
Five and Seven Qubit Codes

5-Qubit code
In Chapter 9 of the text we introduced the 9-qubit Shor code. It  is capable of diagnosing and correct-
ing all single-qubit errors. As the first quantum error correcting code (QECC), the Shor code is of 
historical significance. But, soon after its introduction, 5-qubit and 7-qubit QECC schemes were 
introduced. We review them below by applying the stabilizer formalism discussed in the text. First, 
let’s consider the 5-qubit code. 

We posit the set of 5-qubit stabilizer operators 

M0 = Z ⌦X ⌦X ⌦ Z ⌦
M1 = X ⌦X ⌦ Z ⌦ ⌦ Z

M2 = X ⌦ Z ⌦ ⌦ Z ⌦X

M3 = Z ⌦ ⌦ Z ⌦X ⌦X

In[1]:= (" Define the Pauli operators, and the single qubit identity ")

Z = {{1, 0}, {0, '1}};
X = {{0, 1}, {1, 0}};
Y = {{0, 'I}, {I, 0}};
unit = {{1, 0}, {0, 1}};
(" Hadamard Gate ")

H = 1 ( Sqrt[2] {{1, 1}, {1, '1}};

Using these gates we construct the stabilizers

In[6]:= M0 = KroneckerProduct[Z, X, X, Z, unit];
M1 = KroneckerProduct[X, X, Z, unit, Z];
M2 = KroneckerProduct[X, Z, unit, Z, X];
M3 = KroneckerProduct[Z, unit, Z, X, X];

Exercise 1. What are the matrix dimensions of these operators ?

Exercise 2. Using the above matrix representations, confirm that the stabilizers are 
mutually commuting, i.e. Mi, Mj = 0 for all combinations of i, j.

From our discussion in the text of the stabilizer formalism, we know that the logical codewords are 
eigenstates of the stabilizers with eigenvalue +1, i.e. 

where $0〉5 L,& 1〉5 L are 5-qubit codewords for the binary logical values 0, 1 respectively.



From our discussion in the text of the stabilizer formalism, we know that the logical codewords are 
eigenstates of the stabilizers with eigenvalue +1, i.e. 

Mi|0i5L = |0i5L
Mi|1i5L = |1i5L

where $0〉5 L,& 1〉5 L are 5-qubit codewords for the binary logical values 0, 1 respectively.

Let’s define the following operators

In[10]:= (" Unit is the 5'qubit identity operator ")

Unit = IdentityMatrix[2^5];
projector = 1 ( 4 (Unit + M0).(Unit + M1).(Unit + M2).(Unit + M3);

Exercise 3. Is operator projector really a projection operator ? (Hint: a projection 
operator P has the property P ·P = P  )

We claim that the action of operator projector on the states $00000〉 and $11111〉  results in the 
codewords, $0〉5 L,& 1〉5 L respectively, i.e

|0i5L =
1

4
( +M0)( +M1)( +M2)( +M3)|00000i

|1i5L =
1

4
( +M0)( +M1)( +M2)( +M3)|11111i

Or,

In[12]:= (" define single qubit states ")

ket0 = {1, 0};
ket1 = {0, 1};
codeword0 = projector.Flatten[KroneckerProduct[ket0, ket0, ket0, ket0, ket0]]
codeword1 = projector.Flatten[KroneckerProduct[ket1, ket1, ket1, ket1, ket1]]
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Exercise 4. Re-express the states codeword0, codeword1, as a linear combination of 
the basis kets  #i〉5.

Exercise 5. Using the matrix representations for the stabilizers Mi , and the states code-
word0, codeword1, demonstrate that the latter are indeed eigenstates of all Mi with 
eigenvalue +1. Show that these codewords are orthonormal.
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5-Qubit Syndrome Circuit

In the figure below we illustrate the series of gates that constitutes the syndrome measurements for 
this QECC. The first five wires (starting from the bottom of the figure)  represent the 5-qubit register, 
whereas the upper 4 wires represent the ancillary qubits, initially set to the state |0000〉.

(1)

In[16]:=

(" define ancillary qubit register set to state ,0000〉 ")

ancillary = Flatten[KroneckerProduct[ket0, ket0, ket0, ket0]]

Out[16]= {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

In[17]:= (" gate0 represent the first 4 Hadamard gates acting on the ancillary
qubit register, and its direct product with the 5'qubit register ")

gate0 = KroneckerProduct[H, H, H, H, unit, unit, unit, unit, unit];

In[18]:= (" gate1 represents the first cluster of control'
gates surrounded by the dotted line in the figure ")

gate1 = KroneckerProduct[unit, unit, unit, {{1, 0}, {0, 0}}, unit, unit, unit, unit,
unit] + KroneckerProduct[unit, unit, unit, {{0, 0}, {0, 1}}, Z, X, X, Z, unit];

In[19]:= (" gates2, gate3, gate4,
correspond to the remaining three cluster of control gates in the figure")
gate2 =

KroneckerProduct[unit, unit, {{1, 0}, {0, 0}}, unit, unit, unit, unit, unit, unit] +

KroneckerProduct[unit, unit, {{0, 0}, {0, 1}}, unit, X, X, Z, unit, Z];

In[20]:= gate3 =

KroneckerProduct[unit, {{1, 0}, {0, 0}}, unit, unit, unit, unit, unit, unit, unit] +

KroneckerProduct[unit, {{0, 0}, {0, 1}}, unit, unit, X, Z, unit, Z, X];

In[21]:= gate4 =

KroneckerProduct[{{1, 0}, {0, 0}}, unit, unit, unit, unit, unit, unit, unit, unit] +

KroneckerProduct[{{0, 0}, {0, 1}}, unit, unit, unit, Z, unit, Z, X, X];
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In[22]:= (" Syndrome circuit ")

syndrome = gate0.gate4.gate3.gate2.gate1.gate0;

Syndrome Measurements

In[23]:= (" construct total 4+5 qubit state for codewords ")

state0 = Flatten[KroneckerProduct[ket0, ket0, ket0, ket0, codeword0]];
state1 = Flatten[KroneckerProduct[ket0, ket0, ket0, ket0, codeword1]];

Exercise 6. Is operator syndrome Hermitian ?

Exercise 7. Demonstrate that the codewords, state0, state1, are +1 eigenstates of  
syndrome

In order to analyze the action of the syndrome on the codeword, let’s look at a simpler circuit shown 
by the diagram below

(2)

In this figure the shaded area represent stabilizer gate M0 sandwiched by two Hadamard gates. We  
included an X-type (i.e. bit flip) error in the wire of the second qubit. So if we focus on the first 5-qubit 
subspace and assume that the input state is the codeword & 0〉5 L, this error gate results in the vector

EX2 |0i5L
where error gate,

EX2 ⌘ ⌦ ⌦ ⌦X ⌦

Including the ancillary qubit, initially in state $0〉,  the circuit results in the following output

(H ⌦ ⌦5) cM0 (H|0i ⌦ EX2|0i5L)

where cM0 represents the control gate connecting the ancillary control qubit with the target qubits 
1-5. Now using the properties of the Hadamard and control gates we get,
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In this figure the shaded area represent stabilizer gate M0 sandwiched by two Hadamard gates. We  
included an X-type (i.e. bit flip) error in the wire of the second qubit. So if we focus on the first 5-qubit 
subspace and assume that the input state is the codeword & 0〉5 L, this error gate results in the vector

where error gate,

Including the ancillary qubit, initially in state $0〉,  the circuit results in the following output

where cM0 represents the control gate connecting the ancillary control qubit with the target qubits 
1-5. Now using the properties of the Hadamard and control gates we get,

p
2(H ⌦ ⌦5) cM0 (|0i+ |1i)⌦ EX2|0i5L) =p
2(H ⌦ ⌦5) |0i ⌦ EX2|0i5L +

p
2(H ⌦ ⌦5) |1i ⌦M0 EX2|0i5L

Exercise 8. Prove that  M0 EX2 $0〉5 L = ) EX2 $0〉5 L .

Using this relation we find, that Eq. (3) reduces to
1

2
( |0i+ |1i)⌦ EX2|0i5L � 1

2
(|0i � |1i)⌦ EX2|0i5L = |1i ⌦ EX2|0i5L

Exercise 9. If instead of the error considered above, the system is subjected to the 
errors boxes

EX3 = ⌦ ⌦X ⌦ ⌦
EX4 = ⌦X ⌦ ⌦ ⌦
EX1 = ⌦ ⌦ ⌦ ⌦X

E0 = ⌦ ⌦ ⌦ ⌦

show that the output of the circuit is

1

2
( |0i+ |1i)⌦ EXi|0i5L +

1

2
(|0i � |1i)⌦ EXi|0i5L = |0i ⌦ EXi|0i5L

We can now apply this analysis to the full syndrome 5 + 4 qubit circuit shown in Fig. (1).  Because of 
the identity HH = 1, we insert a pair of Hadamard gates between each cluster of stabilizers Mi. Using 
the results of the analysis given above for Fig. (2), convince yourself

Exercise 10. That the action of error EX2 in the first cluster of stabilizer M0 (outlined by 
the dashed line), leads to the following output  

|0001i ⌦ EX2|0i5L

As this state evolves, it meets the subsequent stabilizers M1, M2, M3. We repeat this analysis to arrive 
at the final output of the syndrome circuit 

Exercise 11. Show the action of error EX2 leads to the following output in the syndrome 
circuit shown in 
Fig. (1)

|0101i ⌦ EX2|0i5L

Let’s check this result by simulating the syndrome circuit in Fig. (1). First, we construct the error box 
for EX2.
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In[25]:= (" 4+5 qubit error box ")

EX2 = KroneckerProduct[unit, unit, unit, unit, unit, unit, unit, X, unit];

In[26]:= (" subject the codeword state0 to error box,
and and pass it through the syndrome ")

output = syndrome.EX2.state0

Out[26]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

According to our analysis this state should be the same as  01 010〉*EX2 |0〉5 L
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In[27]:= (" note:
here EX2 is written as direct product with a unit ancillary qubit operator)")

guess = EX2.Flatten[KroneckerProduct[ket0, ket1, ket0, ket1, codeword0]]

Out[27]= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

In[28]:= output . guess

Out[28]= True

So indeed our simulation is in harmony with the expected answer.

Problem1. Calculate the syndrome assignments of all possible single- Xi type errors. 

Problem2. Calculate the syndrome assignments of all possible single- Zi type errors. 

Problem3. Calculate the syndrome assignments of all possible single- Yi type errors

From the results of Problems 1,2,3 we find that each single-qubit error has a unique syndrome signa-
ture stored in the ancillary qubits. In general, the output has the form

|ii4 ⌦ Ei|0i5L

where Ei is one of the error gates, and index i is the unique tag for that error. If a measurement of the 
ancillary qubits reveals index k, the subsequent action of gate Ek, as it is a member of the Pauli group 
and so Ek Ek=1, projects the 5-qubit register into the uncorrupted state $0〉5 L. Convince yourself that 
the arguments leading to this conclusion are also valid for codeword $1〉5 L.

Notebook9_3.cdf     7



From the results of Problems 1,2,3 we find that each single-qubit error has a unique syndrome signa-
ture stored in the ancillary qubits. In general, the output has the form

where Ei is one of the error gates, and index i is the unique tag for that error. If a measurement of the 
ancillary qubits reveals index k, the subsequent action of gate Ek, as it is a member of the Pauli group 
and so Ek Ek=1, projects the 5-qubit register into the uncorrupted state $0〉5 L. Convince yourself that 
the arguments leading to this conclusion are also valid for codeword $1〉5 L.

7-Qubit Code
Though the 5-qubit code requires the least number of qubits for a single-qubit QECC, the seven qubit, 
or Steane, code has become the code of choice in applications. A diagram for the syndrome circuit of 
this code is given below.

Problem 4. Identify the six stabilizers in this circuit.

Problem 5. Construct, as in Table 9.3 for the Shor code, a table itemizing all possible 
syndrome error measurements.

Problem 6. A matrix representation for this syndrome requires  213× 213 matrix elements 
to implement. Similarly, the circuit for the Shor code requires matrices containing 217× 217 
elements. The sheer size of these matrices makes a simulation of these quantum circuits 
untenable on desktop computers. Nevertheless, as Table 9.3 in the text and your result to 
Problem 5 demonstrate, it is not necessary to employ such large matrices in order to 
arrive at the correct output predictions. In other words, there exists an efficient classi-
cal algorithm which emulates the results output by these  quantum circuits. Write such a 
code. (Note: this feature is a consequence of the Gottesman-Knill Theorem1)

1 Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge U. Press 2nd Ed. 
(2011).
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