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Many facets of reacting flows
… from a laboratory scale to cosmological scales
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Thermonuclear Type Ia supernovae
Combustion on an extreme scale

Thermonuclear explosion of compact white dwarf stars in stellar binary systems

SN 2014J in M82
Image: Nordic Optical Telescope, J. Johansson

q Some of the brightest and most powerful explosions

q Standardizable cosmological distance indicators

q Probe the structure of the Universe and led to the
discovery of dark energy (Nobel Prize in physics, 2011)

q Form most of the elements around us from O to Fe

q Currently no first-principles understanding, but…

Powered by turbulent thermonuclear flames



NASA / NOAO

Hurricane
Andrew

Spatial scales: 10-4  – 1015 cm

Temporal scales: 10-10 – 106  s

Temperature: 1010 – 10 K

Density: 109 – 10-20   g/cc

Aaron Jackson (calculation performed at ALCF/ANL 
under INCITE program)

Thermonuclear Type Ia supernovae
Combustion on an extreme scale



Critical velocity of gas expansion into vacuum

!"#$% = '
()* "+ > "+, for degenerate relativistic plasmas -~1.23 − 5/3

Ø Observations: virtually all stellar material undergoes combustion
Ø In order to burn supersonically expanding outer layers, a supersonic combustion front is required -> detonation

Ø Detonation must form in an 1) unconfined (no walls/boundaries), 2) turbulent environment.
Lack of understanding of the mechanisms of detonation formation under such conditions is one of the main 

theoretical challenges of SN Ia theory

Extreme combustion regime: fast turbulence, large range of scales (Re)

Moll & Woosley ‘13 Pakmor et al. ‘12

Thermonuclear Type Ia supernovae
Modern explosion models

Single-degenerate, Chandrasekhar-
mass white dwarf explosion

Single-degenerate, sub-
Chandrasekhar-mass explosion Double-degenerate merger



Moll & Woosley ‘13 Pakmor et al. ‘12

Thermonuclear Type Ia supernovae
Modern explosion models

Single-degenerate, Chandrasekhar-
mass white dwarf explosion

Single-degenerate, sub-
Chandrasekhar-mass explosion Double-degenerate merger

Buncefield incident (2005) Jaipur incident (2009) Fukushima incident (2011)

Unconfined Deflagration-to-DetonationTransition



Extreme regime of high-speed reacting turbulence
Spontaneous deflagration-to-detonation transition

Poludnenko, Gardiner, & Oran PRL (2011);  Poludnenko PoF (2015)



Significant flame acceleration leading to DDT as 
the flame burning speed, ST , approaches and 

then exceeds SCJ

There was a period of ~ 0.14 ms of quasi-steady 
turbulent flame propagation with the speed of  ~

1 km/s (~ 14 cm)!

AYP, Gardiner, & Oran PRL (2011);  AYP PoF (2015)

Extreme regime of high-speed reacting turbulence
Spontaneous deflagration-to-detonation transition

Compressibility may arise because:

ü the flow is fast: pressure gradients created by the flow: !" = $%
&'

ü the reaction wave is fast: pressure gradients (pressure increase!) created by the combustion itself

() = *+
*,-

= . !", 012 = &'
3 : Chapman-Jouguet deflagration speed



Is there experimental evidence of these effects?
Turbulent Shock Tube, Kareem Ahmed, Univ. Central Florida

AYP+ Science (2019)
Chambers+ Comb. Flame (2019)
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Ø EOS (energy relaxation method)
• ideal gas
• real gas (NASA 7-coefficient polynomials)
• relativistic degenerate plasma (ideal-gas fully ionized 

ions, photons, relativistic degenerate electrons, electron-
positron pairs, Timmes & Arnett 99)

Ø Thermal conduction
• molecular (simplified T-dependent and real-gas)
• degenerate electron (Timmes 00)
• radiative (optically thick in degenerate electron gas)

Ø Species diffusion and viscosity
• molecular (simplified T-dependent and real-gas)

Ø Reaction kinetics

• Chemical:

ü Multiple single-step models

ü H2 / H2+CO / C1-C3 / n-dodecane / Cat C1 / Cat A2 / 
C2H4O / …

ü Arbitrary kinetics via automatic code generator

• Thermonuclear: 13 isotope α-network from 4He ⇨ 56Ni

∂ρ
∂t
+∇⋅ (ρU) = 0

∂(ρU)
∂t

+∇⋅ (ρU⊗U)+∇P =∇⋅Π+F +...

∂E
∂t

+∇⋅ ((E +P)U)−∇⋅ (K∇T ) = !S +∇⋅ (Π⋅U)+...

∂(ρY )
∂t

+∇⋅ (ρYU)−∇⋅ (ρD∇Y ) = ρ !Y

Heat Flux

Physical model
Athena - Reacting Flow EXtensions



Chemical flame

Ø Stoichiometric H2-air at 1 bar
Ø Single-step chemistry

Ø Laminar flame width:  3.2×10-2 cm
Ø Laminar flame speed:  1.5×102 cm/s
Ø Domain:        4 cm�4 cm�132 cm
Ø Simulation time:          10 ms

Ø Domain/flame width:  85
Ø Damköhler number:   2.3
Ø Karlovitz number:      2.8

Thermonuclear flame

Ø Pure 12C at ρ = 108 g/cm3

Ø 13-isotope α-chain network
Ø Laminar flame width:  3.6×10-3 cm
Ø Laminar flame speed:  2.3×106 cm/s
Ø Domain:      0.3 cm�0.3 cm�5 cm
Ø Simulation time:          127 ns

Ø Domain/flame width: 128
Ø Damköhler number:   7.2
Ø Karlovitz number:      1.0

Chemical vs thermonuclear combustion



Chemical vs. thermonuclear combustion 
Comparison of the laminar flame structure in:

Ø stoichiometric jet-fuel/air – reduced mechanism, 1 bar (solid lines)
Laminar flame speed: 35 cm/s, width: 0.04 cm 

Ø 50/50 12C/16O – 13-isotope α-network, ρ = 5×107 g/cm3 (dashed lines)
Laminar flame speed: 1 km/s, width: 0.05 cm



Does this mechanism apply to thermonuclear flames?
Critical conditions for DDT

12C flame,  ! = #×%&' g/cc, XC = 1.0
Domain width = ()*+,- ./0123 = 0.02 ✕ 0.02 ✕ 0.34 cm
12C zone width, δL 1.6 ✕ 10-4 cm 4.1 cells
Laminar flame speed, SL 1.15 ✕ 107 cm/s 1.7% of cs,0 
CJ deflagration speed, SCJ 4.8 ✕ 108 cm/s 69% of cs,0

Turbulent integral velocity, 45 = 44)* 8 ✕ 107 cm/s 12% of cs,0

Domain 512-1024 cells

2 – 4 ⨯ 108

Minimum integral velocity, under 2 assumptions:
Ø Kolmogorov cascade, Uλ ~ λ1/3

Ø Maximum flame surface density, Uδ ~ αIMSL

Minimum turbulent flame width

LCJ
min =

lFcs
αIMSL

,  IM =1 for Le = 1

45+,- = 89:;< =/?@AB/?

AYP+ Science (2019)



What does all this mean for SN Ia?
Classical Chandrasekhar-mass explosion scenario

Maximum probability of the transition density (50/50 C/O)
!""# ≈ %×'()*/,, (No free parameters in the model ! )

Probability of DDT in 10 x 10 x 10 km region: 1010 !!!
Future work: other compositions and explosion scenarios

AYP+ Science (2019)



Some future development in Athena and Athena++
Yoram Kozak & Sai Sandeep Dammati (Texas A&M), Chris Stone (PETTT) 

Multi-phase flows
ü Massive particles with feedback
ü Atomization
ü Evaporation
ü Surface burning
ü Electric charge / plasma effects

Complex geometries
ü Ghost-cell immersed boundaries

ü Multi-block capability

Large-Eddy Simulation Models
ü Explicit / implicit filtering

ü Turbulence SGS models



Many facets of reacting flows
… from a laboratory scale to cosmological scales
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Thank you!


