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Motivation : Lack of efficient 3D cylindrical Poisson solver

• FFT + direct summation (2D) : 𝑂𝑂 𝑁𝑁3 + 𝑁𝑁2 log𝑁𝑁

• Kalnajs logarithmic spiral (2D, logarithmic spacing): 𝑂𝑂(𝑁𝑁2 log𝑁𝑁)

• FFT + direct summation (3D) : 𝑂𝑂 𝑁𝑁4 + 𝑁𝑁3 log𝑁𝑁

• CCGF (3D; Cohl & Tohline 1999) : 𝑂𝑂(𝑚𝑚max𝑁𝑁3 + 𝑁𝑁3 log𝑁𝑁)

MRI+GI simulation in 3D cylindrical grid (Fromang 2005)
Self-gravity with CCGF method
Resolution : 128 × 256 × 64 with 𝑚𝑚max = 128



In general, there are two approaches
to solve the Poisson equation.

1. Finite difference methods (FFT, Multigrid, …) 

2. Green’s function methods (zero-padding FFT, multipole expansion, …)
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 Very efficient.
 Need to provide an appropriate boundary condition.

 Computationally expensive.
 Open BC is automatically satisfied.
 Possible to calculate 𝚽𝚽 only along the boundary.
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The James Algorithm (R. A. James 1977, JCoPh)

Φ = 0
At infinity

Let’s find electrostatic potential Φ
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Φ = 0
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Let’s find electrostatic potential Φ



The James Algorithm (R. A. James 1977, JCoPh)

Φ = 0
Θ = 0

Φ + Θ = 0

At infinity

Let’s find electrostatic potential Φ

Φ = Φ + Θ − Θ

Zero-BC solver (FFT, multigrid, …)

Green’s function method



Discrete Green’s Function

“Discrete” Green’s function : Δℎ2𝐺𝐺ℎ(𝑖𝑖, 𝑖𝑖′, 𝑗𝑗, 𝑗𝑗′, 𝑘𝑘, 𝑘𝑘′) = 4𝜋𝜋G𝛿𝛿𝑖𝑖,𝑖𝑖′𝛿𝛿𝑗𝑗,𝑗𝑗′𝛿𝛿𝑘𝑘,𝑘𝑘′

“Continuous” Green’s function : ∇2𝐺𝐺 �⃗�𝑥 − �⃗�𝑥′ = 4𝜋𝜋G𝛿𝛿(�⃗�𝑥 − �⃗�𝑥′)

• Because the screening charges are computed using the discrete Laplace 
operator, the corresponding Green’s function is different from 𝟏𝟏/|𝒙𝒙 − 𝒙𝒙′|

DGF

CGF

DGF vs. CGF in cylindrical coordinates



Flowchart

Calculate 
DGF

Solve for combined potential
∇ℎΨ = 4𝜋𝜋𝐺𝐺𝜌𝜌 (ΨB = 0)

Calculate screening charges
𝜎𝜎 = ∇ℎΨ/(4𝜋𝜋𝐺𝐺)

Find induced potential using the DGF 
Θ𝑖𝑖 = ∑𝑖𝑖′ 𝐾𝐾𝑖𝑖−𝑖𝑖′𝜎𝜎𝑖𝑖′ (with FFT convolution)

Solve for the desired solution
∇ℎΦ = 4𝜋𝜋𝐺𝐺𝜌𝜌 (Φ𝐵𝐵 = ΨB − ΘB)

ΨB = ΦB + ΘB = 0

𝜎𝜎

𝜌𝜌

Φ = 0
Θ = 0

At infinity

Main loop

At t=0
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Interior solver

Boundary solver



Second-Order Convergence

Uniform sphere Uniform cube (in Cartesian) Rectangular torus (in cylindrical)
Hure et al. (2014)



Weak Scaling Test

• Mesh size : 643 𝑁𝑁core = 1 ∼ 10243 (𝑁𝑁core = 4096)
• Poisson = 2 x interior + boundary
• Poisson solver takes less time than MHD solver up to 4096 cores.
• James’s algorithm is more efficient in cylindrical coordinates.



GravityBoundaryValues::ApplyPhysicalBoundaries()



Supplements



FFT Poisson Solver

∇2Φ = 4𝜋𝜋G𝜌𝜌 −𝑘𝑘2 �Φ = 4𝜋𝜋𝐺𝐺 �𝜌𝜌FT

1. Periodic boundary condition

2. Open boundary condition

FT �Φ = �𝐾𝐾 �𝜌𝜌

Hockney & Eastwood, 1988

“Convolution theorem”

The equation being solved is different;
FFT is used only as a computational aid.

Φ �⃗�𝑥 = −�
G𝜌𝜌

|�⃗�𝑥 − �⃗�𝑥′|
𝑑𝑑3𝑥𝑥′



The multipole expansion method has been widely used in
Cartesian, cylindrical, and spherical coordinates to provide
open BC at the domain boundary.
(e.g., Stone & Norman 1992; Boley & Durisen 2008; Katz et al. 2016)
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Image taken from Jiang et al. (2014)
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However, for flattened mass distribution,
the multipole moments change with 𝒓𝒓𝐁𝐁,
requiring 𝑶𝑶(𝑵𝑵𝟒𝟒) operation to fully
compute them. 
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Higher Order with Convolution Method
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Sample Calculation : Potential of an Uniform Sphere

Cartesian

Cylindrical
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64 × 64 × 64

64 × 256 × 64
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