
Constructing Matrix Kronecker
Products

The Wolfram Mathematica command

In[1]:= ? KroneckerProduct

KroneckerProduct[m1,m2, …] constructs the Kronecker product of the arraysmi. #

Allows us to easily construct direct products of qubits in order to assemble a multi-qubit register.

We define the matrix representation for the qubit basis vectors $0 〉 , $1 〉 in the usual way;

In[2]:= ClearAll["Global`""]
zeroket = {1, 0};
oneket = {0, 1};

To construct the direct products $0 〉 & $0 〉, $0 〉 & $1 〉 , $1 〉 & $0 〉 , $1 〉 & $1 〉 we use a combination of
the Wolfram KroneckerProduct and Flatten commands, as in

In[5]:= state00 = Flatten[KroneckerProduct[zeroket, zeroket]];
state01 = Flatten[KroneckerProduct[zeroket, oneket]];
state10 = Flatten[KroneckerProduct[oneket, zeroket]];
state11 = Flatten[KroneckerProduct[oneket, oneket]];

Or

In[9]:= state00 '' MatrixForm
Out[9]//MatrixForm=

1
0
0
0

In[10]:= state01 '' MatrixForm
Out[10]//MatrixForm=

0
1
0
0

In[11]:= state10 '' MatrixForm
Out[11]//MatrixForm=

0
0
1
0

In[12]:= state11 '' MatrixForm
Out[12]//MatrixForm=

0
0
0
1

In agreement with Eqs. (2.55), (2.56) in the text.

Let’s define the 3-qubit function

In[13]:= threeQ[qubit3_, qubit2_, qubit1_] :=
Flatten[KroneckerProduct[qubit3, qubit2, qubit1]];

Exercises

(1) Use the function threeQ to construct the eight basis vectors that span a 3-qubit register.

(2) Define a function that inputs 5 qubits and allows construction of their (matrix representation) direct
products. Use the latter to find the matrix representation of the state

$00101〉 (i $10000 〉 + $10101 〉 3

Operators
We know that the matrix representation of single qubit operators are 2 × 2 square matrices, as for
example the Pauli gates, -X,-Y,-Z

In[14]:= PauliX = {{0, 1}, {1, 0}};
PauliY = {{0,)I}, {I, 0}};
PauliZ = {{1, 0}, {0,)1}};

Let’s also include the unit operator

In[17]:= unit = {{1, 0}, {0, 1}};

We wish to construct the matrix representations of two-qubit operators, e.g. -X &-Y. In Mathematica
this is accomplished with the KroneckerProduct command as in

In[18]:= operatorXY = KroneckerProduct[PauliX, PauliY] ;

2 Notebook2_6.cdf

and which should be expressed as a 2×2 matrix; indeed

In[19]:= operatorXY '' MatrixForm
Out[19]//MatrixForm=

0 0 0 !"
0 0 " 0
0 !" 0 0
" 0 0 0

Lets check if this matrix, when acting on a 2-qubit state, transform the column matrix in a way that is
isomorphic to the transformation in ket space. As an example we consider the operation

-X & -Y $01 〉

Using the definitions introduced in Chapter 1 of the text, the above is equivalent to

-X $0 〉 & -Y $1 〉 = $1 〉 & (i $0 〉 = (i $10 〉

Using the matrix representations,

In[20]:= output = operatorXY.state01

Out[20]= {0, 0, !", 0}

In[21]:= output *)I state10

Out[21]= True

And so, the matrix representation for -X & -Y acting on the matrix representation of |01〉 is isomor-
phic to the result obtained in ket space.

Exercises

(1) Construct the matrix representations of the following 3-qubit operators (here 1 represents the qubit
identity operator)
 (a) -X & 1& -Y
 (b) -X & -Y & 1

(2) Apply the above matrix operators to the matrix vector corresponding to state |000〉. Evaluate the
result, first using the Dirac ket formalism, and compare with the result obtained with the matrix repre-
sentation.

(3) Construct the matrix representation for the single-qubit Hadamard gate H. Construct the matrix
operator H&H&H, and let it operate on state /000 〉. Comment.

Notebook2_6.cdf 3

