
• Time dependent radiation transport implemented in 
Athena++, roughly as described in Jiang+ 2014 for 
Athena

• Transfer piece solved explicitly; source terms handled 
(locally) implicitly

• Includes Lorentz transformations between 
comoving/Eulerian frames so covariant rather than 
second order in v/c

• Handles multiple frequency bands consistently with 
implicit update of source terms (temperature)

• Implements reduced speed of light approximation

Radiation Transfer Status



Radiation Transfer Status

Thus far used to simulate accretion disks, massive 
stars, winds, collapse of stellar cores, …



Overview of Scheme
Transfer equation:

Broken into two pieces.  First transport is handled explicitly ([reduced] speed 
of light sets Courant condition):

Source term is handled separately via operator splitting.  Update is implicit, 
solved simultaneously with gas temperature:

Note that we solve the Eulerian frame source term update using comoving
frame variables e.g. Ic=G4 I



Issues with current method
• Reduced speed of light 

approximation is of limited utility 
when optical depths are large

• Flat spacetime only – no GR
• Only handles spherical polar 

coordinates in 3D
• Reliance on grey opacities
• Only radiation field in neighboring 

zones is used to compute 
intensity – grid sets preferred 
direction, impacting different 
angles differently

r=1
r=0.1
r=0.01



The general covariant transfer equation is given by the following:

Momentum coordinates
n: frequency 
z: polar angle
y: azimuthal angle 

• This requires a choice of coordinates and basis (tetrad) e(a)
a.  Necessary 

for general relativistic spacetimes but also relevant for curvalinear
coordinates in flat space time.

• Basis for method that treats angles/frequency (momentum coordinates) on 
equal footing with space coordinates.

Generalizing to non-Cartesian 
Coordinates



Example: Spherical-polar
Current version defines angles relative to fixed Cartesian axis.  For this basis, 
all of the angle terms are zero.

However, this only works in 3D.  For 1D or 2D volumes, one needs a basis 
that is well defined over the entire cell surface.  Choosing a basis aligned 
with the unit vectors of the standard r, q, f:

This yields:



Example: Spherical-polar 1D
Method is implemented in Athena++ only in 1D (so far).  Example problem 
with analytic solution is the radiation field interior/exterior to a homogeneous 
spherical emitter.

Method reproduces radiation energy density and flux but flux in different 
angle bins is not the step function in radius that occurs in analytic problem



Plans for the Future
• Add current version to main branch

§ needs some “tidying”
§ update of boundary condition methods

• Implement treatment for general coordinate systems
§ Needs general implementation for arbitrary coordinates?
§ Fluxes/areas for angles/frequencies computed in coordinates class 

• Fully general relativistic treatment
• General covariant treatment may be equivalent to what is needed for 

curvalinear coordinates in flat spacetime
• Implementation of VET method

§ Should allow treatment of problems in cases where reduced speed of 
light fails

§ Athena implementation required two global computations:  backward-
Euler solution for radiation moments and short characteristics to 
compute Eddington tensor

§ Compute these using the multigrid infrastructure developed for self-
gravity?

• General long characteristics? Higher order “upwind” schemes for above 
methods?



Why bother?  Several alternatives for post-processing:
• Black holes: GRMONTY (public), Pandurata (not 

public)
• Dust/low energy: RADMC, Hyperion, etc.

My motivations:
• Control over development/features
• Take advantages of Athena++ infrastructure e.g. 

particles, coordinates, atomic/molecular chemistry
• Provide publicly available tool
• MPI parallelization over mesh blocks for large 

simulations
• Extensions: time-dependent calculations, radiation 

hydro, ray tracing, neutrinos

Monte Carlo in Athena++



• Performance – optimization, load balancing 
• Flexibility – would like to do both static post-

processing and time-dependent runs, but these 
motivate different methods for photon evolution

• Extensibility – provide user defined functions for 
customizing emission, absorption, scattering. Easy to 
expand code base.

• Compartmentalization – have minimal impact on non 
MC Athena++ classes

• Verification – robust set of tests

Goals



• Photon – class implementing super photon/photon 
packet, each has energy, direction, polarization, 
position, weight, status, etc.

• PhotonMover – classes to move photons through 
grid; implemented as derived classes

• MonteCarlo/MonteCarloBlock – division similar to 
Mesh and MeshBlock to control initialization, photon 
transfer, communication and output

• Outputs – MCOutput/Spectra classes - monte carlo
specific outputs

• Physics implementations – functions for scattering, 
absorption, emission, lorentz transformations 
between frames, acceleration of optically thick 
zones, etc.

Components



Input/Output

Use athinput files with standard formatting – <montecarlo> block
New outputs:
• Moments: radiation energy density, flux, pressure tensor (todo: user 

defined variables)
• Spectra: escaping photons binned in energy and angle

Going forward:  
• Add images (via ray tracing) and develop python modules for visualizing 

outputs (e.g. generating light curves) 



Examples

Spectrum from Thomson 
scattering +free-free absorption 
calculation – comparison to 
Feautrier solver

Radiation energy density from 
Athena++ rad hydro simulation 
snaphshot of accretion flow.  2D 
slice through midplane.



Physics
Scattering – relatively easy; need to randomly sample outgoing direction, 
energy, polarization based on incoming energy, polarization, direction; current 
options are isotropic, polarized/unpolarized Thomson scattering, and 
polarized/unpolarized Compton scattering, and user defined; function pointers 
set at initialization

Absorption – relatively easy; functions for computing mean free paths to 
absorption and scattering; current options are free-free, electron scattering, 
and user defined, function pointers set at initialization

Emission – more complicated;  code must be flexible to handle distributed 
emission, point sources, external irradiation, etc.  Initialization of Photons is 
implemented through user defined function similar to problem generator, with 
support for common mechanisms (e.g. free-free emission) provided

Going forward:  
• Adding dust scattering, lyman alpha scattering, pair production, resonance 

scattering, etc.
• LTE and non-LTE treatments of atomic opacities



Photon Movement

Going forward:  
• Finish implementation and testing of integrator
• Can we use the same infrastructure as the particle class?
• How do we optimally implement communication between MeshBlocks? 

(photons may cross more than one MeshBlock per time step!)

Photon travels a path length equal to a 
number of mean-free-paths between 
scattering/absorption events drawn from 
exponential distribution

Traditional: treat movement as sequence 
of line segments between zones (fast for 
Cartesian, slower for curvalinear)

Integration: integrate photon geodesics 
along curved paths (Verlet algorithm form 
GRMONTY)



Load Balancing

Going forward: 
• Implement mesh refinement with cost function that includes estimate of 

monte carlo
• Pair this with an acceleration method

Unlike hydro, there is no reason to expect 
meshblocks to have same cost.  Some 
zones (e.g. optically thick zones) could 
have more photons and/or longer 
integration

Solutions:
• Create multiple copies of same 

MeshBlock and run MC transfer 
concurrently

• Break mesh blocks up into smaller 
subsets for Monte Carlo



Acceleration

Going forward: 
• Further testing of MRW method
• Implementation of DDMC?

For large optical depths, # of scatterings scales with t2, but many applications 
with t > 102.  Therefore computational cost dominated by zones with largest 
optical depth, but MC is unnecessary because diffusion approximation is good!

Common Solutions:
• Modified random walk (MRW) method
• Discrete diffusion monte carlo (DDMC) method

MRW method draws largest sphere that can fit in 
box and moves photon to surface with random 
direction.  Path length is drawn from distribution 
of path lengths to determine absorption.

Complications/generalizations:
• Need to account for energy change associated with Compton scattering
• Need to account for advection due to flow velocities



TODO List
Short term (end of summer 2019)
• Further development and testing of acceleration
• Full implementation of the geodesic based integrator
• MPI communication across subdomains (take advantage of particle class)
• Modification to utilize task list
• New physics: Dust and Lyman alpha scattering, molecular lines?

Midterm (end of summer 2020?)
• Time-dependent calculations
• Iterative calculations for temperature (ionization) structure
• Coupling to non-LTE calculations of rate equations?
• Discrete diffusion monte carlo?

Longterm
• Radiation hydro via moment method closure or implicit monte carlo
• Ray tracing module(s)

Lots of opportunities to collaborate



Acceleration
Implementing MRW with Compton 
scattering requires solving the 
Kompaneets eq. with a delta 
function source.  Such solutions 
can be computed and tabulated.  
Photons are then draw from a 
distribution of final energies given 
a total diffusion path length (time) 
and initial energy.
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MRW is also complicated by 
advection.  Photons don’t have 
infinite time to diffuse in the 
comoving frame befor advection in 
to neighboring zones with different 
properties.  Solution: draw from a 
distribution of photon positions in 
comoving frame given a fixed 
advection time.



GR Tests

Verlet algorithm – integration in 
Schwarzschild compared to 
GEOKERR


