
Matrix Manipulations and Operations 
with Mathematica 
Introduction

In Chapter 2 of the text we introduced three types of matrices; column, row and square matrices. In 
general a so-called m × n matrix contains m rows and n columns. So a 2×3 matrix would look some-
thing like this

a b
c d
e f

   

We will only be working with matrices of the type 1× n, n ×1, and n × n.  Kets are represented by 
column matrices and in Mathematica they are expressed as a list

In[1]:= ? List

{e1, e2, …} is a list of elements.  $

A single qubit e.g.  
a
b

  is represented by the Mathematica list

In[2]:= ket1 = {a, b}

Out[2]= {a, b}

A two-qubit state   

a
b
c
d

  would be represented by

In[3]:= ket2 = {a, b, c, d}

Out[3]= {a, b, c, d}

You might ask yourself; the list expressions given above do not look at all like column matrices. If 
anything, they resemble row matrices. However, as we will see in the examples below, in operations 
involving matrices the Mathematica kernel treats these lists as if they are
column matrices. If you still feel uncomfortable with this notation, you can apply the  



In[4]:= ? MatrixForm

MatrixForm[list] prints with the elements of list arranged in a regular array.  $

operation on the above lists.  So

In[5]:= MatrixForm[ket1]
Out[5]//MatrixForm=

a
b

In[6]:= MatrixForm[ket2]
Out[6]//MatrixForm=

a
b
c
d

They look just like the column matrices you intended them to be.  So how are row matrices, repre-
sented bra vectors, expressed ? Answer:  Exactly in the same way!  So the row matrices

( a b )   and   ( a b c d )    

are given by
 

In[7]:= bra1 = {a, b}
bra2 = {a, b, c, d}

Out[7]= {a, b}

Out[8]= {a, b, c, d}

How does Mathematica know the difference between column and row (ket and bra vectors) matrices?  
Answer: Through context. Before we elaborate on this answer, lets quickly review how we introduce 
n × n square matrices.
Example: Consider the following 3 × 3 matrix

a b c
d e f
g h i

Mathematica ``sees’’ this construct as three lists  {a, b, c}, {d, e, f }, {g, h, i} stacked on top of each 
other or a ``list of  lists”,
i.e.
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In[9]:= squarematrix = {{a, b, c}, {d, e, f}, {g, h, i}}

Out[9]= {{a, b, c}, {d, e, f}, {g, h, i}}

If we apply

In[10]:= MatrixForm[squarematrix]
Out[10]//MatrixForm=

a b c
d e f
g h i

We indeed recognize the standard matrix form of this list of lists. 

Matrix operations

Remember, in the the text, we introduced two ways of multiplying column matrices with row matri-
ces. So, according to our definitions, the expression

          
c
d

( a b ) 

should evaluate to a scalar product, as a row matrix (bra vector) is positioned to the left of the col-
umn matrix (ket vector).
The Mathematica command for this (scalar) product is

In[11]:= {a, b}.{c, d}

Out[11]= a c + b d

Note that, internally, Mathematica did indeed treat {a,b} as a row matrix, and {c,d} as a column 
matrix. What if we position the row matrix to the right of the column matrix?, i.e.

      ( a b )
c
d

We learned that this product should be represented, since it corresponds, to an outer product of a ket 
vector with a bra vector, as the square  matrix

c a c b
d a d b

In Mathematica we use the 
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In[12]:= ? KroneckerProduct

KroneckerProduct[m1,m2, …] constructs the Kronecker product of the arraysmi. $

command to facilitate the outer product of a bra (row matrix)  with a ket  (column matrix). Thus

In[13]:= kronprod = KroneckerProduct[{c, d}, {a, b}]

Out[13]= {{a c, b c}, {a d, b d}}

In[14]:= MatrixForm[kronprod]
Out[14]//MatrixForm=

a c b c
a d b d

Notice that  KroneckerProduct[{c,d},{a,b}] ≠ KroneckerProduct[{a,b},{c,d}] 

With these definitions we can now perform all the matrix operations introduced in Chapter 2 discus-
sions.
Below are  few examples. 

Example 1:  Multiplication of a square matrix (operator) on a column (ket vector) should produce 
another ket vector (column matrix)
e.g. what is the following product

a b c d
e f g h
i j k l
m n o p

α
β
γ
δ

= ?

Answer

In[15]:= matrixoperator = {{a, b, c, d}, {e, f, g, h}, {i, j, k, l}, {m, n, o, p}}
MatrixForm[matrixoperator]

Out[15]= {{a, b, c, d}, {e, f, g, h}, {i, j, k, l}, {m, n, o, p}}

Out[16]//MatrixForm=

a b c d
e f g h
i j k l
m n o p

In[17]:= ket = {α, β, γ, δ}

MatrixForm[ket]

Out[17]= {α, β, γ, δ}

Out[18]//MatrixForm=
α
β
γ
δ
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In[19]:= productket = matrixoperator.ket
MatrixForm[productket]

Out[19]= {a α + b β + c γ + d δ, e α + f β + g γ + h δ, i α + j β + k γ + l δ, m α + n β + o γ + p δ}

Out[20]//MatrixForm=

a α + b β + c γ + d δ
e α + f β + g γ + h δ
i α + j β + k γ + l δ
m α + n β + o γ + p δ

Likewise, the operation

( * + , - )

a b c d
e f g h
i j k l
m n o p

is given by

In[21]:= bra = {α, β, γ, δ}

Out[21]= {α, β, γ, δ}

In[22]:= bra.matrixoperator

Out[22]= {a α + e β + i γ + m δ, b α + f β + j γ + n δ, c α + g β + k γ + o δ, d α + h β + l γ + p δ}

produces the correct bra (row) vector. 

Finally we want to perform operations such as

In[23]:=

a b c
d e f
g h i

α β γ
δ ϵ ζ
η θ κ

Out[23]= {{a α, b β, c γ}, {d δ, e ϵ, f ζ}, {g η, h θ, i κ}}

Which should produce another 3×3 square matrix.

In[24]:= matrix1 = {{a, b, c}, {d, e, f}, {g, h, i}}
MatrixForm[matrix1]

Out[24]= {{a, b, c}, {d, e, f}, {g, h, i}}

Out[25]//MatrixForm=

a b c
d e f
g h i
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In[26]:= matrix2 = {{α, β, γ}, {δ, ϵ, ζ}, {η, θ, κ}}

MatrixForm[matrix1]

Out[26]= {{α, β, γ}, {δ, ϵ, ζ}, {η, θ, κ}}

Out[27]//MatrixForm=

a b c
d e f
g h i

In[28]:= matrix1.matrix2
MatrixForm[%]

Out[28]= {{a α + b δ + c η, a β + b ϵ + c θ, a γ + b ζ + c κ},
{d α + e δ + f η, d β + e ϵ + f θ, d γ + e ζ + f κ}, {g α + h δ + i η, g β + h ϵ + i θ, g γ + h ζ + i κ}}

Out[29]//MatrixForm=

a α + b δ + c η a β + b ϵ + c θ a γ + b ζ + c κ
d α + e δ + f η d β + e ϵ + f θ d γ + e ζ + f κ
g α + h δ + i η g β + h ϵ + i θ g γ + h ζ + i κ

Problem: Evaluate

α β γ
δ ϵ ζ
η θ κ

a b c
d e f
g h i
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