Numerical Experiments on (Proto) star Formation

Aleksandra Kuznetsova University of Michigan

with: Lee Hartmann, Fabian Heitsch, Javier Ballesteros-Paredes

Protoplanetary Disks are diverse

ALMA DSHARP

What are the initial conditions for disks?

Disks are a natural consequence of angular momentum conservation

What sets the range and relative distribution of protoplanetary disk properties?

Self consistent modeling of disk/core formation from cluster to core scales can provide physically motivated initial conditions and disk properties

For pages of math see: Terebey, Shu, Cassen 1984 Cassen & Moosman 1981

Disk Formation Primer

time central mass centrifugal radius

 $r_c \propto j^2/GM$ $i \propto t^2$ i

Modeling Star Cluster Formation with Athena

Box size = 20 pc Cloud radius = 8 pc

Self gravity (FFT) Periodic boundaries

Seeded turbulence (no driving) P(k) \propto k⁴ dk

Globally isothermal T = 14 K

Freefall time ~ 1.7 Myr Initial cloud mass ~ 2000 Msun

Modeling Star Cluster Formation with Athena

Run	Seed	Ω_c^{-1} [Myr]	Ω_k^{-1} [Myr]	t _{end} [Myr]	Nsink	$\langle n_s \rangle [{\rm pc}^{-3}]$
$N_{cell} = 512^3$	5					
IR_s0	0		15	2.35	98	0.018
IR_r1_s0	0	6	15	2.35	66	0.012
IR_r2_s0	0	3	15	2.35	42	0.009
IR_r3_s0	0	1.5	15	2.35	19	0.002
$N_{cell} = 1024$	1 ³					
HR_s2	2		10	2.1	115	0.028
HR_s0	0		15	1.9	110	0.024
HR_s1	1		8	2.4	70	0.011
HR_r1_s0	0	6	15	1.9	122	0.028
HR_rl_sl	1	6	8	2.5	88	0.014
HR_r2_s0	0	3	15	1.9	134	0.032
HR_r2_s1	1	3	8	2.5	54	0.009
HR_r3_s0	0	1.5	15	1.9	102	0.024
HR_r3_s1	1	1.5	8	2.5	10	0.001

Table 1. A tabulated list of runs and their initial parameters used for this study. All runs have $r_{acc} = 2$ and T = 14 K.

Modeling Star Cluster Formation with Athena

Subgrid Models - The sink-patch environment

sink + patch => protostellar core + envelope

Subgrid Models - The sink-patch environment

Sink-patch algorithm based on Bleuler & Teyssier 2014

Similar to Gong & Ostriker 2013 for Athena except for accretion, which goes like:

$$\dot{M}_s = \left(1 + \eta \log \frac{\bar{\rho}}{\rho_{\rm thr}}\right) \int \nabla \cdot (\rho(\mathbf{v} - \mathbf{v}_{\rm sink})) dV$$

see "The Role of Gravity in Producing Power-law Mass Functions" (Kuznetsova+2018b) for details

A Little Bookkeeping Is Necessary

For more keep an eye out for "The Origins of Protostellar Core Angular Momentum" (Kuznetsova+submitted)

Just as likely to gain angular momentum as you are to lose it!

Insights - Accretion is 3D

Insights - Accretion is 3D

Implications for Disk Formation

Standard rotating collapse (TSC 1984)

Centrifugal radius grows outward as disk is built

Implications for Disk Formation

Variable multidirectional infall

Constant j (averaged over time)

Centrifugal radius should be nearly constant over time

- \rightarrow Disk forms outside in
- → Different disk surface densities
- \rightarrow Trigger GI, shear instabilities?
- \rightarrow How common are misaligned disks?

Kennedy+ 2019 Nature

Star formation is dynamic - collapse from cloud to core scales happens on a dynamical time

Self consistent modeling starts from the cluster scale

Infall onto cores is messy and three dimensional

Next steps will be to model disk formation with variable multidirectional accretion in mind

A job for Athena++ !