

The Born Rule and Projective Measurements

In the text we cited the Born rule

Postulate III (Born's rule) The act of measurement associated with Hermitian operator \mathbf{A} results in one of its eigenvalues. The probability for obtaining a nondegenerate eigenvalue a is given by the expression $|\langle a|\Psi\rangle|^2$ where $|a\rangle$ is an eigenvector of \mathbf{A} that corresponds to eigenvalue a . If the eigenvalue a is degenerate, the probability to find that value is $\sum_i |\langle a_i|\Psi\rangle|^2$ where the sum is over all i in which $a_i = a$.

and according to Theorem 1.2, the states $|a_i\rangle$ are orthogonal for each state index a_i . According to the collapse hypothesis, the act of measurement can be represented by the following

$$|\psi\rangle \mapsto |a_i\rangle, \text{ where } \langle a_j | a_i \rangle = \delta_{ij} \quad (1)$$

if the result of the measurement leads to eigenvalue a_i . The above mapping is also called also called a projection. That is, defining the operator

$$M_i \equiv |a_i\rangle \langle a_i| \quad (2)$$

and using Dirac's multiplication rule we find that

$$M_i |\psi\rangle = (|a_i\rangle \langle a_i|) |\psi\rangle = |a_i\rangle \langle a_i| \psi\rangle.$$

M_i projects the state along the direction $|a_i\rangle$. Note that $M_i M_i^\dagger = M_i$ and so satisfies the definition for a projection operator. Thus we can equate the expectation values

$$\langle \psi | M_i^\dagger M_i | \psi \rangle = \langle \psi | a_i \rangle \langle a_i | \psi \rangle = |\langle a_i | \psi \rangle|^2.$$

which is simply a re-statement of the Born rule for the measurement probabilities. In addition, using the fact that $M_i^\dagger M_i = M_i M_i^\dagger = M_i$ we construct the following state

$$|\psi'\rangle = M_i |\psi\rangle / \sqrt{\langle \psi | M_i^\dagger M_i | \psi \rangle} \quad (3)$$

It is clear that $\langle \psi' | \psi' \rangle = 1$, and using definition (2) we can also express $|\psi'\rangle$ as

In[1]:=

$$|\psi'\rangle = |a_i\rangle \langle a_i | \psi \rangle / |\langle a_i | \psi \rangle| = e^{i\alpha_i} |a_i\rangle$$

where we defined $e^{i\alpha_i} = \langle a_i | \psi \rangle / |\langle a_i | \psi \rangle|$. Thus, Eq. (3) is equivalent, up to an arbitrary phase factor, of the collapse mapping stated by postulate (1).

The projection approach is useful when considering a measurement that has degenerate eigenvalues. Suppose we take measurements with device A , whose eigenvalues

a are n – fold degenerate. That is, the orthonormal states $|a_1\rangle, |a_2\rangle \dots |a_{i3}\rangle$, are all eigenstates of A , with eigenvalue a . We now define, as before, the set

$$M_i = |a_i\rangle\langle a_i|$$

but now construct

In[2]:=

$$M_a = \sum_{i=1}^n |a_i\rangle\langle a_i|$$

thus

$$\langle\psi| M_a^\dagger M_a |\psi\rangle = \sum_{i=1}^n \langle\psi| a_i\rangle\langle a_i| \psi\rangle = \sum_{i=1}^n |\langle a_i | \psi \rangle|^2$$

which, again, conforms to the Born rule.

Also,

$$|\psi_a\rangle = M_a |\psi\rangle / \sqrt{\langle\psi| M^\dagger M |\psi\rangle} = \sum_{i=1}^n c_i |a_i\rangle \quad c_i \equiv \frac{|\langle a_i | \psi \rangle|}{\sqrt{\sum_{k=1}^n |\langle a_k | \psi \rangle|^2}}$$

Note that

$$\sum_{i=1}^n |c_i|^2 = \sum_{i=1}^n |\langle a_i | \psi \rangle|^2 / \sqrt{\sum_{k=1}^n |\langle a_k | \psi \rangle|^2} = 1$$

and so $\langle\psi_a | \psi_a\rangle = 1$.

Because, from our definition of measurement device $A = \sum a_i M_i$, the projection operators are orthogonal, i.e.

$$M_i M_j = \delta_{ij} \quad (4)$$

and complete

$$\sum M_i^\dagger M_i = \mathbf{1}$$

These measurements are called projective, or von Neumann, measurements. However, measurement devices in which relation (4) is relaxed can also be defined. The latter are called POVM (Positive Operator - Valued Measure) ¹

Generalized Born Rule²

Often, we are concerned with a measurement that is restricted to a subspace of the system Hilbert space. For example, consider a 2-qubit system for which we measure only the second qubit with measurement operator

$$A = \sigma_Z \otimes \mathbf{1}$$

Suppose the 2-qubit system is in the state

$$|\psi\rangle = c_1 \alpha|00\rangle + c_1 \beta|01\rangle + c_2 a|10\rangle + c_2 b|11\rangle$$

$$|c_1|^2 + |c_2|^2 = 1 \quad |a|^2 + |b|^2 = 1 \quad |\alpha|^2 + |\beta|^2 = 1$$

We calculate the probability that measurement with A results in the value +1. Since the following states are eigenstates of A

State	Eigenvalue
$ 00\rangle$	+1
$ 01\rangle$	+1
$ 10\rangle$	-1
$ 11\rangle$	-1

we construct the projection operator $M_+ = |00\rangle\langle 00| + |01\rangle\langle 10|$ and so

$$p(+1) = \langle\psi| M_+ |\psi\rangle = |\langle\psi| 00\rangle|^2 + |\langle\psi| 01\rangle|^2 = |c_1|^2 \alpha^2 + |c_1|^2 \beta^2 = |c_1|^2$$

and the system collapse into state (up to an overall phase factor)

$$M_+ |\psi\rangle / \sqrt{\langle\psi| M_+ |\psi\rangle} = \alpha|00\rangle + \beta|01\rangle$$

Now, we can express the above state in the form

$$|\psi\rangle = c_1 |0\rangle \otimes |\psi_a\rangle + c_2 |1\rangle \otimes |\psi_b\rangle$$

$$|\psi_a\rangle = \alpha|0\rangle + \beta|1\rangle, \quad |\psi_b\rangle = a|0\rangle + b|1\rangle$$

So measurement of the 2nd qubit leads to collapse into state $|0\rangle \otimes |\psi_a\rangle$, with probability $|c_1|^2$, in agreement with the results obtained above. Likewise the probability for measurement value (-1) and collapse into state $|1\rangle \otimes |\psi_a\rangle$ is given by $|c_2|^2$.

Note that $|\psi_a\rangle$, $|\psi_b\rangle$ are not orthogonal.

¹ Michael Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge U Press, 2011

² N. David Mermin, Quantum Computer Science, Cambridge U Press, 2007