These FU Orionis outbursts of protostellar disks can be used to study the disk accretion mechanism.


2.1 Disk unstable region:

Observations indicate that mass accretion rates onto low-mass protostars are generally lower than the rates of infall to their disks; this suggests that much of the protostellar mass must be accreted during rare, short outbursts of rapid accretion. In Zhu et al. 2009b we explore when protostellar disk accretion is likely to be highly variable. While constant a disks can in principle adjust their accretion rates to match infall rates, protostellar disks are unlikely to have constant a. In particular we show that neither models with angular momentum transport due solely to the magnetorotational instability (MRI) nor gravitational instability (GI) are likely to transport disk mass at protostellar infall rates over the large range of radii needed to move infalling envelope material down to the central protostar. We show that the MRI and GI are likely to combine to produce outbursts of rapid accretion starting at a few AU. Our analysis is consistent with the time-dependent models of Armitage, Livio, & Pringle (2001) and agrees with our observational study of the outbursting object FU Ori.



2.2 Outburst 2-D simulation:

In Zhu et al. 2009c we have developed time-dependent models of FU Ori accretion outbursts to explore the physical properties of protostellar disks. Our two-dimensional, axisymmetric models incorporate full vertical structure with a new treatment of the radiative boundary condition for the disk photosphere. We find that FU Ori-type outbursts can be explained by a slow accumulation of matter due to gravitational instability. Eventually this triggers the magnetorotational instability, which leads to rapid accretion. The thermal instability is triggered in the inner disk but this instability is not necessary for the outburst. An accurate disk vertical structure, including convection, is important for understanding the outburst behavior. Large convective eddies develop during the high state in the inner disk. The models are in agreement with Spitzer IRS spectra and also with peak accretion rates and decay timescales of observed outbursts, though some objects show faster rise timescale. We also propose that convection may account for the observed mild-supersonic turbulence and the short-timescale variations of FU Orionis objects.



Movies1.html

Click the Image for Movies