
Laser Cooling
When we load ions into this trap they are confined along the axis of the trap but, as shown in the previ-
ous notebook, they can execute harmonic motion in the xy plane. Our goal is to align ions along the axis 
and minimize xy motion as much as possible. From the previous 
example we see that we can do this by making vox,  voy as small as possible. Since velocity can be 
related to kinetic energy, which in turn,
can be characterized by a temperature, the process of minimizing the kinetic energy of the trapped ion 
is called cooling. A powerfull
method for accomplishing this is called laser cooling.

Atoms and ions have internal structure, they are called energy levels and in an oversimplistic descrip-
tion we can consider our
ions to have two energy levels as shown in the picture below

ground state |g\

Excited state | e \

—w = =(Ee-EgL

Roughly speaking, the ion absorbs a photon with energy  —w  that is equal to the difference in the 
energies of the two 
levels of the ion. Here — is Plank's constant and w is the angular frequency of the photon which is 
related to its wavelength l by
the relation w = 2 p c/l where c is the speed of light. In addition to absorbing the energy of the photon 
the ion can also "gain" a momentum kick from that photon. This momentum is a vector and is given by 
the expression



h̄k

where k is a vector that points in the propaga-
tion direction of the photon and has the magni-
tude |k| = λ

c . The frequency ω0 that satisfies the
identity

∆E ≡ Ee − Eg = h̄ω0

is called the resonance frequency of that particular
transition. If we shine light near that frequency on
the atom, in its ground state, it excites into states
near |e� . Almost immediately ( in 10−6 − 10−9

seconds, depending on the system) it will then
de-excite and emit photons in random directions.
This is due to a process called spontaneous emis-
sion (also called fluorescence). The formula that
gives us the number of photons, of given frequency
ω, emitted per unit time is

N(ω) = N(ω0)
(Γ/2)2

(ω − ω0)2 + (Γ/2)2

If an atom absorbs a photon of momentum k in
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Clear@wD
parameters = 8n0 Ø 10, w0 Ø 3, G Ø 0.2, — Ø 1, c Ø 10, mass Ø 1<;

nphotons@w_D = n0 HG ê 2L^2 ê HHw - w0L^2 + HG ê 2L^2L

Plot@nphotons@wD ê. parameters, 8w, 0, 6<, PlotRange Ø AllD

Note that the function N(w) is highly peaked near the resonance frequency w0 and the width of the curve 
is determined by the
parameter G which is also called the full width at half maximum (FWHM). This type of function is called a 
Lorentzian
and  these parameters depend on which ion one chooses.Though N(w) determines the fluorescence 
spectrum, it also determines the efficiency in which a photon of frequency w can be absorbed by the 
ion. The closer w is to the resonance frequency  the more likely the ion will absorb the photon.

Notice also that the integral  ŸNHwL „w = N(w0) 
p G

2
. 

Integrate@HG ê 2L^2 ê HHw - w0L^2 + HG ê 2L^2L, 8w, -¶, ¶<, Assumptions Ø w0 > 0 && G > 0D
p G
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If an atom absorbs a photon of momentum k in

an interval of time ∆t it experiences a force

∆F ≡ Frad =
h̄k

∆t

This is called radiation pressure force and therefore

Frad = N(ω)h̄k

Thus the ion will see a net force in the direction

determined by k. However the ion also emits pho-

tons, i.e. it fluoresces! Each time the ion emits a

fluorescence photon the ion must recoil in the op-

posite direction in order to conserve momentum.

After several photons emissions, each in an arbi-

trary direction, the total recoil momentum aver-

ages to zero, though the ion does have any average

recoil energy. Therefore at the end of the day the

ion will experience a net radiation pressure force

given by the expression above.
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Radiation pressure
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For a transparent narrative let’s consider the fol-
lowing situation in 1D. An ion is trapped near the
origin, x=0, in a harmonic well with potential

V =
1

2
mΩ2x2

A laser beam shines light arriving from the left
with frequency ωL. Since the ion is moving at
velocity v with respect to our rest frame it sees,
according to the Doppler shift, light of frequency

ω� = ωL

������
1− v/c

1 + v/c

Thus the radiation pressure force is

Frad =
h̄ω�

c
N(ω�)

in a direction along the x-axis. Now in general
v/c << 1 and we can make a Taylor expansion to
get (see below )

Frad ≈
h̄ωL

c
N(ωL)−

h̄ω2
L

c2
N �(ωL)v

where N �(ωL) is the derivative of N(ωL). Now
if ωL < ω0 then N �(ωL) > 0 and the velocity
dependent form has a negative sign. If we now
equate to total force on our particle is a sum of the
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harmonic force −mΩ2x and the radiation pressure
force given above, we have

mẍ = −mΩ2x + F0 − βẋ

F0 =
h̄ωL

c
N(ωL)

β =
h̄ω2

L

c2
N �(ωL)

This differential equation can be solved and we get
the analytic solution

x(t) = xs + x0 exp(−βt/2) cos(Ω̃ t) +
p0
mΩ

exp(−βt/2) sin(Ω̃ t)

where

xs =
F0

mΩ2

Ω̃ =
�

Ω2 − (β/2)2

and x0, p0 are constants.

4

H* with the Doppler shifted frequency the radiation force becomes *L

— w 1 - v ê c í 1 + v ê c í c nphotonsBw 1 - v ê c í 1 + v ê c F

ftotal@w_D = % ê. v ê c Ø g

Normal@Series@ftotal@wD, 8g, 0, 1<DD

H* f0 is velocity independent *L

f0@w_, v_D = FullSimplifyB
n0 G2 w —

c IG2 + 4 w2 - 8 w w0 + 4 w02M
F

H* f1 depends linearly on the velocity *L

f1@w_, v_D = FullSimplifyB-
n0 g G2 w IG2 - 4 w2 + 4 w02M —

c IG2 + 4 w2 - 8 w w0 + 4 w02M2
F ê. g Ø v ê c

n0 G2 w —

c IG2 + 4 Hw - w0L2M

-
n0 v G2 w IG2 - 4 w2 + 4 w02M —

c2 IG2 + 4 Hw - w0L2M2

Plot@f0@w, 0D ê. parameters, 8w, 0, 4<, PlotRange Ø AllD
Plot3D@Hf0@w, vD ê. parametersL,
8w, 0, 4<, 8v, -1, 1<, PlotRange Ø All, PlotPoints Ø 50D
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Plot3D@f1@w, vD ê. parameters, 8w, 0, 4<, 8v, -1, 1<, PlotRange Ø All, PlotPoints Ø 50D

frad@w_, t_D := — w ê c 1 - x'@tD ê c ì 1 + x'@tD ê c

nphotonsBw 1 - x'@tD ê c ì 1 + x'@tD ê c F ì mass ê. parameters

Omega = 3;
omega = w0 - G ê. parameters
x0 = 1;
v0 = 1;

sols =
Flatten@NDSolve@ 8x''@tD == - Omega^2 x@tD + frad@omega, tD, x@0D ã x0, x'@0D ã v0<,

x@tD, 8t, 0, 100<DD
fun@t_D = x@tD ê. sols

Plot@fun@tD, 8t, 0, 100<, PlotRange Ø AllD

F0 = — omega ê c nphotons@omegaD ê. parameters;
Print@" F0=", F0D
beta = —^2 omega^2 ê c^2 nphotons'@omegaD ê. parameters;
Print@"b=", betaD
xs = F0 ê mass ê Omega^2 ê. parameters;
Print@"xs=", xsD
Omegatilde = Sqrt@Omega^2 - Hbeta ê 2L^2D;
Print@"Omegatilde=", OmegatildeD

fun2@t_D = xs + x0 Exp@-beta t ê 2D Cos@Omegatilde tD +
v0 ê Omega Exp@-beta t ê 2D Sin@Omegatilde tD;

Plot@fun2@tD, 8t, 0, 100<, PlotRange Ø AllD
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