

Modeling of Terrestrial and Astrophysical Reacting Flows with Athena and Athena++

Alexei Poludnenko *Texas A&M University*

Tom Gardiner Sandia National Laboratories

Many facets of reacting flows ... from a laboratory scale to cosmological scales

Thermonuclear Type la supernovae Combustion on an extreme scale

Thermonuclear explosion of compact white dwarf stars in stellar binary systems

- □ Some of the brightest and most powerful explosions
- □ Standardizable cosmological distance indicators
- □ Probe the structure of the Universe and led to the discovery of dark energy (Nobel Prize in physics, 2011)
- Form most of the elements around us from O to Fe
- Currently no first-principles understanding, *but...*

Powered by turbulent thermonuclear flames

Thermonuclear Type la supernovae Combustion on an extreme scale

Thermonuclear Type la supernovae Modern explosion models

Single-degenerate, Chandrasekharmass white dwarf explosion

AEROSPACE ENGINEERING

Single-degenerate, sub-Chandrasekhar-mass explosion

Moll & Woosley '13

Double-degenerate merger

Critical velocity of gas expansion into vacuum

t = 0.25 s

$$U_{crit} = \sqrt{\frac{2}{\gamma - 1}} c_s > c_s$$
, for degenerate relativistic plasmas $\gamma \sim 1.23 - 5/3$

Observations: virtually all stellar material undergoes combustion

In order to burn supersonically expanding outer layers, a supersonic combustion front is required -> <u>detonation</u>

Detonation must form in an <u>1) unconfined</u> (no walls/boundaries), <u>2) turbulent</u> environment.

Lack of understanding of the mechanisms of detonation formation under such conditions is one of the main theoretical challenges of SN Ia theory

Extreme combustion regime: fast turbulence, large range of scales (Re)

Ā

Thermonuclear Type Ia supernovae Modern explosion models

Single-degenerate, Chandrasekharmass white dwarf explosion

AEROSPACE ENGINEERING

Single-degenerate, sub-Chandrasekhar-mass explosion

Double-degenerate merger

Unconfíned Deflagratíon-to-DetonatíonTransítíon

Buncefield incident (2005)

Jaipur incident (2009)

Extreme regime of high-speed reacting turbulence Spontaneous deflagration-to-detonation transition

Poludnenko, Gardiner, & Oran PRL (2011); Poludnenko PoF (2015)

Extreme regime of high-speed reacting turbulence Spontaneous deflagration-to-detonation transition

AYP, Gardiner, & Oran PRL (2011); AYP PoF (2015)

Compressibility may arise because:

- \checkmark the <u>flow</u> is fast: pressure gradients created by the flow: $Ma = \frac{U'}{c_a}$
- the <u>reaction wave</u> is fast: pressure gradients (pressure increase!) created by the combustion itself

$$CJ = \frac{S_T}{S_{CJ}} = \alpha M a$$
, $S_{CJ} = \frac{c_s}{\alpha}$: Chapman-Jouguet deflagration speed

Is there experimental evidence of these effects? *Turbulent Shock Tube, Kareem Ahmed, Univ. Central Florida*

Physical model Athena - R_{eacting} F_{low E}X_{tensions}

EOS (energy relaxation method)

- ideal gas
- real gas (NASA 7-coefficient polynomials)
- relativistic degenerate plasma (ideal-gas fully ionized ions, photons, relativistic degenerate electrons, electronpositron pairs, *Timmes & Arnett 99*)

Thermal conduction

- molecular (simplified T-dependent and real-gas)
- degenerate electron (Timmes 00)
- radiative (optically thick in degenerate electron gas)
- Species diffusion and viscosity
 - molecular (simplified T-dependent and real-gas)

Reaction kinetics

- <u>Chemical:</u>
 - Multiple single-step models
 - ✓ H₂ / H₂+CO / C1-C3 / n-dodecane / Cat C1 / Cat A2 / C₂H₄O / ...
 - Arbitrary kinetics via automatic code generator
- <u>Thermonuclear</u>: 13 isotope α-network from ⁴He \Rightarrow ⁵⁶Ni

$$\begin{split} &\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \mathbf{U}) = 0 \\ &\frac{\partial(\rho \mathbf{U})}{\partial t} + \nabla \cdot (\rho \mathbf{U} \otimes \mathbf{U}) + \nabla P = \nabla \cdot \Pi + \mathcal{F} + \dots \\ &\frac{\partial E}{\partial t} + \nabla \cdot ((E+P)\mathbf{U}) - \nabla \cdot (K\nabla T) = \dot{S} + \nabla \cdot (\Pi \cdot \mathbf{U}) + \dots \\ &\frac{\partial(\rho Y)}{\partial t} + \nabla \cdot (\rho Y \mathbf{U}) - \nabla \cdot (\rho D \nabla Y) = \rho \dot{Y} \end{split}$$

Chemical vs thermonuclear combustion

Chemical flame

- Stoichiometric H₂-air at 1 bar
- Single-step chemistry

Laminar flame width:	3.2×10⁻² cm
Laminar flame speed:	1.5×10² cm/s
Domain: 4 cm	× 4 cm × 132 cm
Simulation time:	10 ms
Domain/flame width:	85
Damköhler number:	2.3
Karlovitz number:	2.8

Thermonuclear flame

- > Pure ¹²C at $\rho = 10^8 \text{ g/cm}^3$
- \geq 13-isotope α -chain network

 Laminar flame width: Laminar flame speed: 	3.6×10 ⁻³ cm 2.3×10 ⁶ cm/s
 Domain: 0.3 cm Simulation time: 	127 ns
Domain/flame width:	128
Damköhler number:	7.2
Karlovitz number:	1.0

Chemical vs. thermonuclear combustion

Comparison of the laminar flame structure in:

stoichiometric jet-fuel/air – reduced mechanism, 1 bar (solid lines)

Laminar flame speed: 35 cm/s, width: 0.04 cm

> 50/50 $^{12}C/^{16}O - 13$ -isotope α -network, $\rho = 5 \times 10^7$ g/cm³ (dashed lines)

Laminar flame speed: 1 km/s, width: 0.05 cm

Does this mechanism apply to thermonuclear flames? Critical conditions for DDT AYP+ Science (2019)

What does all this mean for SN Ia? AYP+ Science (2019)

Classical Chandrasekhar-mass explosion scenario Maximum probability of the transition density (50/50 C/O) $\rho_{DDT} \approx 3 \times 10^7 g/cc$ (No free parameters in the model !) Probability of DDT in 10 x 10 x 10 km region: 10^{10} !!!

Future work: other compositions and explosion scenarios

Some future development in Athena and Athena++

Yoram Kozak & Sai Sandeep Dammati (Texas A&M), Chris Stone (PETTT)

Multi-phase flows

- ✓ Massive particles with feedback
- Atomization
- Evaporation
- ✓ Surface burning
- ✓ Electric charge / plasma effects

Complex geometries

- ✓ Ghost-cell immersed boundaries
- ✓ Multi-block capability

Large-Eddy Simulation Models

- ✓ Explicit / implicit filtering
- ✓ Turbulence SGS models

Many facets of reacting flows ... from a laboratory scale to cosmological scales

