$$
\nabla^{2} \Phi=4 \pi \mathrm{G} \rho
$$

 Self-Gravity: Open Boundary Condition

 Self-Gravity: Open Boundary Condition - The James's Algorithm

2019. 03. 19
In Athena++ developer meeting, Las Vegas
Sanghyuk Moon (Seoul National University) Woong-Tae Kim (Seoul National University) Eve C. Ostriker (Princeton University)

Motivation : Lack of efficient 3D cylindrical Poisson solver

- FFT + direct summation (2D) : $O\left(N^{3}+N^{2} \log N\right)$
- Kalnajs logarithmic spiral (2D, logarithmic spacing): $O\left(N^{2} \log N\right)$
- FFT + direct summation (3D) : $O\left(N^{4}+N^{3} \log N\right)$
- CCGF (3D; Cohl \& Tohline 1999) : $O\left(m_{\max } N^{3}+N^{3} \log N\right)$

MRI+GI simulation in 3D cylindrical grid (Fromang 2005) Self-gravity with CCGF method Resolution : $128 \times 256 \times 64$ with $m_{\max }=128$

In general, there are two approaches
 to solve the Poisson equation.

1. Finite difference methods (FFT, Multigrid, ...)

$$
\nabla^{2} \Phi=4 \pi \mathrm{G} \rho
$$

$>$ Very efficient.
$>$ Need to provide an appropriate boundary condition.

2. Green's function methods (zero-padding FFT, multipole expansion, ...)

$$
\Phi(\vec{x})=-\iiint \frac{\mathrm{G} \rho}{\left|\vec{x}-\vec{x}^{\prime}\right|} d^{3} x^{\prime}
$$

> Computationally expensive.
$>$ Open BC is automatically satisfied.
$>$ Possible to calculate Φ only along the boundary.

The James Algorithm (R. A. James 1977, JCoPh)

Let's find electrostatic potential Φ

$$
2^{\Phi=0} \begin{aligned}
& \Phi t \text { infinity }
\end{aligned}
$$

The James Algorithm (R. A. James 1977, JCoPh)

Let's find electrostatic potential Φ

$$
\begin{gathered}
\Phi=0 \\
\Theta=0 \\
\text { At infinity }
\end{gathered}
$$

The James Algorithm (R. A. James 1977, JCoPh)

Discrete Green's Function

- Because the screening charges are computed using the discrete Laplace operator, the corresponding Green's function is different from $1 /\left|\vec{x}-\vec{x}^{\prime}\right|$
"Continuous" Green's function : $\nabla^{2} G\left(\vec{x}-\vec{x}^{\prime}\right)=4 \pi \mathrm{G} \delta\left(\vec{x}-\vec{x}^{\prime}\right)$
"Discrete" Green's function : $\Delta_{h}^{2} G_{h}\left(i, i^{\prime}, j, j^{\prime}, k, k^{\prime}\right)=4 \pi \mathrm{G} \delta_{i, i^{\prime}} \delta_{j, j^{\prime}} \delta_{k, k^{\prime}}$

Flowchart

Main loop

Solve for combined potential

$$
\nabla_{h} \Psi=4 \pi G \rho\left(\Psi_{\mathrm{B}}=0\right)
$$

Calculate screening charges

$$
\sigma=\nabla_{h} \Psi /(4 \pi G)
$$

Find induced potential using the DGF $\Theta_{i}=\sum_{i,} K_{i-i}, \sigma_{i^{\prime}}$ (with FFT convolution)

Solve for the desired solution
$\nabla_{h} \Phi=4 \pi G \rho\left(\Phi_{B}=\Psi_{\mathrm{B}}-\Theta_{\mathrm{B}}\right)$

Flowchart

Main loop

Solve for combined potential $\nabla_{h} \Psi=4 \pi G \rho\left(\Psi_{\mathrm{B}}=0\right)$

Calculate screening charges

$$
\sigma=\nabla_{h} \Psi /(4 \pi G)
$$

Find induced potential using the DGF $\Theta_{i}=\sum_{i} K_{i-i}, \sigma_{i^{\prime}}$ (with FFT convolution)

Solve for the desired solution
$\nabla_{h} \Phi=4 \pi G \rho\left(\Phi_{B}=\Psi_{\mathrm{B}}-\Theta_{\mathrm{B}}\right)$

$$
\nabla_{h} \Psi=4 \pi u \rho\left(\Psi_{B}=\Phi_{\mathrm{B}}-\cup_{\mathrm{B}}\right)
$$

$$
\begin{aligned}
& \Phi=0 \\
& \Theta=0
\end{aligned}
$$

At infinity

At $\mathrm{t}=0$
Calculate DGF

$$
\Psi_{\mathrm{B}}=\Phi_{\mathrm{B}}+\Theta_{\mathrm{B}}=0
$$

Interior solver

Second-Order Convergence

Uniform sphere

Uniform cube (in Cartesian)

Rectangular torus (in cylindrical)

Weak Scaling Test

- Mesh size : $64^{3}\left(N_{\text {core }}=1\right) \sim 1024^{3}\left(N_{\text {core }}=4096\right)$
- Poisson $=2 x$ interior + boundary
- Poisson solver takes less time than MHD solver up to 4096 cores.
- James's algorithm is more efficient in cylindrical coordinates.

GravityBoundaryValues::ApplyPhysicalBoundaries()

Supplements

FFT Poisson Solver

1. Periodic boundary condition

$$
\nabla^{2} \Phi=4 \pi \mathrm{G} \rho \quad \square \mathrm{FT}>-k^{2} \widehat{\Phi}=4 \pi G \hat{\rho}
$$

2. Open boundary condition

The equation being solved is different; FFT is used only as a computational aid.

$$
\begin{gathered}
\Phi(\vec{x})=-\iiint \frac{\mathrm{G} \rho}{\left|\vec{x}-\vec{x}^{\prime}\right|} d^{3} x^{\prime} \\
\underset{\mathrm{FT}}{\Phi}=\widehat{K} \hat{\rho}
\end{gathered}
$$

"Convolution theorem"

Hockney \& Eastwood, 1988

The multipole expansion method has been widely used in Cartesian, cylindrical, and spherical coordinates to provide open BC at the domain boundary.
(e.g., Stone \& Norman 1992; Boley \& Durisen 2008; Katz et al. 2016)

Image taken from Jiang et al. (2014)
However, for flattened mass distribution, the multipole moments change with r_{B}, requiring $O\left(N^{4}\right)$ operation to fully compute them.

Higher Order with Convolution Method

$$
\Phi_{i, j}=\sum_{i^{\prime} j^{\prime}} \mathrm{G} \int_{x_{i^{\prime}-\frac{1}{2}}}^{x_{i^{\prime}+\frac{1}{2}}} \int_{y_{j^{\prime}-\frac{1}{2}}}^{y_{j^{\prime}+\frac{1}{2}}} \frac{-\rho\left(x^{\prime}, y^{\prime}\right)}{\sqrt{\left(x_{i}-x^{\prime}\right)^{2}+\left(y_{j}-y^{\prime}\right)^{2}}} d x^{\prime} d y^{\prime}
$$

Sample Calculation : Potential of an Uniform Sphere

Cartesian $64 \times 64 \times 64$

Cylindrical $64 \times 256 \times 64$

