The Born Rule and Projective
Measurements
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In the text we cited the Born rule

Postulate III (Born’s rule) The act of measurement associated with Hermi-
tian operator A results in one of its eigenvalues. The probability
for obtaining a nondegenerate eigenvalue a is given by the
expression |(a|¥)|®> where |a) is an eigenvector of A that
corresponds to eigenvalue a. If the eigenvalue a is degenerate,
the probability to find that value is ), |(a;|¥) |2 where the sum
is over all i in which a; = a.

and according to Theorem 1.2, the states | g;) are orthogonal for each state index ;. According to the
collapse hypothesis, the act of measurement can be represented by the following

| @) | a), where (a;|a;) =0 (1)
if the result of the measurement leads to eigenvalue a;. The above mapping is also called also called a
projection. That is, defining the operator
Mi = | ap{aj| 2)
and using Dirac’s multiplication rule we find that
Ml )= (la)(ail)l @) =1a) (ailw).

M; projects the state along the direction | a;). Note that M;M;=M; and so satisfies the definition for a
projection operator. Thus we can equate the expectation values

(WM M [ wy=(w |ad(a; | @)= |{a; | w) |

which is simply a re-statement of the Born rule for the measurement probabilities. In addition, using
the fact that M,fr M; = M;M; = M; we construct the following state

|w'>=M,-|w>/\/<w|M?Mf|w) (3)

Itis clear that (¢ ’| ¢’ ) =1, and using definition (2) we can also express | ¢') as

lw'= la)ai @) [(a|w)y| =€ |a)
where we defined e’% = (a; | w)/|{ai| @) |. Thus, Eq. (3)is equivalent, up to an arbitrary phase
factor, of the collapse mapping stated by postulate (1).

The projection approach is useful when considering a measurement that has degenerate eigenvalues.
Suppose we take measurements with device A, whose eigenvalues
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aare n - fold degenerate. Thatis, the orthonormalstates | a;), | ay) ... | ai3), are all eigenstates of
A, with eigenvalue a. We now define, as before, the set

M; = |ap{aj|

but now construct

Mg= S0, | ad{a|
thus
(W| Mg Mg | @) =32 Cw | adai | wy= 32 [€ai | @) |?

which, again, conforms to the Born rule.

Also,
|WG)=M0|QU>/\/(L,U|MTM|¢I> = an=1ci|ai> ci= (ai|w)
Note that

hlalP=2h [ @) 1P /{5 e e ? =1

andso (W, |w,)=1.

Because, from our definition of measurement device A= X a; M; , the projection operators are orthogo-
nal,i.e.

M; M;j = & (4)

and complete

ZM,'TMI' =1

These measurements are called projective, or von Neumann, measurements. However, measurement
devices in which relation (4) is relaxed can also be defined. The latter are called POVM (Positive Opera-

tor - Valued Measure) 1

Generalized Born Rule2

Often, we are concerned with a measurement that is restricted to a subspace of the system Hilbert
space. For example, consider a 2-qubit system for which we measure only the second qubit with mea-
surement operator

A= Uz®l

Suppose the 2-qubit system is in the state
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|wy=c, al00)+c; B|01) + c; a|10) + ¢, b|11)

|q|2+|cZE:1 |a|2+|b|2:1 |a|2+|B|2=1

We calculate the probability that measurement with A results in the value +1. Since the following states
are eigenstates of A

State Eigenvalue

00) +1
[01) +1
[10) -1
11y -1

we construct the projection operator M, = | 00)¢00 | + | 01)(10 | and so

p(+1) = (@ | M |w)= Ky [00) |>+ |y | 01) |*= |y |*a®* |c |?B= |1 |?

and the system collapse into state (up to an overall phase factor)

m.19) [ [ | M1y = @l00)+B10D

Now, we can express the above state in the form

| W)= c110) ®| W) + 211) B W)

lgy)=al0) + BI1), |yp)=al0)+ b|1)
So measurement of the 2nd qubit leads to collapse into state [0) ® |y ), with probability | ¢; |2, in
agreement with the results obtained above. Likewise the probability for measurement value (-1) and
collapse intostate | 1)® | yg)isgivenby | ¢, |2.
Note that | w,), | wp) are notorthogonal.
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