity initiated 
by Dirac [7] and Arnowitt, Deser and Misner (ADM) [8] appears as 
the privileged tool for the study of the dynamics of relativistic 
space-times of cosmological and astrophysical interest, 

Hamiltonian cosmology, i,e. the study of cosmological models 
(essentially, spatially homogeneous and isotropic Friedman-
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Lemaitre-Robertson-Walker models and spatially homogeneous but 
anisotropic Bianchi and Kantowski-Sachs models) by this method, 
has attracted considerable interest in the last years ([ 4] ,[ 9]). 

The Hamiltonian formalism, beyond its intrinsic interest 
in classical cosmology, constitutes also the first step of the 
important method of canonical quantization of classical space­
times and, especially, cosmological models (quantum cosmology 
[ 9 ], [10] ) • 

Progress in the study of the Hamiltonian formulation and 
canonical quantization of more complex space-times as, for ex­
ample, inhomogeneous cosmological models or axisymmetric space­
times, requires one to have at his disposal the expressions of 
the super-Hamiltonian and supermomenta constraints as well as of 
Hamilton's canonical equations in terms of the canonical variables. 

The super-Hamiltonian, X, and the super-momenta, xi, 
characeristic of the Hamiltonian formulation of vacuum space­
times, are expressed as fl,lnctionsof the canonical variables, 
g .. (i,j, = 1,2,3) and TI1 J (the momenta canonically conjugate tJ 
tfiJ g .. 's, cfr. [8] and [II] , Chapter 21), as follows: 

1J 

X=- ;g {R + -I [.!. (TIh 2 _ TIij TI .. ]) (9-a) g 2 1 1J 

xi - 2TIij I j (9-b) 

g and R are respectively the determinant and the scalar curva­
ture of the spatial metric tensor and the vertical stroke in 
(9-b) denotes covariant derivation with respect to the spatial 
metric. The constraint equations : X = 0 are equivalent to the 
Goo and Goi vacuum field equations. The canonical equations, 
equivalent to the remaining vacuum field equations are given by 

-1/2 I fL 
(lO-a) g .. 2Ng [ TI .. "2 gij (TI Q) ] + N.I. + N·I· 1J 1J 1 J J 1 

and 

. ij N 1/2 (Rij _ .!.gijR) I N -1/2 ij 
[TI k!L ~(TI~) 2 ] TI - g +"2 g g TIkfL-

2 

2N -1/2 [ im j I ij( fL)] 1/2(Nlij ijnlm - g 'If TI --TI TI +g -g 1< I 
m 2 fL m 

( ij m) Ni mj Nj mi 
+ TI N 1m - ImTI - ImTI (lO-b) 
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The dot denotes the time derivative and the components of the 
reciprocal spatial metric tensor, gij, are given by : 

(11) 

Nand Ni are, respectively, the lapse and shift functions given 
by 

(4)goi(N)2 , N. = (4)g . 
1 01 

where the indes "0" corresponds to the time variable and the 
superscript (4) denotes space-time quantities. 

(12-a) 

(12-b) 

We have developed a series of subroutines written in the 
algebraic languages REDUCE 2 and SHEEP, described respectively 
in [12] and [13] , which allow one to obtain the explicit form 
of the constraints (9-a,b) and of the canonical equations (10-a, 
b), in a spatial Cartan basis (independent of time), character­
ized by its structure coefficients, or in a natural basis. 

These programs use as input the components of the basis 
one-forms in a natural basis as well as the components of the 
metric tensor in the corresponding Cartan basis and automatically 
yield the complete set of constraint and canonical equations. 

The REDUCE 2 program has been applied to Bianchi models as 
well as to a series of cosmological and non-cosmological inhomo­
geneous space-times. The results are described in detail in [12] 
we give here, as an example, the results obtained for one model, 
the Kompaneets cylindrically symmetric model [14] , for which the 
metric tensor in a natural basis is non-diagonal and is given by 

e 
2 (y-1jJ) o 

g .. 
1J 

o e 

o 

21jJ 

o 

we 21jJ 

2 21jJ 2 -21jJ w e + a. e 

where the canonical variables 1jJ, y, wand a. are functions of 

(13) 

xl = rand t. The canonically conjugate momenta, n1J, automatical­
ly calculated by the program are given by : 
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1 -2 (y-ljJ) 
. -zrrye 

o o 

o 
-2ljJ W TI 4,1. 1 -2'" WTIa 2,1. 
~2 {TIljJ+TIY+ __ a e 'f' +aTI - 2W7T} -{ e 'f' - --e 'f'} 

a a W 2 a 

o 1 2'" WTIN 2'" {e- 'f'TI - _u. e 'f'} 
2" W a 

where TIljJ' TIy ' TIw and TIa are the momenta canonically conjugated 
to ljJ, y, wand a, respectively.. (14) 

The super-Hamiltonian and supermomenta have the following 
form 

(15) 

where the prime denotes the derivative with respect to r. Final­
ly, the canonical equations are given by : 

ljJ-y 
N1ljJ' 1jJ = _e __ N7T + 

4a ljJ 

y eljJ y 
N1y' - -- N7T + 

2 a 

. -y-31jJ N1w' W ae N7T + 
W 

ljJ-y 
N1a' a = - _e_-N7T + 

2 Y 

e-y+ljJ 
{N [ 8a21jJII 7T1jJ = ---za 

1 
+ N TI' 

1jJ 

+ N1' 

1 2 2 - - 7T 1 + 8N'a ljJ'} 4 1jJ 



336 Y. DE ROP ET AL. 

-y+1jJ 
[4c/1jJ,2 - 41jJ 2 -41jJ 2 2 

"IT = _e __ {N 4a1jJ'a' + e w' - a"IT "IT + e a "IT y 2a a y w 

1 2 ] - 4N'aa' } + Nl "IT' 1 ' +-"IT + N "IT 
4 1jJ y y 

51jJ-y 
"lTw ~ {N[aw" + 5a1jJ'w' -ay'w' - a'w'] + N'aw'} 

all ' 
+ N"IT' + N "IT 

W W 

-y+1jJ 
[ -Si1jJ,2 + 4a21jJ'y' + 41jJ ,2 -41jJ 2 2 1 2 

"IT = _e __ {N e w e a "IT + "4 "lT1jJ a 2a2 w 

- 41jJ"a2]+ 2 2 2 
Nl "IT' 1 ' N' [4a y' - Sa 1jJ' ] - 4N"a } + + N "IT (16) a a 

The other inhomogeneous space-times to which this program 
has been applied include some inhomogeneous generalizations of 
Bianchi and Kantowski-Sachs models, plane-symmetric and Gowdy T3 
universes, spherically symmetric and axisymmetric space-times 
and, more recently, spatially homothetic space-times, Gowdy SI 9 
S2 and S3 cosmological models [15] and generalized Einstein-Rosen 
metrics [ 16] . 

The first examples treated with the SHEEP program show that 
this program is of the order of three times more rapid than the 
original REDUCE program. 

The original program dealt only with the gravitational (or 
"vacuum") part of the Hamiltonian formalism. Recent work to ex­
tend it to space-times with perfect fluids [17] as well as 
electromagnetic and Yang-Mills fields as sources· of the gravi­
tational field, is in progress. 

The possibility of providing the theoretical tools essen­
tial to the study of the dynamics and of the canonical quantiza­
tion of space-times as complex as the axisymmetrical cases, 
clearly demonstrates the interest of the algebraic programming 
in the Hamiltonian formalism. 

STATIONARY AXISYMMETRIC METRICS AND ERNST'S EQUATION. 

Algebraic programming is particularly useful to construct 
axisymmetric metrics, solutions of Einstein's field equations. 
It is well known, since Ernst [ IS] that the search for solutions 
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of the vacuum field equations for stationary axisymmetric space­
times reduces to the resolution of one scalar (non linear) com­
plex equation and that knowing any solution of this equation, 
all independent gij'S (three) can then be obtained by algebraic 
manipulation or by integration only. 

Let us describe the mathematical recipe in a few steps. 
The stationary axisymmetrical metric is written in the Weyl form 

(17) 

where f, Y and ware functions of p and z (the usual cylindrical 
coordinates) only. 

The Ernst (complex) equation is the following 

(r;r;* - 1) t-r; = 2 r;* vr; • vr; (18) 

where t-r; and vr; are respectively the cylindrical Laplacian and 
gradient of the complex solutions r;(p,z). (r;* is the complex 
conjugate of r;). Now the function f(p,z) is simply given by : 

f (19) 

and the functions y(p,z) and w(p,z) are given by a path integral 
from the two integrable systems 

ay p { ar; ar;* _ ~ ar;* } a-p (r;r;* 1) 2 ap ap az a z 

(20) 

ay * 2 P Re(ar; ~) 
3Z ( r;r;* 1) 2 ap a z 

aw 2 p * 1/ ~ a-p= 
(r;r;* 1) 2 

rm (r; + 
az 

(21 ) 

aw 2 p 
rm (r;* + 1) 2 ar; 

3z (r; r;* 1) 2 ap 
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The path integration for these two functions is usually 
performed in prolate coordinates, x and y, related to p and z by : 

p (22) 

z = k x Y (k positive constant) 

From any solution ~(x,y) of the transformed Ernst equation, 
the right-hand sides of the f-equation (19) and of the y- and 
w-systems ( [20] and [21] ) are known; the algebraic program 
wirtten in REDUCE 3 [19] gives the f-solution and the y- and 
w-integrals (from the point xo,Yo to the point x,y by integration 
with respect to x first, followed then by a y-integration). 

Let us illustrate this by two simple examples : 

I. The following elementary function ~ = px - iqy (p and q are 
real constants) is injected in the Ernst operator by a sub­
routine TESKS which gives : 

2( 3 2 ,2, 3 
xp + xpq - xp + 1yp q + 1yq iyq) = 0 

Now a factorization procedure called VTESKS gives 

2(px + iqy) (p2 + q2 - 1) = 0 

(23) 

(24) 

h d" (1 2)1/2, T e con 1t1on p = - q 1S 
and w-integrals and the computer 
responding solutions, leading to 

then introduced in the y­
gives automatically the cor­
the Kerr metric [20] • 

2, The same procedure is used for a more sophisticated metric 
(Tomimatsu-Sato type [21 ] ) : 

~(x,y) 
p2(x4 _ 1) _ 2 ipqxy(x2 _ y2) _ q2(1 _ y4) 

2px(x2 - 1) - 2 iqy (1 _ y2) 
(25) 

VTESKS factorizes now in a non-trivial way the resulting Ernst 
operator, generating again the condition p2 + q2 = 1, and the 
complete metric is then reconstructed by more complicated in­
tegrations, 
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FINITE EUCLIDEAN AND NON-EUCLIDEAN GEOMETRY WITH APPLICATIONS 
TO THE FINITE PENDULUM AND THE POLYGONAL HARMONIC MOTION. 
A FIRST STEP TO FINITE COSMOLOGY. 

ABSTRACT 

Rene De Vogelaere 

Department of Mathematics 
Univer~ity of California, Berkeley 

Because the Universe is both finite and atomic it is desir­
able to have a geometry which satisfies most of the properties of 
Euclidean or non-Euclidean geometry for which the number of points 
on each line is finite. This paper presents essential features 
of such geometries. The beginning of finite mechanics is pres~nt 
through the application to .the finite circular pendulum and to 
the harmonic polygonal motion, for which time is also discrete. 

O. INTRODUCTION 

This international symposium is to honor the 50th anniversary 
of the major contribution of Monseigneur Georges Lemaitre, the 
theory of the expanding universe. As a former student, I would 
like to present a summary of research carried on during these last 
three years which might very well lead to contributions in cosmol­
ogy many years from now and is in the spirit of Lemaitre's 
teachings at Louvain. 

For many years, I found it puzzling that to study a Universe 
which is both finite and atomic, we use a model which is both 
infinite and continuous. The reason goes back 2500 years ago. 
Before that, the Pythagorian school, using results they had 
obtained, as well as former results of the Babylonians (e.g. the 
tablet Plimpton 322 (1», were convinced that integers (through 
their ratio) were sufficient to describe all points in geometry. 
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The scandal of the discovery of irrationals that x 2 = 2y2 
has no integer solutions, was immediately and irrevocably applied 
to geometry with the consequences of forcing the discovery of 
irrational points and real points and imposing the Euclidean line 
to be continuous. At no time before the 19th century was it 
realized that the application of this algebraic result to Euclidean 
geometry implied the assumption that a circle had points in common 
with every line through its center. If this had been realized by 
the Pythagorean school, a finite Euclidean geometry might have 
developed parallel to the infinite case. Instead, results, which 
form steps along the way, have been discovered independently. 

I will mention a few: modular arithmetic (Aryabatha (2», 
the existence of primitive roots (Gauss (3», Galois fields, 
finite projective geometry (Veblen (4», p-adic fields (Hensel 
(5», finite elliptic functions (Tate (6». 

The results I will describe, were first conjectured using 
the computer and later proven in the framework of finite projective 
geometry using tools from number theory and algebra. They concern 
finite Euclidean geometry, finite trigonometry, finite non-Euclid­
ean geometry, finite elliptic functions with application to the 
pendulum, in which "time" is also discretized, and the finite 
harmonic polygonal motion which presents some analogy with the 
motion on an ellipse under central force. 

1. FINITE PROJECTIVE GEOMETRY 

It is well known that to any power of a prime, pk, corresponds 
a finite proj ective geometry. I will exclude p = 2 to avoid 
complete quadrangles with collinear diagonal points. 

The axioms for these geometries will now be given, for k = 1 
in the 2-dimensiona1 case, both in synthetic form and in algebraic 
form. The relation between these two forms can be found in 
Dembowski (7). 

1.0 Axioms (Synthetic Form) 

Given the primaries, points, lines and incidence, and the 
prime p, p different from 2, 

1) Two points are incident to one and only one line. 
2) Two lines are incident to one and only one point. 
3) (Pappus) Given two distinct lines a and b, three 

distinct points AO,A1,A2 on a, three distinct points 
on BO,B1,B2 on b, C2 the point incident to the line cOl 
which is incident to AO and B1 and to the line c10 which 
is incident to A1 and BO, and similarly for C1 and CO, 



FINITE EUCLIDEAN AND NON-EUCLIDEAN GEOMETRY WITH APPLICATIONS 343 

then CO, C1 and C2 are incident to the same line. 
4) There exist one line 1, with p+1 distinct point on it. 
5) There exist two points not on 1. 

It follows from these axioms that there exist p2 +p+1 points and 
lines, that each line has p+1 point incident to it and that each 
point has p+1 lines incident to it. 

1.1 Axioms (Algebraic Form) 

Given the prime p and the associated field Z[p], in which 
addition and multiplication are done modulo p, 

1) Two triples PO,P1,P2 and QO,Q1,Q2 of elements PO,P1,P2, 
QO,Q1,Q2 in Z[p] are equivalent if there exists a non­
zero element k in Z[p] such that QO=kPO, Q1=kP1, 
Q2 = k P2. 

2) The set of equivalent triples with the notation 
P = (PO,P1,P2) is called a point. 

3) The set of equivalent triples with the notation 
1 = [LO,L1,L2] is called a line. 

4) The point P = (PO,P1,P2) is incident to the line 
1= [LO,L1,L2] if and only if PO.LO+P1.L1+P2.L2 
is congruent to ° modulo p. 

It is easy to see that we can choose one of the equivalent 
set of triples in such a way that the first element different 
from zero is equal to 1, and that these points and lines satisfy 
the axioms in the synthetic form. 

These definitions can be extended to the Galois field corres­
ponding to pk, k> 1. In particular if k = 2, we have the finite 
complex projective plane in which the integers modulo pare 
replaced by a + bo, with a and b integers modulo p and 02 = d, 
a non-quadratic residue modulo p. 

2. FINITE EUCLIDEAN GEOMETRY 

There are many ways to derive the classical Euclidean 
geometric plane from the classical projective plane. I will now 
describe a method which allows the extension of the process to 
the finite case. 

In classical Euclidean geometry, let AO, A1 and A2 be the 
vertices of a triangle, let MO, M1 and M2 be the midpoints of the 
sides (M2 on AO A1, •.. ), let the barycenter M be the point common 
to AO MO, A1 M1 and A2 M2, let HO, H1, H2 be the feet of the 
perpendiculars from the vertices to the opposite sides. (AO HO 
perpendicular to A1 A2, etc.), let the orthocenter H be the point 
common to AO HO, A1 H1, A2 H2. Then M1 M2 is parallel to A1 A2 
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and therefore meets Al A2 in an ideal point NO on the line at 
infinity, similarly for Nl and N2. Let AO HO meet the line at 
infinity at 10, •.• It is well known that NO 10, Nl 11, N2 12 
are pairs of an involution (projectivity of order 2) on the line 
at infinity, and that the fixed points of this involution are the 
non real isotropic points whose homogeneous Cartesian coordinates 
are 

(1, i, 0) and (1, -i, 0) . 

The isotropic points are common to all circles, indeed these have 
as an equation in homogeneous coordinates 

(x - az)2 + (y _ bz)2 R2z 2 

··and x=l, y=i or -i, z=O, satisfy this equation. 

The projective plane is obtained from the Euclidean plane by 
considering that the ideal points or directions in Euclidean 
geometry are ordinary points in projective geometry and the line 
at infinity, consisting of all the ideal points,is an ordinary line. 

To obtain the Euclidean plane from the projective plane we 
have to proceed in a reverse order, we choose one line as the line 
at infinity and we define on that line a fundamental involution. 
This can be done by starting from a triangle AO,Al,A2 and two 
points M and H (such that 3 of the 5 points are not incident 
to the same line). First we obtain MO on Al A2 and AO M, ... ; 
we obtain NO on Al A2 and Ml M2, .•. ; the line m at infinity is 
the line NO,Nl,N2; then we obtain 10 on m and AO H,... . This 
defines pairs (NO,IO), (Nl,Il), (N2,I2), of the fundamental 
involution, whose fixed points are the isotropic points. Any 
conic passing through these points, real or not, is defined as a 
circle. 

Other pairs of the fundamental involution are defined as 
perpendicular directions. If the fixed points of the fundamental 
involution are not real, the geometry obtained is isomorphic to 
the 2-dimensional Euclidean geometry. Otherwise, we obtain a 
geometry which partakes in many properties of Euclidean geometry 
but should be given another name, say, paraeuclidean. 

We move now to the finite case. In the finite projective 
plane associated to p, each line is incident to p+l points, each 
point is incident to p+l lines. We can repeat the construction 
given above and obtain a distinguished line, called the ideal line 
or line at infinity and a fundamental involution. Let us assume 
that the triangle AO,Al,A2 and the points M and H are such that 
the fundamental involution has no real points. Then none of the 
p+l points on the ideal line are distinguished; we call them ideal 
points, points at infinity, or directions. 
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Starting with a polarity (8)(9), like in the infinite case, 
it is well known that a point conic is defined as the set of 
points which are on their own polar and that each conic contains 
p+1 points and intersects a line in 0, 1 or 2 points. A conic 
defines an involution on any line 1, when we associate to a point 
P on 1 the intersection with 1 of the polar of P. If the involu­
tion defined by a conic on the ideal line m coincides with the 
fundamental involution, the conic is defined as a circle. The 
center of a circle is the pole of m with respect to it. The 
conic passing through the points MO,M1,M2 and through the inter­
section HO of AO Hand A1 A2, and H1 and H2 is a circle, which, 
by analogy with the classical case, will be called the circle of 
Brianchon~Ponce1et (10), also called the circle of Euler or of 
Feuerbach. 

In finite Euclidean geometry, each line has on it one ideal 
point, on m, and p ordinary points. Any pair of points A,C 
can be chosen to define a unit of length on that line. To relate 
4nits on lines having the same direction we use parallelograms. 
To relate units on lines which have different directions we can 
use the circle centered at one of the points C, through the other, 
A. Because only half of the lines through P intersect the circle, 
something else has to be done on the other lines. If we take a 
point P on one of these lines, and define the distance between 
C and P as 15, distances between any two points on that line can 
be obtained and then by using circles centered at C through P, 
we obtain all distances. 15 is not arbitrary and is chosen in 
such a way that the th~orem of Pythagoras is satisfied. 15 is 
not real and its square is a non-quadratic residue modulo p. 

An elegant proof, justifying the notion of distances in 
finite Euclidean geometry, is obtained by first defining a finite 
trigonometry, suggested by the above considerations. This finite 
trigonometry will be defined in the next section. 

An angle is associated to a pair of directions. Addition 
of angles can be defined and it is possible to prove (11), 
although the proof is far from trivial, that the abelian group 
associated to the addition of angles is cyclic and therefore has 
generators. One of these can be chosen as unit, the others are 
multiples modulo p+1. Because p+1 is even, angles can be consid­
ered as being even or odd. An angle which is odd cannot be 
bissected; an angle which is even can be bissected by 2 lines. 
This is the first evidence of a principle which recurs often: 
the principle of compensation. The sum of the angles of a 
triangle is even, therefore, if two angles are even the third 
one is also. Therefore, for about one triangle in four, all 
angles can be bissected and there are four circles tangent to 
the three sides. About three triangles out of four do not have 
inscribed circles. Once this fact is taken into account it is 



346 R. DE VOGELAERE 

possible to generalize the classical results of, Euclidean geometry 
involving bissectrices and inscribed circles. For instance, for 
even triangles, the Theorem of Feuerbach holds: The four circles 
tangent to the three sides of the triangle are tangent to the 
circle of Brianchon-Poncelet. 

One of the advantages of the approach given above is that by 
simply exchanging the role of M and H, and continuing any 
construction derived from these points and the original triangle, 
new results can be obtained, which essentially double the number 
of theorems in finite as well as classical Euclidean geometry. 

It would be inappropriate to give here even a partial list 
of all the results which have been generalized. Suffice to say 
that the algebraic proofs devised use the algebraic structure 
field (corps) and therefore are also valid, in most instances, 
for the infinite case, rational or real. This allows insurance 
that points defined in very different ways are either always 
identical or usually distinct. It has also allowed me to prove 
a very large number of new results in classical Euclidean geometry 
which were first conjectured on the computer and then proven in 
the finite and infinite case. 

The results of finite 2-dimensional Euclidean geometry have 
been generalized to n dimensions using the exterior algebra 
introduced by Grassmann (12),(13). In the finite 3-dimensional 
case, the geometry of the tetrahedron and of the orthogonal 
tetrahedron (14) lead to an interesting new perspective on the 
subject. 

3. FINITE TRIGONOMETRY 

Let j denote +1 or -1. Given the sets Z of the integers, 
Zp of the integers modulo p, Zp+j of the integers modulo p+j, 
let a be a square root of a non-quadratic residue of p. The 
problem addressed here is to construct two functions sin and cos 
wi th domain Z and range {Zp, aZp} which satisfy the trigonometric 
identities 

sin2 (x) + cos 2 (x) = 1 

sin (x+y) 

cos (x+y) 

sin(x) cos(y) + cos(x) sin(y) 

cos (x) cos(y) - sin(x) sin(y) 

the periodicity property 

sin(2p + 2j + x) = sin (x) 

the symmetry properties 

cos (2p + 25 + x) cos (x) 

(0.0) 

(0.1.0) 

(0.1.0) 

(1. 0) 
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sin(p + j + X) = -sin(x) 

sin(-x) = -sin(x) 

sin(p+j -X) = sin(x) 

and such that 

sin(O) = 0 

sin«p+ j)/2) 1 

cos (p + j + x) = -cos (x) 

cos(-x) = cos (x) 

cos (p + j - x) = -cos (x) 

cos(O) = 1 

cos«p+j)/2) = 0 

sin(x) # +1 and # -1 for 0 < x < (p+j)/2 

As usual, 
tan(x) = sin(x)/cos(x) 

Several examples follow: 
For p = 11 and j = 0 2 = -1, 

x sin (x) 
o 0 
1 -2 
2 20 
3 4 
4 50 
5 1 

For p=ll, j=l, 02 =-1, 

x 
1 
2 
3 
4 
5 
6 

sin (x) 
80 
6 
40 
8 
10 
1 

For p = 13, j = -1, 02 = 2, 

x 
o 
1 
2 
3 
4 
5 
6 

sin(x) 
o 

-20 
-6 

60 
-2 

40 
1 

For p=13, j=l, 02 

x 
1 
2 
3 
4 

sin (x) 
3 
50 
5 

120 

cos (x) 
1 
50 
4 
20 

-2 
o 

cos (x) 
10 
8 
40 
6 
80 
o 

cos (x) 
1 
40 

-2 
60 

-6 
-20 
o 

cos (x) 
30 
9 

120 
5 

tan (x) 
o 

-40 
-50 
-20 

30 
co 

tan (x) 
8 
9 
1 
5 
7 
co 

tan (x) 
o 
6 
3 
1 

-4 
-2 

co 

tan(x) 
70 
20 
40 
50 
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(2.0) 

(2.1) 

(2.2) 

(3.0) 

(3.1) 

(3.2) 

(4.0) 
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5 
6 
7 

9 
30 
1 

50 
3 
00 

100 
o 
00 

Elsewhere (11), I will.give a proof that such functions 
exist. For j = -1, the proof depends on properties of primitive 
roots. For j = +1, the proof depends on a generalization to some 
cyclotomic polynomials. These functions are not uniquely defined, 
but are interrelated. I will also give there an algorithm to 
compute these functions for large p. 

It is now easy to justify that if the ideal is z = ° and the 
fundamental involution is associated to the circle .x2 +y2 = .z2, 
if P= (PO,Pl,l) and Q=(QO,Ql,l) then, if d(P,Q) denotes the 
distance between P and Q. 

(d(P~Q)2 = (QO_PO)2 + (Ql_Pl)2 

For instance, for p = 13 and 02 = 2, if P = (0,0,1) and 

Q (1,1,1) d(P,Q) 12 = 0 

Q 

Q 

(1,2,1) 

(1,3,1) 

d(P ,Q) 

d (P, Q) 

4. FINITE NON-EUCLIDEAN GEOMETRY 

IS = 30 

110 = 6 

The classical non-Euclidean geometry are of two types, 
elliptic of Bolyai (15) and hyperbolic of Lobatchevski (16). 
In the finite case such distinction does not exist. A conic being 
chosen as the ideal, a line which is not tangent to the ideal will 
intersect this conic at either two points or at no points. There 
are two scales for the distances, one is modulo p-l and the other 
is modulo p+ 1. 

Using homogeneous coordinates, X= (XO,Xl,X2), and the 
notation 

A.B = AO BO + Al Bl + A2 B2 

the ideal conic is chosen as 

X.X = ° or 

(0) 

(1) 

Let j denote +1 or -1, the distance d(A,B) between two points. 
A and B is then defined by 

cos(d(A,B) = j A.B/ (IAI IBI) (2) 

Given a trigonometric table, to obtain an unambiguous definition, 
we have to choose d(A,B) in the "first quadrant". If various 
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points are on the same line, the definition can be made more 
precise and the addition formula can be proven either modulo p-l 
or p+l. 

If A is fixed, all the points X equidistant from A are 
such that 

IAI2 IxI 2 + k(A.X)2 0 (3) 

or 
k' (A.X)2 -lxl 2 (4) 

A.X = 0 is the equation of the polar of A with respect to the 
ideal. (3) are conics for which p is also a polar of A. If p 
intersects the ideal at C and D, (3) are the conics through C 
and D. It is appropriate to give (3) as the algebraic definition 
of circles with center A in finite non-Euclidean geometry. 

A large number of results have been generalized (11). An 
apparently new result will now be described. 

If A = (AO,Al,A2) and A is not an ideal point, let us define 

A' = A/I-A.A (5) 

IAI = I-A.A is called the length of A. Either each component 
of A' is an integer or each component is an integer divided by 0, 
in this las t case we say that A' is pure imaginary, ° is the 
square root of a non-residue modulo p. 

If A is hyperbolic, A' is real; if A is elliptic, A' is 
pure imaginary. Moreover, A'.A' -1. 

Given two points A and B of the same type, M on AB is 
called a midpoint of [A,B] if the distances MA and MB are equal. 
It can be shown that the midpoints of [A,B] are M+ = A' + B' and 
M A' - B'. 

I define as media trices m = A I - B I which passes through 
M+=A'+B ' and m- = A'+B' which passes through M- = A' -B ' . 
I define as medians ni and ni the lines joining a vertex to 
one of the midpoints of the opposite side. The interior medians 
ni have a point G3 in common. Two exterior medians ni-l and 
ni+l meet at a point Gi of the interior median ni. The interior 
mediatrices mi have a point 03 in common. Two exterior media­
trices mi-l and mi+l meet at a point 0i of the interior 
mediatrix mi. The four lines joining the corresponding points 
Gi and 0i have a point V in common (which, surprisingly, is not 
the orthocenter). By analogy with Euclidean geometry, the points 
Gj are called the center of mass of the triangle, the points OJ 
are called the centers of the circumcircle of the triangle, and 
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the lines joining Gi to 0i are called the lines of Euler of the 
triangle. I will call V the center of the triangle. 

The points and lines Mi' Mi, ni' ni are real only if the 
vertices of the triangle are all of the same type. But V is 
always real. In fact an alternate construction of V has been 
obtained, which succeeds even when not all three vertices are 
of the same type. 

5. FINITE REAL JACOBIAN ELLIPTIC FUNCTIONS 

In this section j and j' will again denote +1 or -l. 
Given p and m different from 0 and 1, we will define a set 
E = E(p,m) and an operation "+". 

5.0 Definition of the Set E 

Given s, c, d in Zp' the elements of E are (s,c,d) such 
that 

and 

If -1 and -m are quadratic residues, we also have to include 
(oo,c oo,d 00), where c 2 =-1 and d 2 =-m. 

5.1 Definition of the moduli k and k1 and of addition of 
elements in E 

i := I=T , ml .- 1-m , k := lID k1 := rrnr 
Let D 1- m sO s1 

If D 10, 
(sO,cO,dO) + (s1,cl,dl) 

(0) 

(1) 

(2) 

«sOcldl + s1cOdO) /D, (cOcl- dOsOdlsl)/D, (dOdl- msOcOslcl) /D) • 
(3) 

If D = 0, sOcldl = slcOdO, cO 10 and cl 10, 
(sO,cO,dO) + (sl,cl,dl) = (oo,c oo,d, 00) 

where c = c1/(sldO) and d = dl/(s1cO). 
If D = 0, sOc1dl = -s1cOdO, cO 10 and cl 10, 

(sO,cO,dO) + (sl,c1,dl) = 

(4) 

« s0 2 - s1 2) / (2s0cld1), (c0 2 + cl 2 ) / (2cOc1), (d0 2 + d1 2 ) / (2dOdl». 
(5) 

If D=O, sOcld1 = j s1cOdO, cO=O and clIO, 

(sO,cO,dO) + (sl,cl,d1) = (oo,c oo,d 00) 

where c = -dOsl/cl and d = (dO/c1)3/(msO). 

(6) 
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If D = 0, sOc1d1 '= j slcOdO, cO" 0 and c1 = 0, 

(sO,cO,dO) + (sl,cl,d1) = (oo,c oo,d (0) 

where c = -d1s0/cO and d = (d1/cO) /(ms1). 
If sO;O, 

(oo,c oo,d (0) + (sO,cO,dO) = (sO,cO,dO) + (oo,c oo,d (0) 

(-cd/(msO), ddO/(msO), ccO/sO) 

If sO=O, 

(oo,c oo,d (0) + (O,cO,dO) = (O,cO,dO) + (oo,c oo,d (0) 

(oo,dOc oo,cOd (0) 

(oo,cO oo,dO (0) + (00,c1 00,d1 (0) = (O,dO d1/m, cOc1) 
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(7) 

(8) 

(9) 

(10) 

It is straightforward, but longwinded, to show that the set E is 
closed under addition and forms an abelian group. A cyclic 
subgroup can be obtained in a systematic way using the notion 
of quotient group, which allows the definition of finite elliptic 
functions. 

5.2 Examp1e for p of the form 4 i-I 

With P = 11, m = 3, (-1/11) = (-3/11) -1, 

E = {(O, 1,1), (0,1,-1), (0,-1,1), (0,-1,-1), 
(1,0,3), (1,0,-3), (-1,0,3), (-1,0,-3), 
(5,3,5), (5,3,-5), (5,-3,5), (5,-3,-5), 

(-5,3,5), (-5,3,-5), (-5,-3,5), (-5,-3,-5)} 

If the elements of E in the above order are abbreviated 
0,1,2, ... ,15, the addition table is 

+ 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 
o 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 0 3 2 7 6 5 4 13 12 15 14 9 8 
2 3 0 1 6 7 4 5 14 15 12 13 10 11 
3 2 1 0 5 4 7 6 11 10 9 8 15 14 
4 7 6 5 2 1 0 3 10 13 14 9 8 15 
5 6 7 4 1 2 3 0 9 14 13 10 11 12 
6 5 4 7 0 3 2 1 12 11 8 15 14 9 
7 4 5 6 3 0 1 2 15 8 11 12 13 10 
8 13 14 11 10 9 12 15 4 1 2 5 0 7 
9 12 15 10 13 14 11 8 1 6 7 2 5 0 

10 15 12 9 14 13 8 11 2 7 6 1 4 3 
11 14 13 8 9 10 15 12 5 2 1 4 3 6 
12 9 10 15 8 11 14 13 0 5 4 3 6 1 
13 8 11 14 15 12 9 10 7 0 3 6 1 4 
14 11 8 13 12 15 10 9 6 3 0 7 2 5 
15 10 9 12 11 8 13 14 3 4 5 0 7 2 

14 15 
14 15 
11 10 

8 9 
13 12 
12 11 
15 8 
10 13 

9 14 
6 3 
3 4 
o 5 
7 0 
2 7 
5 2 
4 1 
1 6 
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5.3 Example for p of the form 4f/, + 1 

With P = 13, m = 3, (-1/13) = (-3/13) = 1, 

E = {(0,1,1), (0,1,-1), (0,-1,1), (0,-1,-1), 
( ,5 ,6 ), ( ,5 ,-6 ), ( ,-5 ,6 ), ( ,-5 ,-6 ), 
(6,2,6), (6,2,-6), (6,-2,6), (6,-2,-6), 

(-6,2,6), (-6,2,-6), (-6,-2,6), (-6,-2,-6)} 

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

00123456789 
1 1 0 3 2 6 7 4 5 13 12 
2 2 3 0 1 5 4 7 6 14 15 
3 3 2 1 0 7 6 5 4 11 10 
4 4 6 5 7 3 1 2 0 12 14 
5 5 7 4 6 1 3 0 2 10 8 
6 6 4 7 5 2 0 3 1 9 11 
7 7 5 6 4 0 2 1 3 15 13 
8 8 13 14 11 12 10 9 15 7 1 
9 9 12 15 10 14 8 11 13 1 4 

10 10 15 12 9 13 11 8 14 2 7 
11 11 14 13 8 15 9 10 12 4 2 
12 12 9 10 15 11 13 14 8 0 6 
13 13 8 11 14 9 15 12 10 5 0 
14 14 11 8 13 10 12 15 9 6 3 
15 15 10 9 12 8 14 13 11 3 5 

10 11 12 13 14 15 
15 14 9 8 11 10 
12 13 10 11 8 9 

9 8 15 14 13 12 
13 15 11 9 10 8 
11 9 13 15 12 14 

8 10 14 12 15 13 
14 12 8 10 9 11 
24056 3 
7 2 6 0 3 5 
4 1 5 306 
1 7 365 0 
5 3 4 1 2 7 
3 6 1 7 4 2 
052 4 7 1 
6 0 7 214 

If eO = (sO,cO,dO) and e = (s,c,d) are elements of the cyclic 
subgroup, we define using the addition formulas 

e(O) = eO e(j) = e(j-1) +e , j = 1, ... (11) 

To e (j) = (sj, cj , dj) we can associate a point 

(12) 

on the circle x 2 + y2 = z2. 

For j any integer, the P(j) are the vertices of a Ponce1et 
polygon, which is also circumscribed to a circle. Moreover, in 
finite mechanics, we can consider that P(j) is the position of 
a mass at "time" j of a pendulum moving in a uniform field in 
the direction of the y axis. 

A sketch of the proof will now be given. First using the 
work of Hensel (5) in the p-adic field associated to p, we define 
the derivatives of the functions sn, cn and dn and of the function 
am defined by (0 is the symbol for composition of functions) 
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sin 0 am = sn, cos 0 am = cn. We obtain as in the classical 
case, D am = dn, D sn = cn dn, D cn = -sn dn, D dn = -m sn cn, 
D (2am) = -m sin 0 (2am) , which corresponds to the equation of 
the circular motion in the uniform field parallel to the y axis. 

The connection between the finite Jacobian elliptic functions 
and those of Tate (6), which correspond to the Weierstrass p 
functions, has also been established (11). 

6. THE HARMONIC POLYGONAL MOTION 

Some 100 years ago, Casey (17) introduced the notion of a 
harmonic polygon, inscribed in a circle, to generalize results 
due to Lemoine (18) for the triangle. The notion generalizes 
trivially to conics. 

Let P(O) and pel) be two distinct points on a conic. 
Let d be a directrix. P (2) is determined as follows: the 
tangent t (1) at P (1) intersects d at Q (1); Q (l)P (0) meets the 
conic at a new point P(2). P(3), ... are obtained similarly from 
pel) and P(2), •... Consider a motion on an ellipse: 

x(t) = a cos(E(t)) yet) = b sin(E(t)) (0) 

The tangent at pet) meets the cord through P(t+h) and pet-h) 
on the directrix x = a Ie, if 

cos «E (t+h) + E (t-h) 12) + 
+ (e - cos(E(t))sin«E(t+h) + E(t-h))/2))/sin(E(t)) 

e cos«E(t-h) - E(t+h))/2) 

If h is small, 

E(t+h) 

substituting in (1) gives 

(-sinE(t) + (e- cosE(t)) I sinE(t) D2 E(t) 

-e(DE(t))2 + O(h 2) 

(1) 

(2) 

(3) 

to the order of h 2. After integrating we get, for some constant k, 

DE = k(l- e cos(E)) 

This should be compared with the integral form of Kepler's 
equation 

(1- e cos (E) )DE = k 

(4) 

(5) 
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We can repeat the construction in finite Euclidean geometry: 
a focus of the ellipse is obtained as the intersection of two 
tangents to distinct isotropic points and a directrix is the 
polar of a focus. In fact, (4) is the differential equation of 
the motion. This can be verified laboriously by checking that 
the derivative of the equation (1) relating successive points of 
the motion is identically zero if (4) is satisfied. The results 
hold for the finite case as follows from the properties of the 
derivatives of the p-adic functions sine and cosine. 

7. CONCLUSION 

Many of the results of classical Euclidean geometry and non­
Euclidean geometry generalize to the case where there are pk+l 
points on each line, where p is a prime. This has, most likely, 
implication in cosmology as well as atomic physics, as is hinted 
at by results in finite mechanics, namely, the finite pendular 
motion and the polygonal harmonic motion. I hope that many of 
the participants of this symposium and other readers will take up 
the challenge to pursue this new line of inquiry. 
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functions using theorems of classical mechanics, was a topic that 
was particularly dear to Lemaitre in his teaching and had a direct 
influence on the development of section 5. 
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Part IV 
Georges Lemaitre: 

The Man and His Work 



Einstein and Lemattre, Le Coq (Belgium), 1933. 

Eddington and Lemattre, lAU Stockholm, August 1938. 



His Holiness the Pope Pio XII and Lemaitre, Pontificia Academia 
Scientiarum, Citta del Vaticano, 1939. 

Lemaitre with some students of the Catholic University of Louvain, 
Louvain 1950. 



From left to right: Lindsey, Oort, Lemattre and Ramberg, 
Observatory Bloemfontein, South Africa, 1952. 

Background: Raphael Boon; sitting in front of the computer: 
Mrs A. Deprit-Bartholome and on the right: Monseigneur G. Lemattre; 
computer room (Burroughs EIOI) College des Premontres, Louvain 
1959. 



MONSIGNOR GEORGES LEMAITRE 

Andre Deprit 

National Bureau of Standards, 
Gaithersburg, MD 20899, U. S. A. 

Georges Henri Joseph Edouard Lemaitre was born at Charleroi in 
Belgium on 17 July 1894, the first child of Joseph Lemaitre and 
Marguerite Lannoy. 

The earliest member of the Lemaitre family of whom there is any 
certain knowledge is Pierre--Joseph Lemaitre: allegedly unhappy 
about the re--marriage of his father (an officer in the royal ar­
mies?). he migrated with his brother Jean--Joseph (1720--1786) 
from Bordeaux to Courcelles in the Hainaut where he died in 1774 
as a small tenant farmer. The Lemaitre family took root in the 
Sambre valley around the fortress of Charleroi which the marquess 
of Castel Rodrigo then Spanish governor-general of the Low 
Countries had built in 1666, and named after his sovereign, 
Charles II, the last monarch in the Spanish branch of the 
Habsburgs. Charleroi endured its condition as a bastion guarding 
the road to Brussels and Antwerp against the French armies. Be­
sieged, overrun, rebuilt several times, it was given by the Treaty 
of Utrecht to the Austrian Habsburgs; eighty years later, they 
lost it to the conscripts of General Dumouriez. With the advent of 
steam power, Charleroi evolved from a garrison town into a thriv­
ing industrial center based on coal mines, iron foundries, glass 
works, tobacco factories and woolen mills. By the middle of the 
XIXth century when the Sambre was canalized, the city boomed at a 
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very fast pace; Vauban's fortifications with their Austrian and 
Dutch extensions were dismantled between 1868 and 1871 to make 
room for quays, railways, roads, factories and houses. For the 
next century, Charleroi prospered as the center of a wide indus­
trial zone which the poet Emile Verhaeren dubbed the Pays Noir 
(lithe Black Country"). The industrial revolution dislocated the 
social patterns of the rural countryside. In the one--room school 
of his village, Edouard Severe Joseph Lemaitre (1824--1894) had 
learned La Fontaine's fables in Walloon; but as a young man he 
taught himself French grammar and business arithmetic while clean­
ing and repairing lamps in the store--room of the local coal mine. 
By cunning and hard work, he rose from the accounting department 
of the mine to the top position as general manager; now a man of 
means. he relinquished the position to establish his own business 
dealing in mining timber. From his marriage with Alexise Catherine 
Allard (1831--1898) were born six children; Joseph. Msgr 
Lemaitre's father, was the youngest one. 

Having graduated from the Law School at the University of 
Louvain in 1889. Joseph Lemaitre (1867 -- 1942) received from his 
father a quarry in the neighborhood of Antwerp and glassworks in 
Marcinelle. a suburb of Charleroi. At 26. he married Marguerite 
Lannoy (1869 -- 1956), the daughter of a local brewer. She gave 
him four sons; Georges was the oldest one. Joseph and Marguerite 
Lemaitre raised their children to respect and maintain the tenets 
of the ruling class in the Black CountrY: personal dignity. pro­
fessional integrity, fidelity to the Catholic faith, loyalty to 
the established institutions. civic, social and religious. 

1. ~ good son, ~ good student 

Georges'childhood was'a prosaic and comfortable variation on 
the bourgeois tale of respectability through conformity. Georges 
received his early education at the grade school of his parish 
(1899--1904), and proceeded in due course to the Jesuit high 
school of his native city (1904--1910). Latin and Greek were the 
basic courses of a curriculum preparing for a university educa­
tion. As a schoolboy, Georges was conscientious but uninspired. In 
the senior years, he manifested a disposition for manipulating ma­
thematics; he also exhibited a talent for improvising original 
solutions to problems in Euclidean geometry. By the time he gradu­
ated, Georges had made his decision: he wanted to be both a 
priest and a research scientist. To his friends and advisers, the 
mix seemed unusual; they recommended proceeding with caution. Any­
way the family circumstances could not permit Georges to go ahead 
immediately with his personal plans. For years his father had ex­
perimented with new processes for stretching molten glass; the re­
search strained the business finances. The rupture point was 
reached when a simultaneous explosion of the experimental oven and 
of a furnace wrecked the plant. The mishap convinced the banks to 
recall their loans. Forced to declare bankruptcy, Joseph Lemaitre 
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made arrangements to repay his creditors, and moved his family 
from Marcinelle to Brussels. He had found a job as a lawyer with 
the Societe generale de Belgique, Belgium's main holding bank. For 
the time being, Georges had to consider earning a professional 
degree leading to an occupation where he would be in a position to 
assume his share of the family's burden. 

Therefore, in September 1910, Georges entered the College Saint 
Michel, the Jesuit preparatory school in Brussels, to study inter­
mediate geometry, algebra and trigonometry, thereby preparing the 
entrance examination at the College of Engineering in Louvain. 
The major instructor in mathematics was Father Henri Bosmans, re­
puted for his numerous research notes on the origins of calculus 
and on Simon Stevin and other mathematicians of the Low Countries 
during the Renaissance. He infused Georges with his enthusiasm for 
the history of sciences, of geometry in particular; the student 
learned from the master the art of reading scientific texts in La­
ti n. 

From the year spent in the preparatory class in Saint Michel 
(1910--1911) dates the long--standing friendship between Georges 
Lemaitre and Charles Manneback (1894--1974). Together they pre­
sented the examination in July 1911, were admitted, and registered 
the following October at the College of Engineering. But Lemaitre 
also enrolled for the classes in philosophy offered to laymen by 
the Institut superieur de Phi losophie, formerly the Institut de 
Philosophie thomiste founded by Desire Mercier. At the time 
Lemaitre matriculated, Msgr Mercier had resigned his professorship 
to occupy the seat of archbishop of Malines. Yet it must be noted 
that Msgr Mercier has had a profound, although indirect, influence 
on Georges Lemaitre; Mercier's writings on priesthood firmed 
Lemaitre in his dual project. Having earned his B.A. cum laude in 
engineering (July 1913), Lemaitre began his professional training 
as a mining engineer. On the face of his academic record, one may 
safely conclude that Lemaitre was not interested in pursuing a 
professional career. From his first three years at the university 
of Louvain dates his infatuation with Hamiltonian qynamics, an 
area to which he was introduced by Ernest Pasquier (1849--1926). 
A protege of Philippe Gilbert (1832--1892), Pasquier had made a 
name for himself by publishing in Paris a translation of the two 
volumes of Oppolzer's Lehrbuch zum Bahnbestimmung der Cometen und 
Pl aneten. 

~. Fi rst i ntermi ssi on : .! good sol di er 

The invasion of Belgium by Germany (4 August 1914) had been the 
turning pOint in Lemaitre's youth. On 9 August, he and his brother 
Jacques joined the Fifth Corps of Volunteers in Charleroi. While 
Falkenheyn's ar~ invested Antwerp, Belgium's main harbor and ma­
jor fortress, Lemaitre's unit was put on the job of digging 
trenches between the forts. In October of that year, the brothers 
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Lemaitre escaped from Antwerp with the Belgian field armY led by 
King Albert I, retreating with them to the coastal depression in 
the northwestern corner of Belgium on the left bank of the Yzer. 
At which time, the corps of volunteers was disbanded, and Lemaitre 
was detailed to the 9th regiment of line infantry (10 October 
1914); the assignment entangled him for several days in bloody 
fightings house to house in the village of Lombartzyde. After the 
flood plain had been inundated to stop the German infantry, the 
9th regiment was placed on the right flank of the Belgian armY. On 
22 Apri 1 1915, Lemaitre watched there the awesome debacle caused 
by the first attack with chlorine gas; the madness of it would 
never fade in his memory. 

The Belgian armY being short of gunners, Lemaitre was trans­
ferred to the 3rd regiment of artillery (3 July 1915). In the re­
latively quiet second line of the Belgian front, he could steal 
time from the chores of war for reading Poincare's Lecons sur les 
Hypotheses cosmogonigues and other monographs in physics. -x5lfhe 
war dragged on, Lemaitre moved up the hierarchy of non commis­
sioned officers to attain the top rank of master sergeant. He went 
through a period of training for a field commission as a first 
lieutenant in the artillery (20 March--27 September 1917). Alas, 
he challenged an instructor in the class--room on his erroneous 
solution to a problem in ballistics; he and his brother were ex­
pelled that day from the class, the instructor lodged a complaint, 
and the commanding officer entered a report stating that Lemaitre 
did not have the attitude expected from a candidate officer. Years 
after the incident, Lemaitre could still not dominate his resent­
ment against the evaluation. A second period at the Centre d'In­
structi on pour SousuLi eutenants auxil i ai res s!' Art i 11 eri e was-more 
successful, but it ended on 12 October 1918, that is a month be­
fore the Armistice, and so Lemaitre came out of the war without an 
officer's commission. On 29 November 1918, he was cited for bra­
very in the Belgian Army's Orders; he was awarded the Croix de 
Guerre avec palmes on 28 February 1921 (a military distinction 
compara~to a Silver Star in the u.S. Army), the Yzer Medal (15 
November 1922) and, much later (28 August 1946), the most coveted 
Croi x du Feu. -----

After 53 months in the din of war, Lemaitre had made up his 
mind. He planned to realize his dream in two steps. Although he 
was still in the uniform, Lemaitre re-enrolled at the University 
of Louvain as soon as it reopened (21 January 1919); in less than 
six months, he presented the examinations for the degree of candi­
dat (liB. A.") in mathematics, the B. A. at the Institut superieUr 
de Philosophie which degree he obtained cum laude, and the first 
year of graduateistudies toward a Ph. D. in mathematics which he 
passed summa cum laude. Having been discharged from the armY in 
August 1919, without a pause he entered research and completed by 
July 1920 his doctoral dissertation on liThe Approximation of Real 
Functions in Several Variables." Surprisingly enough, for he was 
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not easy to please, his adviser, Charles de la Vallee Poussin 
(1866--1962), considered inviting Lemaitre to pursue an academic 
career of teaching and research in mathematical analysis. Lemaitre 
would have none of that. His first goal, a doctoral degree in 
science, having being reached, he shifted to the second stage of 
his personal plans. The 21 October 1920, Lemaitre entered the 
Maison Saint Rombaut, an extension of the major seminary of the 
Archdi ocese of Ma 11 nes, where adu"lts were trai ned for the pri est­
hood. The program of religious studies left him leisure for re­
viewing the literature published in special and general relati­
vity. In his third year at the seminary, Lemaitre even found time 
to prepare three essays which he submitted in May 1923 to the 
state commission in charge of allocating scholarships for periods 
of study abroad. Lemaitre's second aspiration was fulfilled on 23 
September 1923, when his spiritual mentor, Cardinal Desire 
Mercier, ordained him a priest in the clergy of his Archdiocese. 

3. The fi rst career: ~ vi si onary on the roads 

"A Man there was, though some di d count him mad. 
liThe more he cast away, the more he had. 

John Bunyan. 

With the scholarship granted by the Belgian government, Lemai­
tre could afford to apply for admission at Cambridge University as 
a research student in astronomY. Having been accepted to the Ob­
servatory by the director Arthur Eddington (1882--1944), he took 
his quarters in October 1923 for nine months at Saint Edmund's 
House, a residence for Catholic clergymen connected with the uni­
versity. Beside attending the classes of Harold Jeffreys, Ernest 
Rutherford, Henri Baker and Arthur Eddington, he pursued his re­
search on one of the topics of his scholarship essays, namely the 
concept of simultaneity in general relativity. Pleased with the 
results, Eddington added a foreword to the manuscript submitted to 
the Philosophical Magazine. Among the many friends Lemaitre made 
at Cambridge, most notable were Douglas Hartree (1897--1958), at 
the time preparing his doctoral dissertation under the direction 
of R. H. Fowler, William M. Smart then John Couch Adams astronomer 
and chief assistant at the Observatory, and, last but not least, 
Yusuke Hagihara (1897--1979) with whom Lemaitre cultivated a spe­
cial interest in celestial mechanics. 

The following academic year was spent at Cambridge in Massachu­
setts as a fellow of the C. R. B. Educational Foundation, a pri­
vate institution funded by the Committee in Relief of Belgium out 
of the surplus of charities collected at the instigation of 
Herbert Hoover to assist the Belgian population during the German 
occupation. The fellowship tenure at the Harvard College Observa­
tory was to be the most exhilarating period in Lemaitre's life. 
Harlow Shapley (1885--1972) had suggested that he work on the 
theory of variable stars after he became familiar with the obser-
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vations. Lemaitre took the assignment with zest. He even made ar­
rangements to spend the month of September 1924 in Ottawa at the 
Dominion Observatory; Francois Henroteau (1889--1951), ex­
astronomer at the Royal Observatory of Belgium and an expert in 
variable stars, agreed to tutor him on the subject of Cepheids. 
Not that the summer of 1924 had been an idle season for Lemaitre. 
He had crossed the Atlantic in time for the Toronto meeting of the 
British Association for the Advancement of Science (6--13 August 
1924); he had there some valuable discussions with Eddington on 
the Schwarzschild metric, and with Ludwik Silberstein (1872--1948) 
on his disputed conclusions from a linear relation he had derived 
between radial velocity and distance for galaxies in de Sitter1s 
stationary model for the cosmos. The conversation with 
Silberstein stayed on Lemaitre1s mind; eventually at the 133rd 
meeting of the American Physical Society (24--25 April 1925), he 
showed how, by reformulating de Sitter1s solution to Einstein1s 
equations in the manner suggested by Cornelius Lanczos (1893-
-1974). he could remove its spurious inhomogeneity, and how new 
coordinates separating space and time led to a relation velocity­
-distance not only linear but freed as well from the puzzling 
double sign introduced by Silberstein. 

The meeting of the British Association overlapped with the 
International Mathematical Congress (11--16 August) also in 
Toronto. Lemaitre spent the balance of August in Montreal where he 
visited McGill University and attended several parties given at 
Beauharnais--la--Pointe by Miss Thibeaudeau, the most graclous 
guardian angel of European scientists setting foot for the first 
time in the New World. 

While at the Harvard College Observatory, Lemaitre spared him­
self no effort extending his information and his contacts through 
meetings of various scientific societies. In that regard, the 33rd 
meeting of the American Astronomical Society in Washington during 
the Christmas season of 1924 marked a decisive turn in Lemaitre1s 
career: listening to Henri Norris Russell reading Hubble1s an­
nouncement that he had observed Cepheids in the galaxy Andromeda 
(1 January 1925), everyone in Corcoran Hall of George Washington 
University, and Curtiss, Lemaitre, Shapley and Stebbins more than 
anyone else, realized that sensational developments were imminent 
in cosmology. 

Lemaitre was proud to have been among the founders of the Bond 
Astronomical Club organized by Shapley for the Boston area; he 
frequented the Harvard Mathematical Club; he joined the American 
Association of Variable Star Observers at its annual assembly at 
Harvard College Observatory (11 October 1924). He took part in 
II nei ghbori ngll meeti ngs for astronomers at Va 1 e Uni versity, and 
also, as a guest of the director Frederick Slocum (1873--1944), at 
the Van Vleck Observatory of the Wesleyan University in Middletown 
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for the much publicized total eclipse of the sun on 24 January 
1925. 

Taking advantage of the Gordon--MacKay agreements, Lemaitre 
also registered as a graduate student in the Department of Physics 
at the Massachusetts Institute of Technology. To qualify as a can­
didate for the Ph. D. degree, he submitted in November 1924 to an 
examination in the theory of Fourier series, and went on taking 
the courses in electromagnetic theory and in quantum mechanics of­
fered by a young bright mathematical physicist, Manuel Sandoval 
Vallarta (1898--1977), a Mexican who was destined to have the most 
pervasive influence on Lemaitre's first scientific career. Paul 
Heymans (1895--1960), a fellow Belgian who was specializing in 
photoelasticity although he turned later to economics and entered 
Belgium's politics, agreed to sponsor the doctoral dissertation. 
The memoir -- 37 pages long, never published -- dealt with para­
doxes encountered by the Schwarzschild metric in a de Sitter uni­
verse; Eddington had suggested the topic. Not only does the dis­
sertation constitute Lemaitre's very first step toward a theory of 
the expanding universe, it manifests as well mastery of a research 
style whereby invention of numerical procedures compensates for 
the impossibility of solving a problem by analytical methods. 

On his way to the West Coast at the end of the academic year, 
Lemaitre stopped at the Yerkes Observatory (23 May 1925) where he 
happened to meet Leslie J. Comrie (1893--1950), a man whom Howard 
Aiken would salute as a genius in the art of scientific computing. 
Needless to say, the meeting was most significant in that it con­
firmed Lemaitre's proclivity toward numerical analysis and compu­
ter hacking in his teaching as well as his research. At the uni­
versity of Chicago itself, Lemaitre conferred with Forest Ray 
Moulton (1872--1952) about Kant's and Laplace's nebular hypothe­
sis, and with William Duncan Macmillan (1871--1948) about his just 
announced theory for continual creation of matter by dissipation 
of radiation while it traverses empty space. After a few weeks of 
vacation at Jasper, Banff and Lake Louise, Lemaitre passed through 
the Dominion Astrophysical Observatory in Victoria, the Lick 
Observatory, the Mount Wilson Observatory, and finally got an ini­
tiation to the physics of cosmic rays from Robert A. Millikan 
(1868--1953) at the California Institute of Technology, also a 
full briefing on the radial velocities of spiral galaxies from 
Vesto M. Slipher (1875--1969) at the Lowell Observatory in 
Flagstaff. No sooner had he returned to the family home in 
Brussels (8 July) than he hopped to Cambridge for the Second Gene­
ral Assembly of the International Astronomical Union (14--22 July 
1925), so impatient was he to sort with Eddington his impressions 
and his fresh knowledge in astrophysics. 

Soon after his return in Belgium, Lemaitre left the family home 
to take residence at the College du Saint Esprit in Louvain. In­
deed he had been appointed associate professor in the Department 
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of Mathematics at the University (July 1925). Eddington had taken 
the initiative of writing to Theophile De Donder (1872--1957) a 
very strong letter of support. even suggesting that Lemaitre be 
considered for an appointment at the Free University of Brussels. 
should the Catholic University of Louvain reject his candidacy. 

The Recteur Magnifique ("provost"). Msgr Paulin Ladeuze. a wise 
scholar turned administrator. provided Lemaitre. under Spartan 
conditions. with inexhaustible leisure and a discriminatingly 
well--stocked Library. He personally saw to it that Lemaitre began 
his teaching career with a very light load. quite unusual a favor 
to the young faculty at the time. For several years. Lemaitre was 
in charge of creating a two--term course in relativity for the 
graduate students in mathematics and physics. of giving two one­
-term classes. respectively in the history of physics and mathema­
tics. and on the methodology of mathematics in the secondary 
schools. He was also given the responsibility of a weekly session 
of exercises in analytical mechanics in support of the course 
taught by Charles de la Vallee Poussin to the undergraduates at 
the College of Engineering. Lemaitre who had embraced Comrie's 
doctrine of teaching applied mathematics by computational drills 
made the most of his graduate classes to raise the interest for 
scientific computing among his students and his colleagues. 

This period of relative leisure as far as teaching and examina­
tions were concerned lasted but a few years. Professor Maurice 
Alliaume (1882--1931). Lemaitre's most devoted colleague in the 
Department of Mathematics. died in a car accident one month into 
the academic year (24 October); Lemaitre was asked to step in im­
mediately and take over the two graduate courses his friend had 
created in mathematical astrono~. one in spherical astronomy and 
the other in celestial mechanics. All of a sudden Lemaitre's 
teaching load was doubled; but it concerned graduate students for 
the most part. which left Lemaitre much at liberty to juggle with 
the academic schedules. 

As for his research in the late twenties. Lemaitre focused pri­
marily if not exclusively on de Sitter's cosmology. Unaware of the 
paper published in 1922 by Alexander Alexandrovich Friedmann 
(1888--1925). he first showed how to introduce a radius varying 
with time in de Sitter's metric (1925). then he deduced from the 
modified metric a linear relation between radial velocities and 
distances for galactic nebulae. Published in a relatively obscure 
periodical. the second paper went unnoticed. and Lemaitre felt 
somewhat dejected (1927). He tried to draw the attention of Ein­
stein while he was attending the fifth Solvay Conference on Phy­
sics in Brussels (24--29 October 1927). Einstein was most abrupt: 
"Vos calculs sont,corrects. mais votre ph*si9ue est abominable" 
rYOur calculations are correc"t,l)ut your p YSlcalTnSight is abo­
minable"). Likewise Lemaitre failed with de Sitter at the Third 
General Assembly of the International Astronomical Union in Leiden 
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(5--13 July 1928). Basking as he was then in the vain glory of 
President of the Union ("hij was intens wolkenloos gelukkig" noted 
his wife), de Sitter had no time for an unassuming theorist with­
out proper international credentials. 

Meanwhile theorists and observers kept heaping criticisms on de 
Sitter's cosmology. Richard C. Tolman (1881--1948) and Howard P. 
Robertson (1903--1961), the latter in consultation with Hermann 
Weyl, entered the debate, blissfully unaware that they were re­
tracing steps taken by Lemaitre several years earlier. Thus wooed, 
de Sitter appeared at a meeting of the Royal Astronomical Society 
(10 January 1930). Endorsing the careful observations made by 
Edwin P. Hubble at the Mount Wilson Observatory, he concurred, he 
said, with the majority in holding the linear relation between ra­
dial velocity and distance as a law of nature; he confessed though 
that he did not know how to assimilate it in his cosmology. As a 
comment on de Sitter's communication, Eddington indicated that he 
himself was working on the problem. By chance, Lemaitre picked up 
the February issue of The Observatory where the exchange between 
de Sitter and Eddington had been reported. He wrote at once to 
Eddington to remind him that he had already solved the problem, 
and also to ask him to send a reprint of his 1927 note to de 
Sitter (late March or early April 1930). This time Eddington paid 
attention to Lemaitre's contribution, dispatched a copy of it to 
de Sitter and Shapley, and reworked his communication to the Royal 
Soci ety on "The Stabil ity of Ei nstei n' s Universe" to make of it a 
critical review of Lemaitre's theory of the expanding universe (9 
May 1930). By extraordinary favor the Royal Astronomical Society 
published an English translation of Lemaitre's note, with slight 
but telling amendments, in the Monthly Notices (March 1931). With 
Eddington as advocate, the theory gained rapid acceptance among 
most astronomers although Hubble, by training a lawyer as well as 
a physi ci st, never saw in it the "evi dence beyond reasonable 
doubt" that recession velocities result from the expansion of 
space. 

"0 saisons, 0 chateaux, 
"Quelle ame est sans defaut? 

Arthur Rimbaud 

Notwithstanding the sudden celebrity he was enjoying, Lemaitre 
was very conscious of the deficiencies of his theory. The current 
value of the Hubble constant led to a cosmological time scale of a 
couple of billion years, about a hundred times smaller than the 
geological and stellar time scales. Lemaitre proposed to stretch 
his time scale by imagining that, after a rapid expansion, the 
universe entered a period of "stagnation" when the repulsion due 
to the cosmological constant balanced the gravitational forces. 
The stagnation theory leads eventually to a Friedmann equation 
which Lemaitre found could be solved exactly by elliptic func­
tions. Moreover, in Lemaitre's opinion, the stagnation process 
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should explain why local condensations happen in the universe al­
though all physical cosmologies since Einstein postulate the world 
to be both homogeneous and isotropic in the large. Stagnation in 
its double role as a retardant and as a condenser has been treated 
in detail by J. Wouters in his doctoral dissertation submitted in 
the schoolyear 1931--1932, the first Ph.D. thesis supervised by 
Lemaitre. 

The clustering of galaxies became a challenge that devoured 
Lemaitre's research in cosmology. Time and again Shapley demanded 
that the theory of the expanding universe account for concentra­
tions of nebulae he was charting close to the Milky Way. Lemaitre 
wanted foremost to satisfy the demand. Yet to the end of his life 
the solution eluded him. To be sure Lemaitre could not conceive 
of a solution that did not involve a cosmic repulsion. Hence his 
unmitigated conviction that the cosmological constant, however 
small it may be, must be held as an essential parameter in a phy­
sical cosmology. The importance he attached to the cosmological 
constant drew laconic objections, and even cold contempt, from 
Einstein. Although the constant was due to him, and he had used it 
to inject matter into a static universe, now that he had accepted 
the concept of universes with varying radii, Einstein felt sorry 
for having invented it. The controversy between the two men on 
this topic culminated in the magistral apology for the cosmologi­
cal constant which Lemaitre presented to Einstein as a tribute for 
his seventieth birthday (1949) and in Einstein's summary rejection 
of it in a terse paragraph of five lines. 

Eddington conceived the expansion as starting from a state of 
equilibrium represented by Einstein's model. Within that frame­
work, for a popular conference on "The End of the World: from the 
Standpoint of Mathematical Physics" at the British Mathematical 
Association (5 January 1931), he offered a few thoughts on how the 
second law of thermodynamics could be extrapolated at both ends, 
in the future toward a state of complete disorganization, and in 
the past toward a beginning in time, which concept he was prompt 
to reject. Lemaitre found the text of Eddington's presidential ad­
dress in the pages of Nature; it electrified his imagination. 
Aware by now of Friedmann's classification of cosmologies, 
Lemaitre had been toying for a while with models of the expanding 
universe starting from a radius equal to zero. In the use 
Eddington made of the second law of thermodynamics, he suddenly 
saw a way of giving physical meaning to the mathematical singula­
rity. Interpreting entropy as a measure of fragmentation, Lemaitre 
read the second law of thermodynamics as meaning that the universe 
is relentlessly and irreversibly dividing itself into smaller and 
smaller pieces, or, going backward in time, that the universe des­
cended from a state of supreme concentration, the Primeval Atom as 
Lemaitre dubbed it. By virtue of the identification between matter 
and space--time which is the essence of General Relativity, conti­
nued Lemaitre, the Primeval Atom cannot admit to being considered 
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as an undivided fragment contained in a region of space. and the 
primordi a 1 expl osi on ("a day without yesterday") does not suffer 
to be assimilated to an instant ticked off an axis of coordinate 
time. Space--time itself originates from this physically indescri­
bable event of which. for lack of a scientifically meaningful ter­
minology. Lemaitre spoke in terms of fireworks. well aware though 
he was that there was no background sky against which the fireball 
burst out. Lemaitre's letter of 9 May 1931 to Nature is the char­
ter of the Big Bang Theory. 

Expounding these themes at the Centenary Meeting of the British 
Association for the Advancement of Science in the Great Hall of 
the University of London (24 October 1931). Lemaitre surmised that 
cosmic rays of high energy have their origin in the primordial Big 
Bang. In Arthur Compton's discovery that cosmic rays consisted of 
charged particles. Lemaitre saw material evidence of the "natural 
beginning" in a Big Bang. 

Meanwhile Lemaitre applied for an Advanced Fellowship at the 
C.R.B. Educational Foundation in Brussels. He planned on spending 
a couple of months with Shapley at the Harvard College Observa­
tory, on visiting Professor Henry Norris Russell (1877--1957), the 
director of the Fitzrandolph Observatory at Princeton University, 
and finally on working for another two months with Professor 
Tolman at the California Institute of Technology while at the same 
time meeting with Hubble and Humason at the Mount Wilson Observa­
tory. He left Europe in August 1932 by the Canadian Pacific which 
brought him to Montreal. There he joined F.J.M. Stratton and his 
party from the Cambridge Observatory. and together they made the 
trip to Magog (in the province of Quebec), a locality on the tota­
lity path of the solar eclipse (31 August 1932). On the grounds of 
the Hermitage Country Club. they mixed with other groups coming 
from McGill University. the Leander McCormick Observtory at the 
University of Virginia, and the University of Utrecht. However 
the sky was wholly overcast, the clouds were the thickest along 
the central line of the eclipse zone. the expedition assembled at 
Magog saw nothi ng. Lemaitre who looked at the clouds "wi th hi s 
hands in his pockets" found the spectacle most ironic, the more so 
having heard there of Lyot's coronagraph. 

The next day the various parties turned their steps in the di­
rection of Cambridge in the Massachusetts where the International 
Astronomical Union was due to hold its Fourth General Assembly 
(2--9 September) Arrangements had been made for housing the parti­
cipants and their guests in the dormitories of Radcliffe College. 
The event which in the minds of many was the climax of the week 
was the pub 11 c 1 ecture on "The Expandi ng Uni verse" by Si r Arthur 
Eddington in the Main Hall of the Walker Memorial at the Massachu­
setts Institute of Technology (7 September). For Lemaitre himself, 
Eddington's presidential address was an hour of triumph. Yet, at 
the discussion on "The Extra--Galactic Objects" . held at 
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the Harvard College Observatory (9--10 Sptember), the observers, 
among them Bok, Lindblad, Lundmark, Oort, J.S. P1ackett, and last 
but not least, Shapley and Stebbins, closely questioned Eddington 
and Lemaitre in the final session on these strange views of theirs 
on a universe in expansion. Lemaitre in particular was called to 
defend hi s "fi reworks theory of the begi nni ng of thi ngs." 

While in Cambridge, Lemaitre divided his time between the 
Department of Physics at the M. I. T. and the Harvard College 
Observatory. At Harvard, among other things, he discussed with 
Shapley ways of integrating observations of distant nebulae in his 
own model for an expanding universe; he also conversed with E. 
Opik about the conflict between the short time scale inherent to 
his model and the long time scales adopted by the current theories 
of stellar evolution. He did research mainly at the M.I.T. with 
Va11arta on his hypothesis for the cosmic rays. Granted that they 
were produced by the Big Bang, cosmic rays should enter the 
earth's upper atmosphere coming from the most remote outer space. 
If so, Liouville's central theorem of Hamiltonian mechanics gua­
rantees, according to Lemaitre, that the distribution of cosmic 
rays of a given energy is invariant inside the arrival cone at any 
point on earth. It follows that the envelope of the cone is made 
of periodic orbits and orbits asymptotic to periodic orbits. Hence 
Lemaitre and Va11arta set themselves to the task of calculating 
these envelopes to recover the latitude effects detected by 
Compton. Considering that Bruno Rossi and his team at Arcetri had 
just predicted an east--west asymmetry in the distribution of the 
cosmic rays and had announced their intention of detecting and 
measuring it, Val1arta was anxious to establish priority. With 
Lemaitre, he rushed to the 180th meeting of the American Physical 
Society in Chicago (25--26 November) to present the approach taken 
at the M.I.T.; with the same haste they wrapped up a paper which 
they submitted to the Physical Review. No sooner was it published 
than it drew the harshest criticisms from Carl Stoermer (1874-
-1957). There ensued a bitter controversy which fortunately turned 
into a long competition where all parties concerned learned to ap­
preciate their respective strengths and weaknesses. 

The research program proposed by Lemaitre and Va11arta proved 
to be a very long undertaking, in fact a lifetime research for 
Va11arta, one in which several generations of students at the 
University of Louvain (L.P. Bouckaert, A. Descamps, O. Godart, 
R. de Voge1aere, L. Bossy, Tchang Yong--Li), the Massachusetts 
Institute of Technology (A. Banos, C. Graef, R. Albagi Hutner, 
S. Kusaka, E. J. Shremp), and the National University of Mexico 
(R. Gall, J. Lifshitz, H. Uribe) found topics for their doctoral 
dissertations and an intensive initiation to scientific computing. 
Fierce loyalties developed in the team work across the Ocean: in 
faraway Yunnan, throughout the war with Japan, the civil war and 
the political cataclysms of the 1960s, Professor Tchang Yong-Li 
(1913--1972) could not help but infuse his students with his fer-
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vent devotion for the man in Louvain who taught him in the most 
unpredictable ways how to enjoy playing the games of physics with 
computers. Indeed, piqued by the rude reception their program re­
ceived from Carl Stoermer, encouraged however by the fact that, 
soon after them but independently, Enrico Fermi had also proposed 
to apply Liouville's central theorem, Lemaitre and Vallarta gave 
the problem the best of their imagination and of their computing 
skill. Both became very attentive to the efforts made at the 
M.I.T. by Vannevar Bush (1890--1974) in developing the analog com­
puter called the Differential Analyzer. 

However it was too early yet for harnessing the Differential 
Analyzer to the production of periodic and asymptotic orbits. In 
the second half of November 1932, Lemaitre left Cambridge for 
Princeton where he met with Professor Russell and, at the invita­
tion of Percy H. Robertson, gave a seminar on his cosmology for 
the Departments of Mathematics and Physics. In the first week of 
December, he departed for Pasadena. At the California Institute of 
Technology, in the presence of Einstein and other "universe 
makers", he gave two sensati ona 1 semi nars, one on the theory of 
the expanding universe, and another one on the cosmic rays as the 
fossils of the Big Bang (12 January 1933). These lectures were 
even covered in the national daily press. Lemaitre also spent some 
time in conference with Edwin Hubble at the Administrative 
Building of the Mount Wilson Observatory on Santa Barbara Street. 
In his last week at the Atheneaum in Pasadena, he was interviewed 
by Duncan Aikman; the article "Lemaitre follows two paths to 
truth" whi ch spread over two pages of the New York Ii mes Magazi n~ 
(19 February 1933) made him a publi c fi gure in the United States. 
On his way back to Belgium, Lemaitre took a couple of weeks sight­
seeing in the Tonto National Forest in the state of Arizona. 

The Spring of 1933 in Belgium saw Lemaitre busy on, two fronts 
outside his classes. On the one hand, he prepared a critical re­
view of his mathematical methods in general relativity. The revi­
sion brought an original result, as a matter of fact a decisive 
step on the road that eventually led to the theory of the black 
holes. Lemaitre may indeed be given credit for having been the 
first in proving that, contrary to appearances, the gravitational 
radius of a star is not an essential singularity in the 
Schwarzschild metric. 

On the other hand, with Theophile De Donder and L. Infeld, he 
obtained the support of the Francqui Foundation to organize a 
series of six seminars on spinors to be given by Albert Einstein. 
Having learnt that Adolf Hitler had been appointed Chancellor of 
the German Republic, Einstein upon his arrival in Antwerp from the 
California Institute of Technology, had gone to the German Embassy 
in Brussels to surrender his passport; he also resigned from his 
positions at the Prussian Academy of Sciences and at the univer­
sity of Berlin. For a few months, he stayed with his family at a 
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villa in De Haan on the Belgian seashore. Lemaitre paid him a 
visit there to obtain his agreement to the proposition by the 
Francqui Foundation. The organization of Einstein's lectures took 
a great deal of effort. For reasons of security, attendance was to 
be by invitation only, which restriction required that the semi­
nars be held not in a university but in the rooms of the Fondation 
Universitaire in Brussels where access could be controlled. 
Lemaitre's efforts on behalf of Einstein drew upon him the gra­
teful attention of the Royal Court in Belgium, in particular of 
Queen Elisabeth. Einstein gave three conferences in French on 3, 
6, and 10 May, then conducted three seminars. Before the session 
of 13 May, at which De Donder presented some aspects of his 
research related to the theme of the seminar, Lemaitre had sounded 
Einstein on possible ways of simplifying proofs of the main 
results communicated by Einstein. At the end of De Donder's expo­
sition, Einstein rose the curiosity of the audience by announcing 
that the next semi nar wou1 d be gi ven by Lemaitre "qui a des choses 
i nteressantes a nous di re" ("who has i nteresti ng thi ngs to tell 
us"). Lemaitre left the confernece room almost in a state of 
panic. He spent the whole weekend feverishly developing the ideas 
he had reviewed with Einstein. But, on Wednesday 17 May, he ar­
rived reaqy for the seminar and suffered gleefully the enviable 
inconvenience of being interrupted several times by Einstein ta1k­
i ng to himself but ina loud voice and exc1aimi ng that it was 
"tres jo1i, tres, tres jo1i" ("very beautiful, very beautiful 
indeed") • 

For the first semester of the next schoo1year Lemaitre had ac­
cepted an appoi ntment as "Guest Professor" in the Department of 
Physics at the Catholic University of America in Washington D.C. 
Leaving Belgium on 5 September 1933, he first went to Leicester 
where the British Association for the Advancement of Science had 
convened a short symposi urn on "The Expandi ng Uni verse" (6--13 Sep­
tember). The organizers had planned on a short session in which 
the pioneers (de Sitter, Eddington, Lemaitre, McCrea, McVittie, 
Milne) would assist the scientific public at large in surveying 
the difficult problems of the day in cosmology. In that regard the 
meeting was a failure. The experts however appreciated the high 
technical quality of the communications and, above all, enjoyed 
the clash of personalities. The duel about clusters of nebulae 
against the background of a homogeneous universe in expansion may 
well be summed up in C1 ausewitz' s words: "Alles i st ei nfach 
(Lemaitre), aber das Ei nfache i st schwi eri g (McVitti e)-:o' 

Without a pause, Lemaitre left for London and Southampton where 
he embarked on the Duchess of Bedford of the Canadian Pacific for 
New York. Besides a course-on the "Astronomical Applications of 
the Theory of Relativity" to the graduate school, he was obligated 
to deliver three formal lectures to the general public in the 
Auditorium of the McMahon Hall. Lemaitre chose to develop his 
views on the "Time Scale" (14 December), the "Structure of Space" 
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((5 January 1934) and on "Cosmi cRays" (11 January). A presenta­
tion to the Washington AcademY of Sciences (16 November) and to 
the U. S. National Academy of Sciences at its Autumn session in 
Boston (20 November), an exposition of his cosmogony in the pre­
sence of Cardinal Archbishop O'Connell of Boston at a Round Table 
of Catholic Scientists (28 December), a visit to Villanova College 
where he was presented the Mendel Medal for "outstanding services 
to science" (15 January 1934), these were the salient features of 
a period of prodigious activity in varied sectors, either re­
search, teaching, scientific popularization, or public relations. 
Never in a hurry to return to Louvain, Lemaitre stopped in London 
and Cambridge, and then travelled to Newcastle. The Astronomer 
Royal for Scotland, Dr R. A. Sampson, had invited him on behalf of 
the Durham University Philosophical Society to deliver a lecture 
on the "Evolution in the Expanding Universe" at Armstrong College 
(12 February). He would turn up in Great Britain two months later 
at the meeting of the Royal Astronomical Society when its Presi­
dent, F.J.M. Stratton, presented the Gold Medal to Shapley and 
then opened a di scussi on on "The Expandi ng Uni verse" (11 May 
1934). Lemaitre was called to defend his short cosmological time 
scale, a time long enough, he reiterated, for the stagnation pro­
cess to trigger local condensations of the diffuse gas into nebu­
lae. Yet Shapley was not convinced. After all, since this was his 
day at Burlington House, Shapley was allowed to leave the debate 
with the last word, in fact, with no more than a surmise that 
Opik's calculations of orbits for meteors might shed light on the 
problem. 

Success breeds honors. In March 1934, Lemaitre, now a member of 
the Royal AcademY of Belgium, became the second recipient, after 
the historian Henri Pirenne, of the Francqui Prize. Proposed by 
Charles de 1a Vallee Poussin and Count Alexandre de Hemptinne, the 
nomination had been seconded by Einstein (in a letter dated Le Coq 
9 April 1933). It was examined, and approved by an international 
commission including Eddington and Paul Langevin professor at the 
College de France. With the award presented by King Leopold III 
(27 March 1934) came a check for 500,000 Belgian francs (equiva­
lent in purchase power to 200,000 dollars of 1984). The Francqui 
Prize brought Lemaitre a most needed additional income, conside­
ring that, in Belgium at those days, ful1--time university profes­
sors were rather meagerly compensated, and also that clergymen 
teaching at the University of Louvain were only paid a third to a 
half of what the laymen received. The evening after the academic 
session honoring the hero in Louvain (17 April) was something be­
tween a riot and a ritual, one of the most memorable in the stu­
dent history. Msgr Josef Van Roey Cardinal Archbishop of Ma1ines 
made Lemaitre an honorary canon of his cathedral (27 July 1935). 
After Pope Pius XI reorganized the Academia dei Novi Lincei to 
make it the Pontificia Academia Scientiarum, Lemaitre was admitted 
into that prestigious international institution (28 October 1936). 
He was especially pleased to enter at the same time as one of his 
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closest personal friends, Hugh Stott Taylor (1890--1974), David B. 
Jones Professor and chairman of the Department of Chemistry at 
Princeton University. The preceding year, Lemaitre had been 
awarded the J. Jansen Medal by the Societe astronomigue de France. 

For the next ten years, Lemaitre gave most of his research ef­
fort to the Stoermer problem dealing with a charged particle in 
the magnetic field of a dipole. Whatever were the circumstances, 
he /would reach for the problem and push the calculations yet 
another step. He had agreed, for instance, to spend the first half 
of 1935 at the Institute for Advanced Study. He had been invited 
by Professor Oswald Veblen (1880--1960) who was most eager to 
establish in the fledgling Institute the policy of attracting ma­
thematicians of the most varied specialties as temporary members 
of the School of Mathematics. Veblen himself had done extensive 
work on projective relativity theory and the geometry of four­
-dimensional spinors. While at Princeton, Lemaitre worked out for 
Dirac's equation an intrinsic representation of the group of sym­
metries in the algebra of quadri--quaternions or the so--called 
fourth order Clifford numbers. Compared to Eddington's befuddling 
treatment of the same problem by searching for a subalgebra in the 
Lie algebra g~(16,R}, Lemaitre's approach was a breakthrough no 
less than a precursor of van der Waerden's Spinor Analysis. Yet, 
at the time, Lemaitre was so much wrapped up in the Stoermer pro­
blem that he satisfied himself with dumping his Princeton results 
in a scientific journal of convenience where, as could be ex­
pected, they were lost. At the end of the Princeton semester, 
Lemaitre stopped in Montreal to receive an honorary degree from 
McGill University (30 May 1935). That summer the International 
Astronomical Union held its fifth general assembly in Paris (10-
-17 July). The controversy with Shapley about the time scale begun 
the year before at the Royal Society flared again at a mini­
-symposium of the Commission on Stellar Constitution; but, this 
time. Lemaitre was at liberty to express his skepticism in regard 
to the use Shapley intended to make of Opik's determinations for 
orbits of meteors. A busy agenda. in spite of the scorching heat 
of an exceptionally hot summer. where committee meetings competed 
with excursions, official receptions. and other social events, 
culminated in a banquet on the first platform of the Eiffel tower 
(14 July): the brilliant illuminations and fireworks of Bastille 
Day viewed from the second platform made a memorable spectacle. 

Lemaitre's visit to the Institute was but a side episode in the 
relentless pursuit of his theory on the origin of the cosmic rays. 
In fact, while in residence at the Institute, he kept commuting 
between Princeton and Cambridge where he had joined Vallarta in 
running numerical integrations through Vannevar Bush's Differen­
tial Analyzer. In the summer of 1936, it was Vallarta's turn to 
visit Louvain for a year as Advanced Fellow of the C.R.B. Educa­
tional Foundation. Lemaitre and Vallarta had planned first on 
paying a visit to Carl Stoermer during the International Congress 
of Mathematicians which the latter was hosting in Oslo. his home 



GEORGESLEMAITRE 379 

town (13--18 July 1936). In his keynote address, Stoermer condes­
cended to mention the research undertaken by Lemaitre and 
Vallarta; he also announced Professor Rosseland's plans for 
building a much extended Bush analyzer, and his intention of em­
ploying the machine for computing orbits of charges in the field 
of a magnetic dipole. Evidently the competition had not abated 
yet: Lemaitre and Vallarta left Oslo without having met Stoermer 
in private to settle the misunderstandings and coordinate their 
research. 

From the close collaboration between Lemaitre and Vallarta in 
Louvain, there emerged an ambitious program for continuing syste­
matically natural families of periodic orbits, for integrating nu­
merically differential equations and the concomitant variational 
equations by Fourier series. The main difficulty resided in re­
ducing the variational system to the Hill equation for the normal 
displacement and a quadrature for the tangential displacement, 
also in using the latter to obtain the variation caused by an in­
finitesimal change in the Jacobi constant in order to continue na­
tural families in an analytical manner according to certain 
schemes proposed, altogether offhandedly, by Henri Poincare. In 
that area, credit must be given to Lemaitre for having been the 
first one with his student Louis Bouckaert in normalizing numeri­
cally a Hamiltonian system at an equilibrium, and the first one 
with the collaboration of another of his student, Odon Godart, in 
generalizing Hill's alogorithm for determining numerically perio­
dic so-lutions for systems of differential equations with periodic 
coefficients. 

Well ahead of his time, Lemaitre was busy creating a mix of al­
gorithms equivalent to what one would learn later to call the 
Galerkin method and the Fast Fourier Transform, so busy in fact 
that he never cared to establish his priorities in the area of 
scientific computing. Spurred by the success Leslie J. Comrie had 
met in automating H. M. Nautical Almanac Office at Greenwich Ob­
servatory, Lemaitre created a Laboratory of Scientific Calcula­
tions in Louvain. By now computing had become a passion for 
Lemaitre. His enthusiasm was infectious: for Charles Manneback, 
Lemaitre devised an efficient technique for determining the qua­
dratic potential of an ethylene molecule from the vibration fre­
quencies measured in the Raman spectrum. 

In February 1938, Lemaitre boarded the Normandie for New York 
on his way to the University of Notre Dame in Indiana where he had 
accepted a visiting professorship. This was the result of a sug­
gestion made by Professor Arthur Haas (1884--1941) to Vallarta who 
passed it to Lemaitre (2 June 1937). By the standards of the time, 
the offer was generous: a salary of $3500, living expenses at 
Corby Hall, and $400 in travel allowances. Father John F. O'Hara, 
the president of Notre Dame, was eager to upgrade his departments; 
Lemaitre's arrival coincided with the appointment of Emil Artin, 
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most anxious to escape the political oppression at the University 
of Hamburg, with an arrangement with Eugene Guth who was starting 
an academic career in theoretical physics at the University of 
Vienna, and with the visit of Kurt Godel (1906--1978) on leave, 
also, from the University of Vienna. Lemaitre's departure caused 
a sensation in the American scientific circles; Edmund Bartnett in 
the New York Sun (2 September 1937) compared it to Einstein's 
exile from Berlin to Princeton. To be sure, Lemaitre never enter­
tained the prospect of migrating to the United States. 

Karl Menger, the Chairman of the Department of Mathematics and 
a reputed geometer, had scheduled the second Notre Dame Symposium 
on mathematics to begin the week after Lemaitre disembarked in New 
York (3 February 1938). Next to Marshall H. Stone, Garrett 
Birkhoff, Oystein Ore, Adrian Albert and Emil Artin, in short all 
the tenors in liThe Al gebra of Geometry", Lemaitre talked of liThe 
Algebraic Details of the Relativity Theory of Protons and Elec­
trons" proposed by Eddi ngton (12 February). Hi s semester course 
on cosmology was attended by the graduate students and the faculty 
in the Departments of Mathematics and Physics. The most signifi­
cant event in that peri od was the Notre Dame Symposi urn on the 
Physics of the Universe and the Nature of Primordial Particles 
(2--3 MaYT. The particle physicists, Gregory Breit, Arthur Haas 
and Eugen Guth, tossed ideas about approaches to the physics of 
what they understood was Lemaitre's Primeval Atom, whereas 
Lemaitre, more interested in Shapley's observations of faint gala­
xies and also of hierarchies of clusters of galaxies, kept on de­
veloping purely gravitational models to account for the kind of 
density fluctuations measured by Shapley and Hubble. His friend 
Vallarta who had also been invited gave a progress report on the 
Stoermer problem. Both he and Lemaitre failed to perceive that the 
communications of Arthur H. Compton and Carl D. Anderson at the 
symposium itself indicated that cosmic rays could not be the much 
sought after remnants of the Primeval Atom. The Notre Dame sympo­
sium showed Lemaitre missing the cues about his Big Bang Theory on 
the verge of taking a critical turn. 

Both indefatigable travellers, Lemaitre and Vallarta made ar­
rangements for touring eastern Canada together in the month of 
June. As was expected from Lemaitre, they stopped in Montreal to 
pay their hommage to Miss Thibeaudeau, and they met for long hours 
of discussions with Francois Henroteau at the Dominion Observatory 
in Ottawa. The summer vacations in Louvain were interrupted by the 
Sixth General Assembly of the International Astronomical Union in 
Stockholm (3--10 August 1938). His last conversation with 
Eddington took place in the ferry--boat from Malmo to Copenhagen. 
It was for Lemaitre a most memorable occasion. He had tried once 
more to overcome Eddington's hesitations toward the Big Bang 
Theory, and he expected Eddington to retort that no scientific hy­
pothesis is admissible unless it is confirmed by experiments or 
observations. Much to Lemaitre's surprise Eddington, in a somewhat 
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confidential tone, declared that, to the contrary, "he could not 
trust an experimental result unless it was confi rmed by theory. II 

At the University of Louvain, Lemaitre resumed his teaching; he 
now occupied the Chair of Mechanics that Maurice Biot had vacated 
when he accepted a permanent appointment at Columbia University. 
Repeated alerts on the German border disrupted progressively 
scientific research in Belgium. Young professors, research assis­
tants, graduate students kept getting in and out of the uniform; 
foreign students hastened to repatriate. Yet everyone in place 
pretended to act as if life continued on its normal course. On 12 
March 1939, H.C. Plummer, president of the Royal Astronomical 
Society, announced that the Council had elected Lemaitre as an 
Associate of the Society. Cardinal Eugenio Pacelli elected Pope on 
2 March insisted on holding an extraordinary session of the Ponti­
fical AcademY of which he had been a charter member. In spite of 
the drole de guerre (lithe phoney war") which closed the borders 
between France and Germany, Lemaitre travelled to Rome and pro­
nounced the eulogy of Lord Rutherford at the solemn session pre­
si ded by H.H. Pi us XII (3 December 1939). 

i. Second intermission: ~ lonely teacher 

In May--June 1940, fleeing the second German invasion, Lemaitre 
ran away from Belgium with his parents and other relatives, but 
was stopped in the Pas de Calais by the panzer divisions investing 
the Dunkirk beaches. He returned to Louvain where he faced a very 
bleak situation. For the second time in twenty-six years the Uni­
versity Library had been burnt down to ground level; a number of 
his colleagues who had been drafted in the Belgian armY, had been 
taken to Germany as prisoners of war. Nevertheless the new Recteur 
Magnifigue, Msgr Honore Van Waeyenbergh who had succeeded Msgr 
Paulin Ladeuze, reopened the University on 8 July, the students 
completed the last term of the current year, and a new academic 
year opened on 12 November. All international contacts were cut 
off, and so was funding in support of scientific research. Re­
cruitment of faculty was next to impossible. A course left vacant, 
either because the instructor died or was retired or arrested, was 
routinely re--attributed to a colleague. Thus, when it became ap­
parent that Canon De Strijcker could not return to the University 
after Belgium's capitulation, his course in philosophy for the 
freshmen at the College of Engineering was re--assigned to Canon 
Lemaitre; he kept that charge from 1940 until 1945. After Germany 
invaded the Soviet Union, material conditions in occupied Belgium 
deteriorated at an accelerated pace. As the war went on, foreign 
occupation turned to repression and even outright oppression. When 
the Kommandantur closed the University of Brussels, its students 
were immediately admitted to the University of Louvain; two years 
later, the Recteur of Louvain was arrested for refusing the enemy 
the roster of matriculated students; the Kommandantur claimed it 
needed it to track down freshmen hiding from forced labor in Ger-
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many. With the winter of 1943--1944, rationing of food and fuel 
fell to levels of starvation. 

In the middle of that utter misery, Lemaitre saw it as his duty 
to help maintain a minimum of scientific activity among his col­
leagues in occupied Belgium. Personally, he spent his free time 
meditating on the classics of mechanics, especially Poincare's 
Methodes nouvelles de l! Mecanique celeste. Much to the surprise 
of everyone who remembered the compulsive traveller he had been, 
Lemaitre involved himself with the affairs of the Societe belge 
~'Astronomie, de Meteorologie et de Physique du Globe; he was 
elected its president in 1943. As a token of the nation's appre­
ciation for the moral leadership gallantly assumed in the most de­
pressing circumstances, Prince--Regent Charles bestowed on 
Lemaitre the insignia of Commander of the Order of Leopold II, the 
highest honors the King of the Belgians confers to a citizen who 
is not a member of the armed forces (23 April 1947). 

In the early morning of 12 May 1944, the U.S. Air Force bombed 
Louvain; it planned to destroy the railway depot, instead it 
ravaged the university district. Lemaitre's apartment on the third 
floor of the Debelva pastry--shop was blown out by a direct hit. 
Rescued from the debris, Lemaitre was taken to the University hos­
pital where he was treated for shock and mUltiple contusions. With 
Louvain in ruins, the school closed that day. For a while, until 
the city was liberated and the communications with Brussels re­
-established, Lemaitre camped in the attics above his office at 
the Premonstratensian College. More destruction occurred when the 
Germans rearguard blew up all bridges, small and large, a few 
hours before the English troops entered the town (4 September). 

5. The second career: a craftsman at the bench - - - ------
11 Y a trois categories de personnes 
qui aiment les plaisirs du gadget: 
les physiciens par obligation, 
les gens d'affaires par ostentation 
et les theoriciens par compensation. 

The war years had exaceted a heavy toll on Lemaitre. His physi­
cal vigor had lost its youthful punch. Once again he was tied by 
family obligations. He felt that his mother, now a widow, could 
not be left to live alone. Since he himself was homeless, he re­
turned to live with her in the family house in Brussels. Until her 
death in 1956, he will commute by train and by taxi -- Lemaitre 
never drove a car -- between Brussels and Louvain two or three 
days a week. His teaching duties were not onerous, at any rate by 
the standards of the time in Belgium. He crammed his undergraduate 
classes in the late morning hours, then walked to the Hotel 
Majestic for a long lunch with batchelor colleagues, as if they 
were sitting at the high table of a Cambridge college. After a nap 
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in his office at the Institute of Physics, he would confer with 
his research assistant on the progress of a calculation or the 
correction of galley proofs, and then came the time for tea at a 
table in the middle of his computer laboratory to which visitors 
and junior colleagues in the Departments of Mathematics and Phy­
sics were welcome. The afternoon usually ended with a graduate 
class. His teaching work done for the day, he walked back to the 
railway station, except every other Wednesday when he would pre­
side after dinner over the Cercle mathematigue. He was sentimen­
tally attached to that informal seminar run by the engineering 
students because it had been founded by Charles de la Vallee 
Poussin in the early years of his tenure at the University. 

For two weeks each summer, he took his mother to Switzerland, 
often to the Lake of Bienne for vacations among the habitues, a 
closely knit ring of Belgian and Swiss friends and acquaintances. 
After his mother died (25 March 1956), Lemaitre sold the family 
house, and took an apartment in Louvain, first on President Hoover 
Square in the hub of the University district, then on King Albert 
Street in the quiet shadow of Saint Peter's Church. All the same 
he kept to his routine of classes two days a week, and of work at 
home interrupted by discussions with his assistants and graduate 
students at his office in the Institute of Physics at the Premon­
stratensian College. 

Lemaitre had no special taste for a prominent place in the 
councils of the University or any other national institution. 
14hich is to say that he never volunteered for administrative 
chores, although he acquitted himself of whatever he was elected 
to assume, and this rarely happened, much to his satisfaction. 
Thus he served as Dean of the Sciences Faculty (1948--1950), and 
for a period as director of the Sciences Class at the Royal 
Academy (1949--1950). 

His academic standing brought him into the ambit of an affluent 
and cultivated society in Brussels interested in the arts and mu­
sic. His youngest brother, Maurice, Chief Engineer for the natio­
nalized Belgian railways, played the alto in the quatuor Queen 
Elisabeth; his sister-in-law organized at home concerts of chamber 
music which Lemaitre attended frequently. His relaxations were 
modest. He enjoyed playing piano at home. His hobby was photo­
graphy, chiefly for the producing of unusual prints of ordinary 
scenes under unexpected lights. For a time, he studied Chinese 
rather assiduously. Lemaitre found his chief human happiness in 
the families of his brothers among his many nephews and nieces. 
Above all he loved travelling. He was delighted to be appointed to 
the Belgo--Italian commission for cultural exchanges. He took the 
habit of extending mission trips to Italy into vacation tours 
through various regions of Italy, the Ligurian coast one year, 
Naples and Capri another year, or Florence and Bologna, Ravenna 
and Venice. On several occasions, he arranged his trip to stop a 



384 A.DEPRIT 

couple of days in Assisi and visit the tomb of Saint Francis. 

Thus, at the age of 50, Lemaitre settled in his second scien­
tific career. It was to be the life of a professor in academic 
semi--retirement, and also that of a research scientist intensely 
preparing himself backstage for applying the latest developments 
in computer technology to the progress of non linear dynamics in 
general and of celestial mechanics in particular. Apparently he 
felt no regret for having withdrawn from the limelight. The scien­
tific world to which he returned in 1945 had changed radically, 
and he was well aware of it. While the German occupation had kept 
him stagnating in Belgium, his friends in Great Britain and the 
United States had moved in step with the technical and scientific 
evolution determined by the war effort. Vallarta had resigned from 
the M.I.T. to go back to his native Mexico where he assumed the 
leadership in promoting scientific research and peaceful applica­
tions of nuclear energy. Hugh Stott Taylor had assumed the role of 
Dean of the Graduate School at Princeton. Leslie J. Comrie was now 
managing his own company, the celebrated' Scientific Computing 
Service Limited. In Japan, Hagihara had his hands full with re­
constructing research and teaching in astronomY. Lemaitre had 
lost his patron in Louvain, Msgr Ladeuze. The new Recteur, a man 
of heroic modesty as he proved it during the occupation, was a 
builder and a wizard at raising money and suggesting donations, 
but was not a scholar by any standards. Beyond their sacerdotal 
persuasion and their dedication to the University, there was 
nothing these two men shared on a personal basis. 

With a caution that had been so unusual with him in the past 
fifteen years, Lemaitre undertook to renew his international con­
tacts. His friends and colleagues in the United States were eager 
to re--establish communication. Lemaitre was not forgotten; on 19 
April 1945, the American Philosophical Soceity elected him a fo­
reign member. At a meeting of the Societe helvetigue des Sciences 
naturelles in Fribourg (1--3 September 1945), Lemaitre was intro­
duced to Fernand Gonseth at the ETH ("Federal Institute of Techno­
logy") in Zurich, a professor of mathematics who had studied very 
closely relativity and cosmology, but was now established as a 
philosopher of considerable notoriety in the fields of logic and 
scientific methodology. Gonseth offered to publish a collection of 
Lemaitre's popular lectures and conferences on the Big Bang 
Theory. Lemaitre however insisted that a mathematical summary be 
added as an appendix. The volume appeared in 1946 under the title 
"L'Hypothese de l'Atome Primitif. Essai de Cosmogonie" with a long 
preface by Gonseth. It was immediately translated into Spanish; 
the English translation with a prologue by Henri N. Russell fol­
lowed in 1950. With the meeting of the Societe helvetigue came the 
opportunity of renewing acquaintance with the nuclear physicist 
Paul Scherrer at the Department of Physics of the ETH, to whom 
Lemaitre had been introduced by Vallarta and Manneback. It was 
then arranged that Scherrer would visit Belgium and advise the 
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Belgian government on how to proceed in order to establish a na­
tional competence in nuclear engineering. 

The publication of Lemaitre's popular papers on his Big Bang 
Theory drew the attention of the French speaking public. It resul­
ted in a number of invitations to speak on the topic to general 
audiences in Belgium and abroad. Lemaitre made a special effort in 
preparing a major address he had agreed to deliver at the Palais 
de la Decouverte in Paris (13 May 1947). The text of that confe­
rence became, one might say, the manifest of his theory. He read 
it with resounding success at the first postwar meeting of the 
Pontifical Acade~ (4--19 February 1948). At the same meeting, he 
presented a delightful treatment of the elliptic geometry by qua­
ternions; the paper reveals first hand knowledge of the XIXth cen­
tury sources. Such a display of erudition is unusual in Lemaitre's 
publications. One owes it undoubtedly to the years of confinement 
in Louvain among the classical works which his negligence in re­
turning books borrowed from the Library had involuntarily salvaged 
from the Holocaust of May 1940. Finally the Seventh General As­
sembly of the International Astronomical Union in Zurich (11--18 
August 1948) gave Lemaitre the full opportunity of renewing 
friendships with colleagues of his American years. Yet he was not 
interested in resuming his first career. 

Lemaitre's second stage in scientific life exhibits elements of 
culmination and of decline. It was then that the mature -- perhaps 
the aging -- Lemaitre set out to retrench himself in Louvain. 

In 1946 Prime Minister Eamon De Valera, desirous of the scien­
tific achievement of his country and mindful perhaps of his youth­
ful aspirations as a student of astrophysics under Whittaker, had 
appropriated a budget for rehabilitating Dunsink Observatory as a 
national institution. Thanks to the vigorous leadership of Profes­
sor Hermann Bruck, the first phase of the restoration was com­
pleted within two years. At Bruck's invitation, Lemaitre flew to 
Dublin to visit the renovated Dunsink (14--24 March 1950). He 
toured the Institute of Advanced Studies, also the Departments of 
Physics and Mathematics at the National University of Ireland in 
Dublin; he was driven to Armagh Observatory where an old acquain­
tance of Harvard days, Emil Opik, was cutting for himself a repu­
tation in estimating the age of the universe from galactic and ex­
tragalactic statistics. Lemaitre was enthralled by what he had 
seen and heard; his hosts were delighted with their guest. Never­
theless, when there came a letter from Erwin Schrodinger offering 
a visiting professorship at the School of Physics in the Institute 
for Advanced Studies (9 May 1951), Lemaitre declined. After the 
Van Allen belt around the earth had been detected by satellites, 
the European division of the U.S. Air Force Office for Scientific 
Research sent delegates to Louvain to invite Lemaitre's collabora­
tion in recruiting a team for analyzing the data in relation to 
the Stoermer problem. Once again Lemaitre declined. 
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Honors nonetheless kept coming to the doorstep of Lemaitre's 
retreat in Louvain. A bronze portrait head, executed by Mr Charles 
Leplae, was commissioned by the Belgian Ministry of Public Ins­
truction (August 1951) and placed in the Aedes Academiae, the seat 
of the Royal AcademY in Brussels (8 January 1955). Lemaitre was 
awarded the Decennial Prize for Applied Mathematics by the Royal 
AcademY of Belgium (19 September 1950), the Eddington Medal by the 
Royal Astronomical Society (13 February 1953). He received the ho­
norary D.Sc of the University of Dublin (1954). H.H. Pope John 
XXIII appointed him President of the Pontifical AcademY of 
Sciences for a period of four years (27 March 1960). Prior to that 
nomination, as prescribed by the etiquette at the Vatican Court, 
Lemaitre was bestowed the honorary title of pra!)t domestigue de 
Sa Saintete ("prelate in the Pope's Househol , by virtue of 
which title he was henceforth addressed formally as Monsignor (19 
March). The presidential mandate was renewed in 1964 for another 
period of four years. The Accademia Nazionale (delle Scienze 
detta) dei XL elected Lemaitre as one of its twelve ~ stranieri 
or foreign members (17 March 1961). Lemaitre was glven the seat 
first attributed in 1786 to the Prussian meteorologist Franz Carl 
Achard, and successively occupied by the medical genius Jons 
Berzelius, Urbain Le Verrier, the geologist David Owen, the mathe­
matician James Sylvester, John W. Strutt third Baron Rayleigh, 
Lord Rutherford, and Max Von Laue. 

Only after the death of his mother did Lemaitre return to the 
U. S. A., and only for short visits. In 1961, as the guest of the 
International Business Corporation of Belgium, he attended the 
Eleventh General Assembly of the International Astronomical Union 
at the University of California at Berkeley. On that occasion he 
was invited to make a communi cati on to the conference on "The 
Instability of Systems of Galaxies" at the University of Cali­
fornia at Santa Barbara (8--9 August); he also appeared at the IAU 
Symposium on "Problems of Extra--Galactic Research" where he con­
tented himself with chairing a session of papers pertaining to 
cosmology (10--12 August). By that time however, his research 
interests had drifted away from cosmology into celestial mecha­
nics. During the working session of Commission VII (16 August), at 
the instigation of its chairman, Professor Dirk Brouwer of Yale 
University, he made a report on his regularization of the problem 
of three bodies. It was brilliant; the effect it made on the pu­
blic was marred however by the following communication he insisted 
on giving about his versions for numerical integration by finite 
differences. Lemaitre returned to Berkeley in the summer of 1962 
as the guest of the Space Science Laboratories. He wrote there his 
last scientific paper, a most elegant treatment of some problems 
left unsolved by Elie Cartan regarding the problem of three 
bodies. While in Berkeley, Lemaitre shared an office with Profes­
sor A. van Wijngaarden director of the Mathematisch Centrum at the 
University of Amsterdam and one of the authors of ALGOL. van 
Wijngaarden converted Lemaitre to the use of programming languages 
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more advanced than assembler language. So much so that, in the 
academic year 1962--1963 at Louvain, Lemaitre turned himself into 
an instructor in computer sciences and opened a course in Algol. 

In cosmology, Lemaitre's postwar attitude was one of deferment: 
he was waiting for observations to confirm the Big Bang Theory. 
For the past fifteen years, since his memorable address to the 
British Association in 1931, he had been put on the defensive. The 
Big Bang Theory had been held in suspicion by most astronomers, 
not the least by Einstein, if only for the reason that it was pro­
posed by a Catholic priest and seconded by a devout Quaker, hence 
hi gh1y suspect of concordi sm. In that regard, the personal opi ni on 
of Pope Pius XII came to Lemaitre as a most embarrassing surprise. 
The Pontifical AcademY of Sciences was meeting for a week long se­
minar on "The Problem of the Microseisms". The session was to 
begin on the morning of 22 November 1951 with an audience given by 
the Pope in the Great Hall of the Consistory. There, in the pre­
sence of several cardinals and of the Italian Minister for Educa­
tion, the Pope pronounced his famous speech "Un Ora". After a 
brief review of the traditional Catholic teaching regarding the 
creation, the Pope entered a long and detailed exposition of the 
physical cosmology to lead to his conclusion that the initial sin­
gularity postulated by the Big Bang Theory could be made the ante­
cedent of the scholastic syllogism concluding to the Catholic con­
cept of creation. Astronomers present at the ceremony, Lemaitre 
among them, had recognized in the pontifical address arguments de­
veloped by their fellow member, Sir Edmund Whittaker (1873--1956), 
either in his Riddell lectures at Durham University (1942) on the 
"Begi nni ng and end of the wor1 d" or in the Donnell an 1 ectures on 
"Space and Spirit" delivered in 1947 at the University of Dublin. 
A di rect quotati on from "Space and Spi rit" expli citly acknow1 edged 
in the official text published the following day by the 
Osservatore Romano confirmed the general opinion. The Pope's 
speech did not go unnoticed. Excerpts of it were quoted jokingly 
by George Gamow as if the pontifical declaration had made an 
"unquestionable truth" out of his theory on the role of turbulence 
in the expansion of the universe (15 April 1952). 

Needless to say, regarding the phi10sphica1 and theological 
implications of the Big Bang, lemaitre and Whittaker held diame­
trically opposite views. Always on the alert lest he be drawn into 
a religious controversy, Lemaitre had never reacted to Whittaker's 
apologetics. Nor did he ever comment on the opinions Fred Hoyle 
had expressed in hi s si xth lecture to the B.B.C. on "The Nature of 
the Uni verse" about alleged i ncompati bil iti es between the theory 
of the continuous creation and what Hoyle regarded as the Judeo­
Christian tradition rooted in a fundamentalist interpretation of 
the Genesi s. 

Fortunately Lemaitre had made a friend of Father Daniel 
O'Connell, a Jesuit director of the Speco1a Vaticana and a man who 
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was gradually emergi ng asa most trusted sci enti fi c advi ser to the 
Vatican Curia. Lemaitre had accepted the invitation by the Union 
of South Africa to join Sir Lawrence Bragg, Professors E.J. 
Brouwer and Jan H. Oort at the Science Congress commemorating the 
fiftieth anniversary of the South African Society for the Advance­
ment of Science (7--12 July 1952). On his way to Cape Town, he 
stopped in Rome to consult with O'Connell and dignitaries of the 
Vatican Curia, in particular Msgr dell'Acqua and Cardinal 
Tisserand, about the pontifical address planned for the Eighth Ge­
neral Assembly of the International Astronomical Union (4 --13 
September 1952). At the reception in Castel Gandolfo, H.H. Pope 
Pius XII exalted the progress accomplished in observational astro­
nomY, but made no allusion to the modern cosmology and the Big 
Bang Theory save for a poeti call usi on to "1 es processus cosmi ques 
qui se sont deroules au premier matin de la creation"(7 Septem­
ber). Lemaitre felt relieved. Father O'Connell had well exercised 
his legendary discretion in obtainfng that the Pope. by his si­
lence, vindicate Lemaitre's integrity as a physicist. 

Lemaitre wanted his Hypothesis of the Primeval Atom to be 
judged solely as a physical theory, and exclusively on grounds of 
both mathematical consistency and adequation with observations and 
experiments. After the two pontifical addresses, he felt it neces­
sary to explain himself to an areopage of physicists. The opportu­
nity arose at the Xlth Solvay Conference in Physics dealing with 
"The Structure and The Evolution of the Universe" (Brussels, 9--13 
June 1958). In his communication. in essence a full account of his 
Primeval Atom HYpothesis, after he had explained, rather well, 
what he meant by the natural beginning of the universe, he faced 
the issue squarely. "I do not pretend, di gressed Lemaitre, that 
such a singularity is inescapable in Friedmann's theory, but I 
simply poi nt out how it fits with the quantum outlook as a natural 
beginning of multiplicity and of space--time." Then he added: 

"As far as I can see. such a theory remains entirely outside 
any metaphysical or religious question. 
"It leaves the materialist free to deny any transcendental 
Being. He may keep, for the bottom of space--time, the same 
attitude of mind he has been able to adopt for events occur­
ring in non--singular places of space--time. 
"For the believer, it removes any attempt to familiarity 
with God. as were Laplace's chiquenaude or Jeans' finger. It 
is consonant with Isaias speaking of the Hidden God, hidden 
even in the begi nni ng of creature." 

At the Notre Dame Symposium of 1938, Lemaitre had virtually 
committed himself to solving the problem of the clustering of ne­
bulae. From thereon it had been the sole topic of his research in 
cosmology. In his view, due to the instability at the equilibrium 
that is the Einstein model. amidst a universe expanding as a 
whole. there were individual regions that failed to expand. Soon, 
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at these points, the exchange of nebulae became an exchange be­
tween the cluster itself and the neighbouring field with the lat­
ter expanding more and more to become finally the general field of 
nebulae. Can the continuous relay of nebulae between the cluster 
and the external field explain why the local condensation persists 
in spite of the general expansion? Put in so general terms, the 
problem looked impenetrable. To make it simpler, Lemaitre limited 
himself to small clusters in an expanding universe close to the 
Einstein equilibrium; even so reduced to its bare minimum, the 
problem remained a challenge. For the spherical models of clus­
ters, which he built with the collaboration of R. Vander Borght, 
Lemaitre could produce simple solutions that were both static and 
isotropic, but the resulting clusters had too large a radius and 
presented no marked condensation in the central region (1948). At 
the next level of complexity, dropping the requirement that the 
solutions be static, Lemaitre still tried to keep the problem 
somewhat manageable by imposing that spatial densities in the 
clusters be determined only by the radial motion of the nebulae 
(1951). These so--called quasi--isotropic models turned out to be 
i nconsi stent with the boundary condi ti ons (1958). Fi na 11y, drop­
ping this pseudo--simplification, Lemaitre and his assistant 
Andree Bartholome embarked on a large computing program to produce 
at least some classes of particular solutions by separating the 
variables. At that stage the clustering of nebulae became for 
Lemaitre and his assistant a problem that they carried from ma­
chine to machine as a benchmark to test how far the available com­
puting power would develop the solutions. 

For the Stoermer problem, Lemaitre hit an interesting idea. He 
proposed to develop in literal form by Poincare's technique a ca­
nonical transformation that would eliminate the terms periodic in 
the latitude. He carried the reduction by hand to the fourth or­
der. Having satisfied himself that the calculation could be pur­
sued in a consistent manner, he went looking for ways of executing 
algebraic calculations automatically by computer. On that score, 
considering the state of the technology at the time, he was reach­
ing rather far into the future. Yet he was not day--dreaming. He 
followed closely the work done by Wallace Eckert at Columbia Uni­
versity first in automating Brown's Lunar Tables, then in recon­
structing by computer the solution developed by Hill and Brown for 
the main problem in Lunar Theory. At the same time he was studying 
closely Delaunay's masterpiece looking ahead for the time when he 
would reproduce Delaunay's operations by machine. Past 1950 
however, the only activity on record regarding the cosmic rays was 
the session on "The problem of cosmic radiation in the intergalac­
tic space", the first manifestation he organizsed as president of 
the Pontifical AcademY of Sciences (1--6 October 1962). Thorough 
screening of the invitations and a jovial but firm stirring of the 
debates made it a success. 
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Through his solitary readings of the classics during the war, 
Lemaitre had come across the famous Lecons sur les Invariants 
i nte~raux ("Lectures on the integral i nvari antS"T gTVen in 1921-
-192 by Elie Cartan at the Sorbonne. Cartan1s complete reduction 
of several particular cases in the problem of three bodies intri­
gued Lemaitre • At first he strived to reconstruct Cartan1s solu­
tion in the simplest manner possible, exclusively by elementary 
geometric transformations (1950). Having succeeded for three par­
ticles of equal masses in a fixed plane, he extended his technique 
by inventing a new set of symmetric coordinates to cover gradually 
more general cases, removing in turn the restriction on the masses 
and the conditi on that they be located ina fi xed pl ane. Consi der­
ing the enormous amount of research that had been done on this 
question for two centuries, the reduction effected by Lemaitre is 
simply amazing in its originality and in its simplicity. This is 
not all. Somewhat to his surprise Lemaitre discovered that his re­
duction by elementary geometry led to a representation transform­
ing the moving binary collisions into fixed singularities which he 
could then regularize by conformal mappings, a procedure somewhat 
analogous to Levi--Civita1s transformation in the planar res­
tricted problem of three bodies. He was most interested in ex­
ploiting his representation in order to explore numerically the 
qualitative structures of the phase space in the two special cases 
which Jean Chazy had studied qualitatively by Tauberian arguments, 
the collinear configuration in which the three mass points move on 
a fixed line, and the isosceles configuration in which the tri­
angle of the three particles remains isosceles at all times. A 
considerable number of numerical explorations were made in these 
two problems, but few of them have been published. For Lemaitre 
waited for the moment when all these preliminary results would be 
reconstituted systemati ca lly by automati c prospecti on ona 1 arge 
computer. 

Old enough to have experienced the antiquated ways of compu­
ting, either numerically or algebraically, by hand with tables of 
logarithms, Lemaitre in his sixties was young enough to have 
entered fully into the spirit of the revolution in scientific com­
puting that was taking place in the 1950s. Moreover he kept him­
self acquainted with almost everyone of the astronomers engaged 
in mastering computers for the benefit of mathematical astrono~. 
When electronic machines became available commercially, he kept 
before himself the purpose of bringing the equipment to Louvain. 
The President of the University tried to represent that all the 
resources were committed to reconstructing the campus devastated 
by the war and to meeting the maddeningly rapid expansion in the 
student population. Lemaitre would have none of that: he lent the 
Recteur the money to buy the first electronic computer installed 
at the University, a Burroughs E101 (1957). On that machine he 
learned the basics of machine language and computer organization. 
Later, on an IBM 1620, then on an Elliot 801, he became proficient 
in assembler languages. In many respects he had become a computer 
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hacker; but he also had a vision of the revolution computers were 
making in mathematical research. Almost single--handedly he insti­
gated the creation of a computing center in his university. At 
this pOint hovever, friction developed with administrative autho­
rity, and Lemaitre withdrew from further initiative on the acade­
mi c scene. 

The friction arose as a result of the linguistic conflicts in 
Belgium. The 1960s were indeed sad years for the French section of 
the Uni versity of Louvai n. The "1 anguage 1 aws" voted by the Fl e­
mish majority in the Belgian Parliament had resolved that only 
Dutch should be used for teaching in schools situated in Flanders 
(the northern part of the country), and French only in schools lo­
cated in Wallonie (the southern provinces). From a strict cons­
tructionist viewpoint, the law did not apply to the French section 
of the University although it was established in the Flemish city 
of Leuven. Yet the Flemish majorities in the Parliament, in the 
press, and in the streets to be sure, never ceased to proclaim 
their will to make Louvain the Katholieke Universiteit te Leuven, 
a school totally and exclusively Flemish. Since the university was 
a private institution, the decision of abolishing the French sec­
tion fell on its Flemish faculty. For a while after the vote of 
the linguistic laws, two universities lived side by side in Leu­
ven. Most of the French speaking professors grouped themselves in 
an association aimed at negotiating compromises with the Flemish 
majority. Lemaitre was elected its president, and he accepted the 
charge (1962). That made him the prime target of the campaign 
waged in the Flemish press for the abolition of the French sec­
tion. "Walen buiten" ("Oust the Walloons") was the battle--cry 
calling the Flemish students to rioting in the streets of the uni­
versity district. A couple of times the rioters broke the windows 
in Lemai tre l s apartment. 

Before the French problem in Leuven reached the final solution, 
Lemaitre passed the age limit. By way of retiring him from the 
academic service, the University promoted him Emeritus Professor 
at the Faculty of Sciences, which promotion safeguarded his privi­
leges (July 1964). An office at the Institute of Nuclear Physics 
in the Arenberg park, access to the computer and the library, the 
employment of a research assistant: he had everything to make him 
happy and contented, yet life had become wearisome to him. People 
who saw hi m at the XII Ith So 1 vay Conference in Physi cs on "The 
Structure and Evolution of Galaxies" in Brussels the next Septem­
ber hardly realized how sick he was. and worn out. Yet he had to 
keep busy, and he did hack it on the computer -- in an aimless 
fashion. His health declined steadily; he suffered a heart attack 
in 1965 from which he did not fully recover. In January 1966, he 
received news of his election to the Academia Neocastrum. To his 
bedside at the Hopital Saint Pierre of the School of Medecine, 
Professor Godart brought him the issue dated 1 July 1965 of the 
Astrophysical Journal which contained the now famous parallel let-
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ters, one signed by R.H. Dicke, P.J.E. Peebles, P.G. Roll, and 
D.T. Wilkinson, the other by A.A. Penzias and R.W. Wilson. At last 
there came the evidence from observations about the Big Bang. 

After a long illness Monsignor Georges Lemaitre died Monday 20 
June 1966. At the solemn service in the University parish church 
attended by the recteurs of the Flemish and French universities of 
Leuven/Louvain, the French faculty, members of the Belgian minis­
terial Cabinet, and representatives of the diplomatic corps, the 
eulogy was pronounced, in keeping with the academic etiquette, by 
the Dean of the Sciences Faculty, Albert Bruylants (24 June); in 
the afternoon, Lemaitre was buried in the family plot in the ceme­
tery of Marcinelle, a suburb of Charleroi. 

"Ergo vivida vis animi pervicit et extra 
"processit longe flammantia moenia mundi 
"atque omne immensum peragravit mente animoque 
"unde refert nobi s vi ctor qui d possit ori ri 
"qui d nequeat. 

Aurelius Lucretius Carus 

P.S. Many people helped in the preparation of this notice, 
especially Jacques Absil, Luc Arnould, P. Darcy Barnett, 
Emile Boulpaep, Rolf Brahde, Andre Berger, Louis Bouckaert, 
Lucien Bossy, C. Bruneel, Charles Courtoy, Richard Cushman, 
Andree Deprit--Bartholome, Raoul Deprit, Rene de Vogelaere, 
Jules Deutsch, Albert d'Haenens, Howland Fowler, Dionigi Galletto, 
Robert Graas, Robert Howland, Xu Jia, Patricia Jordan, 
Charles Lamb, Monique Lavendhomme, Gilbert Lemaitre, 
Pierre Lemaitre, Marguerite Manneback, Edouard Massaux, 
Karl Menger, Marcel Michel, Paul Paquet, Elizabeth Pessek, 
Alfredo Ramirez--Araiza, Joseph Schnaubelt, Paul Smeyers, 
Miles Standish, Pierre Triest, Roderick and Marjorie Webster, 
Chen Zhong--Xuan, and Anthony Zito. 



THE SCIENTIFIC WORK OF GEORGES LEMAITRE (*) 

O. Godart 

Institut d'Astronomie et de Geophysique G. Lemattre, 
Universite Catholique de Louvain-la-Neuve, Belgium 

The scientific interests of Georges Lemattre were rather 
broad, mainly centered on applied mathematics, mechanics, phy­
sics and astronomy. 

His first university studies before the first world war 
(1914-1918) were in mechanical engineering at Catholic Univer­
sity of Louvain. Although he changes afterward, mechanics kept 
a very important place in Lemattre's investigations. It is thus 
quite natural that he became interested specially in the famous 
problem of the three body motion. By using symmetrical coor­
dinates, referred to the instantaneous principal axes, he was 
able to construct what one calls nowadays the "regularization 
of double collisions" (1952). This partly explains why he was 
so fond of graphical and mechanical aids to calculations. In 
1933, he brought in, for the University, three great electrical 
calculating machines (Mercedes) and, in 1956 the first electro­
nic computer (Burroughs ElOI). Already in 1935 at M.LT., he 
had enjoyed the use of the Bush machine. Although not in charge 
of the computing center of the Louvain University, but con­
vinced of the important possibilities of electronic computers, 
he preserved up to the end of his life a great inclination to 
all problems connected to computers, mainly those concerning 
languages and programming. In this context, he invented new 
digits based on the binary system which enable to build up au­
tomation in computations, making unnecessary to memorize the 
multiplication table (1954). This became for him a great diver-

(*) The bibliography of Lemattre to which the reader is invited 
to refer is published in the next section. 
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sion. He was in fact a prominent calculator in algebra and 
arithmetic, numerical analysis and computations were not only 
tools for his researches but matters for investigations. He 
published several interesting works on harmonic analysis, 
rational iteration, and integration of systems of differential 
equations (1955). 

But the main theme of his research was relativistic 
cosmology (Godart and Heller, 1984). Independently of his 
University lessons, very early after the first world war, he 
became acquainted with the work of Einstein. Still a student, 
in the seminary of Malines (1922), he wrote a monography about 
the theory of Relativity with comments that would have been 
worth pub lishing (Lemattre unpub lished, 1922). His doctoral 
thesis on: "L' Approximation des Fonctions de Plusieurs 
Variables Reelles" and other related works were awarded by a 
research fe llowship. He used that opportuni ty to deepen his 
knowledge in relativistic cosmology and its astronomical 
background as a student of Eddington (Cambridge, England, 1924) 
and as a research fellow of the Harvard Observatory with 
Shapley (1925). Soon, he realized the instability of the 
Einstein solution of the General Relativity for an homogeneous 
Universe and, although few data were then available, he made 
the connection between the redshifts of galaxies and the 
expansion of the Universe. 

A dynamical cosmological model was then proposed in 1927 : 
"Un univers homogene de masse constante et de rayon variable 
rendant compte de la vitesse radiale des nebuleuses extra-ga­
lactiques". At that time, Friedman (1924) had already proposed 
solutions of the General Relativity showing an expansion of 
the Universe (1924). Lemattre had no knowledge of these publica­
tions. Moreover up to then, relativistic cosmology was rather a 
gravitational and geometrical branch of Science. Lemattre felt 
that it was indispensible to introduce astronomical and physi­
cal considerations in the macroscopic picture of the Universe. 

What caused the expansion of a Universe initially macrosco­
pically homogeneous and at equilibrium? the formation of 
condensations proposed Lemattre. Referring to Jean's theory 
(1918) of gravitational instability, he studied the 
consequences of the growth of small singularities and concluded 
to the expansion of the "neutral zones" between such 
condensations (1931). Rather unsatisfied by the extension in an 
infinite past of a Universe previously static, he computed the 
"Friedmann" solutions with pos1t1ve cosmological constant. 
These were unpublished but as a technical collaborator, I have 
had the pleasure to help him in these calculations (Heller, 
1979) . 
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What were the arguments that led him to choose the now cal­
led "Lemattre cosmological model" admitting a singular begin­
ning, an initial expansion damped by a coasting period near the 
static scale factor of Einstein model, followed by another in­
definite expansion? There is usually a philosophical back­
ground of new ideas. For instance, Einstein (1916) was greatly 
influenced by Mach philosophy inferring that particle's inertia 
is due to some interaction of that particle with all the other 
masses of the Universe. In the case of Lemattre, Godart and 
Heller (1978) discovered in an unpublished manuscript written 
around 1922 that "as the genesis suggested it, the Universe had 
begun by light". However Lemattre was too careful! a scientist 
to build his theory on what was no more than an intuitive 
opinion; a scientific basis was necessary. Thermodynamics 
envisaged from the point of view of quantum theory, including 
the splitting of energy in ever increasing quanta, gave him in 
1931 the idea of what he called later the Primeval Atom 
Hypothesis, forefather of the actual Big Bang Theory. 

Although exposed in broad lines at the 1931 Royal Society 
meeting on "the question of the relation of the Physical 
Universe to life and mind" (Godart and Heller, 1979), it took a 
structural form in his paper "l'Univers en expansion" 
published in 1933, date which was chosen as a reference for 
this colloquium. The revolutionnary idea of a singular 
beginning of the Universe was not well accepted at that time. 
Meeting Einstein in Pasadena in 1933, Einstein objected to the 
isotropy of his solution, probably responsible of the 
singularity (Godart and Heller, 1979). But in his 1933 paper, 
Lemattre showed that models slightly anisotropic will also have 
a singularity. Actually, we know mainly from the works of 
Hawking (1973) that singularities are features of solutions of 
General Relativity. By the time of his 1933 paper, he had read 
the work of Friedman and, in fac t, he proposed then for a 
coarse description of the Universe, imbricated Friedman 
solutions inside a macroscopic space in expansion with regions 
assimilated to cluster of galaxies in equilibrium, containing 
fluctuations collapsing eventually to form protogalaxies. The 
shortness of the Hubble time with respect to the geophysical 
age of the Earth convinced him with the existence of an 
appreciable coasting period in the expansion and it was his 
principal argument in favour of the cosmological constant. In 
that context, calculations on the formation of galaxies were 
started including pressure term and were published much later 
(Godart, 1968). Also the question of cluster of galaxies was 
reexamined later in order to take into account the great speed 
of individual galaxies envisaging a continual exchange between 
galaxies in the cluster and field galaxies (1948). 
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The physical picture of the remnants of the primeval atom 
remains rather vague. Besid"es a powerful primeval radiation, 
Lemattre thought that there would form early, besides a gaseous 
phase, a primary population of big stars. In fact, he felt ra­
ther uneasy about the lack of knowledge concerning hyperdense 
matter and the uncertainties of elementary particles theory and 
he abstained researches on such subjects. However, he was 
strongly convinced, already since 1931, that cosmic radiation 
would give the clues of the primeval splitting and since 1935 
he was engaged with collaborators, and in particular with pro­
fessor Vallarta of M.I.T., in researches concerning the distri­
bution of primary cosmic radiation received at the surface of 
the Earth. This project suited his taste and ability for me­
chanical and numerical problems. Instead of computing in­
numerable trajectories, as it was done by Stormer, he studied 
the structure of the dynamical problems, calculating singular 
period orbits and their assymptotes limiting the directions of 
cosmic radiation reaching the Earth. The sequels of these 
studies brought interesting results in analytical mechanics and 
numerical analysis. However, from the point of view of 
cosmology, it appears more and more that cosmic radiation could 
be explained by astrophysical processes. 

The isolation due to the war, some personal difficulties to 
restart international scientific relations and the lack of 
physical proof of a "primordial" radiation and also of the cos­
mological constant indispensible for the long age of the Uni­
verse envisaged in Lemattrels cosmology, appeared to render 
absolete his cosmological hypothesis. Moreover, the success 
of the competing steady state theory (1950) brought in its 
development new ideas in physical cosmology such as star IS 
evolution and elements nucleosynthesis. Lemattre scientific 
activities were then mainly oriented to other fields (celestial 
mechanics, numerical analysis, history of science). From time 
to time he tried to modernize his cosmology theory. In 
particular, he made for the XI Solvay Congress (Brussels, 1958) 
a remarkable report "The hypothesis of primeval atom and the 
problem of cluster of galaxies" (1958) (Godart and Turek, 
1982). The discovery of micro-wave radiation came too late 
(1965) to give a new impulse in his cosmological researches. He 
was very ill but I had the pleasure to inform him that the 
proof of the initial firework, main object of his life 
researches, had been discovered (Dicke et al., 1965). 

The reader wanting to know more about the work of Lemattre 
in cosmology is invited to refer to his 1945 book "The Primeval 
Atom", unhappily out of print. A new French edition, with 
comments and his Solvay paper, has been published in 1972, 
"LIHypothese de 11 Atome Primitif", Editions Culture et 
Civilisation, Bruxelles, 1972. 
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