#### Star Formation and Gas

Alwin Mao

March 21, 2019



Collaborators: Eve Ostriker, Chang-Goo Kim

- Introduction: Efficiency of What Gas?
- ❷ Time Series: Delay and Variability
- € Correlation Comparison of Density vs. Energy
- $\bullet$  Plans++

#### • Introduction: Efficiency of What Gas?

Time Series: Delay and Variability

<sup>3</sup> Correlation Comparison of Density vs. Energy

• Plans++

## Motivation - Efficiency per free-fall time

- $SFR = \epsilon_{\rm ff} \frac{M}{t_{\rm ff}}$
- $\epsilon_{\rm ff} \sim 10^{-2}$  on galactic scales
- $\epsilon_{\rm ff} \sim 1$  for bound collapsing objects?
- $\epsilon_{
  m ff} \propto e^{-\beta t_{
  m dyn}/t_{
  m ff}}$
- $\beta = 1.6$  (Padoan, Haugbolle, and Nordlund 2012)
- $\alpha_v < 2?$

## Motivation - TIGRESS

- Athena MHD + self gravity + cooling/heating
- Sink/star particles and supernova feedback
- Galactic potential, kpc shearing box, tall box, pc resolution
- Three-phase ISM in Galaxies Resolving Evolution with Star formation and Supernova feedback.

## Density Threshold



## Gravitational Energy - Isocontour



Grav. Energy - Well



## Grav. Energy - Tree Example



# Grav. Energy - Tree (Merged Example)



## Grav. Energy - Movie



1 Introduction: Efficiency of What Gas?

#### ❷ Time Series: Delay and Variability

S Correlation Comparison of Density vs. Energy

• Plans++

Time Series - Density



## Time Series - High Density



## Time Series - Density Time Delay



Time Series - Energy-selected



**1** Introduction: Efficiency of What Gas?

Time Series: Delay and Variability

€ Correlation Comparison of Density vs. Energy

• Plans++

## Correlation - Constant $\epsilon_{ m ff}$ Model between $10^{-2}-1$



Correlation -  $\epsilon_{
m ff} \propto e^{-eta t_{
m dyn}/t_{
m ff}}$  Model



Correlation -  $\alpha_{\nu}$  < Cutoff  $\alpha_{\nu}$  Model



**1** Introduction: Efficiency of What Gas?

**2** Time Series: Delay and Variability

<sup>3</sup> Correlation Comparison of Density vs. Energy

#### $\bullet$ Plans++

- $\bullet$  Form stellar cores in turbulent boxes in dense (100-10000  $\rm cm^{-3})$  gas
- Compare various Lagrangian Tracer Particle implementations
- Figure out ways to distill understanding

### Conclusions

- Time delay  $pprox t_{
  m ff}$
- $\epsilon_{\rm ff}$  depends on gas selection
- More sophisticated energy-based selection not necessarily closer to SFR
- Most mass is unbound, and does not stay bound for long (few Myr)
- Unbound objects are involved in star formation