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Vibrational contributions to the hyperpolarizabilities
of homonuclear diatomic molecules
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An expression for the off-resonance vibrational contribution to the hyper-
polarizability of a homonuclear diatomic molecule is derived. This expression
is written in terms of the Raman transition polarizability, and it explicitly
gives the frequency dependence of all the independent tensor components of
the hyperpolarizability of a randomly oriented, freely rotating molecule. The
vibrational contributions to the hyperpolarizabilities of several molecules are
evaluated and compared, both in the static limit, and also at optical fre-
quencies. Several nonlinear optical processes are considered.

1. INTRODUCTION

Nonlinear optical phenomena have attracted much interest in recent years.
The development of high power tunable lasers has made possible a wide range of
nonlinear optical experiments and applications, ranging from coherent anti-
Stokes Raman spectroscopy (CARS) to the generation and manipulation of ultra-
short laser pulses [1-4]. The third-order nonlinear susceptibility x which
mediates these optical processes is the macroscopic expression of the microscopic
molecular second hyperpolarizability tensor y. Perturbation theory gives a single
expression for y, and the hyperpolarizabilities corresponding to each of the
various nonlinear optical processes are just special cases of this general expres-
sion, differing only in their frequency arguments [5-7]. However, each process
(e.g. dc Kerr effect, electric-field-induced second-harmonic generation (ESHG)
and third-harmonic generation (THG)) has a characteristically different balance
of contributions from the electronic, vibrational and rotational degrees of freedom
of each molecule. It is important to disentangle the various contributions to 7,
especially in the context of dynamic response to short pulses, because the differ-
ent mechanisms are characterized by widely different time scales. Furthermore,
such a decomposition will allow the results of experiments based on different
nonlinear optical processes to be compared and combined. A basis for the com-
parison of the nonresonant electronic contributions to the hyperpolarizabilities of
atoms and molecules has already been described [8]. Below we will derive an
expression for the off-resonance vibrational contribution to 7.
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2. POLARIZABILITY APPROXIMATION FOR }*

The starting point for the ensuing derivation will be an explicit quantum-
mechanical expression obtained by Orr and Ward [5]. This expression is appro-
priate when damping may be ignored, and is suitable even in the static limit. For
a nondipolar molecule their expression may be written as

{Z gty |my<m | ps|np<nip, |p2<p | 1sl 8>

m,n, p (wmg - wa)(wng - wl - wZ)(wpg - wl)
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F (#g)
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m,n (wmg - wa)(wng - wl)(wng + 602) ’
(#9)
where Y p denotes summation of the 24 terms generated by permuting the fre-
quencies with their associated spatial subscripts, —w, + w; + W, + w3 =0, |g) is
the initial (ground) state of the system and p, is the a Cartesian component of the
electric dipole moment operator. For the present purpose equation (1) is equiva-
lent to the results obtained by other calculation schemes [6, 7], but its form is
more convenient. Note that while the treatment of pure rotational transitions is
analogous to the treatment of vibrational transitions, extra complications may
arise if damping cannot be ignored. In this case the full 48 term expression for y
may be required [6, 7].

The separation of equation (1) into electronic, vibrational and rotational con-
tributions is done by grouping terms according to whether they show resonances
at electronic, vibrational or rotational transition frequencies. Since the matrix
elements {g|u,|m)> vanish by symmetry for transitions to states within the
vibration—rotation manifold of the ground electronic state of a homonuclear
diatomic molecule, the only terms which may show vibrational or rotational res-
onances come from a subset of the first group of terms in equation (1). The
vibrational contribution to the hyperpolarizability is the sum of all terms which
may exhibit vibrational resonances and is denoted y'. Thus, the vibrational con-
tribution to y is given by

1
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where states to be summed over are
lg> =le, v, J, M), (20)
|m>, |p> =1e", ", J', M"), " Fe 2¢)
|n)>=le, o', J, M, v #F v 2d)

and where e is the electronic quantum number, v is the vibrational quantum
number and J, M are the rotational quanturm numbers of a state. Note that the
state specification is appropriate for a gas of noninteracting linear molecules.
Since the molecular population is usually distributed over several initial states one
must also average over the initial states |g) in equation (2) by means of a sum
Zg p(g), where p(g) is the normalized population distribution function. Averaging
over the M quantum number of |g) has the effect of an orientation average.
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The vibrational contribution ' given by equation (2) is a measure of the
induced dipole resulting from the displacement of the nuclear positions by the
applied fields, and the separation of y into electronic and vibrational contributions
is analogous to the well known separation of the linear polarizability o into «® and
o' [9]. Note that there is another contribution to y (or a) which is vibrational in
origin but which is not included in y* (or «*). This contribution arises through the
parametric dependence of y° on internuclear separation R. Thus, the observed y°
is obtained by averaging 7°(R) over the vibrational coordinate of the ground
vibrational state, which increases y° over its value at the equilibrium internuclear
separation [18]. The 7" given in equation (2) differs from this vibrational averag-
ing contribution in that the dipole induced through y* arises from the nuclear
motions driven (possibly resonantly) by the applied fields, rather than solely
through electronic displacements with respect to the unperturbed nuclear posi-
tions,

The essential approximation that makes equation (2) tractable is that of repla-
cing each of the last two factors of equation (2 @) by a Raman transition polariza-
bility [10]. This approximation will be adequate when the electric field
frequencies are all well below electronic resonance frequencies. In this case one
may use the static limit of the Raman transition polarizability

gn __2_ Z <g|ua|m>(ml,uﬂln>

Tap = (3)
h miZa) Wy
to put equation (2 @) in the form
v p&) a3 ol
ydﬁvé(_wo;w1,wz,w3)=zz z Pol _ Ted Ty (4)
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The restriction on states |n) given by equation (2 d) still applies. The averaging
over initial states of a population of molecules has now been included, ensuring
that the tensor 9" is isotropic.

Equation (4) becomes exact in the static limit. For nonzero field frequencies
the approximation employed to obtain equation (4) amounts to ignoring the small
dispersion of the nonresonant Raman polarizability [11, 12]. A measure of the
accuracy of the approximation is obtained by considering the dispersion of the
molecular polarizability between @ = 0 and optical frequencies, which is about 2
per cent for the molecules to be considered (H,, D,, N;, O,) [4]. Therefore, at
optical frequencies equation (4) may be expected to underestimate y* by about 4
per cent when the static transition polarizability is used. A better approximation
might be to use the transition polarizabilities evaluated at some suitable average
field frequency rather than at zero frequency.

3. SPHERICAL TENSOR FORM AND ORIENTATION AVERAGING

The evaluation of y" is facilitated by re-expressing equation (4) in terms of
irreducible spherical tensors, because both isotropic averaging and the sum over
free rotor states are simpler in terms of spherical rather than Cartesian tensors.
The method is that of Yuratich and Hanna [10, 13]. Thus, the isotropic average
of the tensor product appearing in equation (4) may be written as

ara =Y (K + 1) o agx. (5)
KQ
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The horizontal bar denotes an orientation average, txg() is the O-th component of
the K-th rank irreducible spherical tensor [14], and 6X is a scalar function of the
electric field polarizations alone [10, 13]. The angular factor X is defined as the
scalar product of two Kth tank tensors

0% = (eo €)™ . (e, €))%, (6)

where (€, ;)™ is the Kth rank irreducible tensor product of vectors €, and e,.
The unit vectors @,, e, e,, e; define the polarization states of the scattered and
incident electric fields.

After putting equation (4) into spherical tensor form and using the state
descriptions of equation (2b, d), one must then perform the sums over permu-
tations P and over quantum numbers ¢/, J', M, K and the averages over v, J, M,
Q. Applying the Wigner-Eckart theorem gives

2 Y e I M | |evI MY | = (2T + 1)~ v’ T o ® | ew) ) |, )
M Q

where (- |- |- > denotes the reduced matrix element. The right hand side has no
M dependence, so that averaging equation (7) over the M quantum number leaves
it invariant. Thus, the result of sums over M, M’, O may be simply expressed in
terms of the reduced matrix element. The value of the reduced matrix element is

[10]
4 2
| Cev' T [a® | ewd> |2 = (27 + 1)(2T + 1)(3 I; g) a2, ®)

For a linear molecule the Q = 0 spherical tensor components are [14]

o = —(1/3)"*(ay + 2a)), (9a)
a =0, (9b)
o) = (2/3)%(a — a)), ¢

where a) and «, are the polarizabilities parallel and perpendicular to the molecu-
lar axis.

Combining equations (5), (7), (8) and substituting into equation (4) gives

v _ _ plo, /) 2J +1
yaﬂyé( Dg; Wy, Wy, (03) —; ngj' % 4h 2K + 1
(v#v')
J 2 OK
><< o J) | ? s » (19)
000 (wvlv'l' s Cl)z)

where Gﬁ,yﬁ is the angular factor evaluated for electric field polarizations along the
afyd Cartesian axes. The usual Raman selection rule AJ = 0, +2 is embodied in
the Wigner 3 —j symbol appearing in equation (10). Substituting the values of
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the 3 —j symbols [15] and evaluating the sums over J' and K in equation (10),
one obtains

v;ﬂyé(——wd;wlxwzyw3)=z z Z(4h)_1
P ov,v T

{v#v)

o {[ J+1D)J+2) plv, Doy — % )ay va+2
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4. SUM OVER PERMUTATIONS

As well as summing over molecular states, one must also sum over all permu-
tations of the paired electric field frequencies and polarizations in order to evalu-
ate 7'. One may interchange the order of summation in equation (11), and then
split each term into a factor invariant under the permutation operator multiplied
by a factor of the form

Koy — L Ossp
b (Q)_4;(Q—w1-wz) (12
where Q is the transition frequency w,; ,.;-. Given an expression for 6% one may
explicitly perform the summation in equation (12). The factors D¥(Q) contain
essentially all the frequency and polarization dependence of §*.

The angular factors 6% defined by equation (6) have, in the case where the
polarization vectors are all coplanar, the explicit expression

0° = e, . e;)(e, . €)), (13a)
6% = t{(eo . @3)(e, . @) + 3(e, . e,)(e, . ;) + 3(e, x e,). (e, x e3)}. (13b)

Furthermore, the following symmetries apply in the case that the polarization
vectors are linear, coplanar and oriented along cartesian axes

Osvs = Onpsy = Ofays = O%ypa- (14)

The sum in equation (12) is evaluated by writing down all the terms formed
by simultaneous permutations of (—w,, w;, w,, w3) and (a, B, , ), applying the
symmetries of equation (14), and regrouping to obtain

DX(Q) = 63,5 Dy + 05,55 D2 + 055,5 D5 (15)

where
D, = 2(Q; v, + m,), (16 a)
D, = 2(Q; w, + w;), (16b)
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Table 1. The frequency factors D¥(Q) defined by equation (12) have been evaluated for
the four combinations of field polarizations needed to completely describe a general
isotropic fourth rank tensor. Note that only three of these components are indepen-

dent because of the relation T =T + T

xXxX xxyy xyxy

tensors [19]. The terms D,, D,, D, are defined by equation (16).

afys 3D 6D%(Q)

XXXX (D, + D, + Dy) 4D, + D, + D,)

xXxyy D, 3(D, + D, + D3) — 5D,
xXYyxY D, 3(D, +D,+ D3)—5D,
xyyx D, 3(Dy + D, + D3)— 5D,

D3 = Q(Q, (5] + (U3)
and

2Q
YO =g

+ T,,,x which holds for isotropic

(16¢)

(16 4d)

The values of D¥(Q) in the specific case of colinear light beams propagating along
z, with linear polarization vectors along x and y, are obtained by combining
equations (13) and (15). The results for DX(Q) are given in table 1. In terms of

DX(Q), equation (11) may be written as

y:ﬁyé(_wa; wl’ Wy, CO3)
=ht Y X
v,v' J
(v#v)

X{L[(1+UU+2)
30 [ 27 + )27 + 3)

J+1DJ+2)
(27 + 3)2J +5)

2 JU+D
3027 — 1)(2J +3)

2
+ P(Uy D(M) 3D0(wu.l, v'J)}'

3 vJ, v'J

5. FURTHER APPROXIMATIONS

p(v, Do — O‘L)gJ, vI+2 6[D2((0u, vi+2)
p(v, J + 2)(a) — %1)51 42,00 6D (@ps 42, 5)

plo, Ny — “J_)f], v’ 6[D2(ww, v’J)]

17)

The principal approximation made in the derivation of equation (17) has been
the use of the Raman transition polarizability in equation (4). However, molecular
polarizabilities are not usually known in the detail required to evaluate equation
(17) as it stands. Therefore, to obtain a more convenient expression for y*, we will
employ several further approximations. The adequacy of these approximations
will be assessed when 7' is calculated for the diatomic molecules H,, D,, N, and

O, . The approximations to be made are fourfold.
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The first approximation to be made is that of assuming only the ground
vibrational state is populated, and that only the fundamental » = 0— 1 vibrational
transition contributes significantly. For a fundamental vibrational frequency
above 1400 cm ™!, the population of the excited vibrational levels is readily calcu-
lated to be less than 0-1 per cent at room temperature [16], which is negligible.
The v = 0— 2 overtone Raman transition intensities, which are proportional to
the corresponding overtone contribution to ¥, have been measured for D,, N,
and O, [17]. The overtone intensities are measured to be in the range 0-03-0-12
per cent of the fundamental intensities, which is again negligible.

The second approximation is to ignore the J dependence of the transition
polarizability matrix elements a,; ., and to replace them by a single representa-
tive value for the v = 0— 1 transition. Such an average Raman polarizability o,
is usually all that is available from experimental measurements.

The third approximation is to ignore the rotational transition frequencies
compared to the fundamental vibrational frequency. This is justified because
(6 +4)B, <€ wy,, where B, is the ground state rotational constant, and also
because the AJ = +2 transitions are usually much weaker than the AJ = 0 tran-
sitions in vibration~rotation Raman spectra.

The fourth and final approximation is to take the limit J > 1 in order to
simplify the sums over J. This approximation is valid when AB, < kT because
then most of the population is in fact in high J levels.

Applying the above four approximations to equation (17) results in the follow-
ing simple expression

y:ﬁy&(_wa; Wy, Wy, ({)3)

— h_l{(a 4SaJ.)01 6D2(w01) + (m:;ﬁﬁ) 13[Do(w01)}- (18)

0

In obtaining equation (18), all four approximations are applied to the [? terms,
while only the first two approximations need to be applied to the D° term. Since
the D? term of equation (18) accounts for only about 10 per cent of the total 7",
one may expect that the effects of the last two approximations will be correspond-
ingly reduced. Equation (18) is in agreement with the result previously derived by
means of a classical orientation average in terms of Cartesian tensors in the special

case of ESHG [18, 19].

6. STATIC LIMIT

The relative contributions of the various terms in y* and the effects of the
approximations made in deriving the expressions for y* may be assessed most
readily in the static limit, because the expressions simplify and because there is
only a single independent tensor component to consider [19]. At w = 0, Klein-
man symmetry requires that

Y;xyy = 7;yxy = y‘;yyx = %)’;xxx . (19)

The data required to evaluate y¥___ for the molecules H,, D,, N, and O, have
been obtained from ab initio calculations [20] and experimental measurements
{11, 21], and are presented in table 2. In order to evaluate 7., . from equation
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Table 2. Molecular parameter values used to evaluate y".

<£o_> &ns()) <°‘|| + 20&)
Vo1 2ne J= even 3 o1 (o) — @y )os
Molecule (cm™ 1) (cm™ 1) odd (10742C*m?J ™Y (10~*2C*m?2J™ Y
H,t 4156 59-32 1/3 12:21 10-09
D, 2988 29-91 21 1018 8-28
N,§ 2331 1-990 2/1 6-13 4-04
0,§ 1555 1-438 0/1 5-89 5-89

+ Ab initio values for the J = 1 state, from [20].
1 Ab initio values for the J = 2 state, from [20].
§ From Raman intensity measurements of [11] and depolarization ratios of [21].

(17) one needs the normalized population distribution function p(v, J). To a
sufficiently good approximation, p(v, J) factors as p(v)p(J) where p(v) = 8, and

p()) = p'(J) / Y (D (204)
J

P'(J) = gus(N(2J + 1) exp (—J(J + DhBo/kT) (206)

with g, (J) the nuclear statistical weight factor. Alternatively, equation (18) in the
static limit becomes simply

6 [ 4 a; + 20,\?
y;xxx(o; 0» O: 0) =7 15 (a|| - aJ_)gl + —”——J:> ] (21)
hwg, | 45 3 o1

The values of y* calculated using equations (17) and (18) are compared in table
3, where the results of the more approximate expression equation (18) are seen to
differ very little from the results obtained by explicitly summing over rotational
levels in equation (17). This good agreement is obtained because the terms arising
from the second rank irreducible spherical tensor part of y* (i.e. terms involving
(o ~ ;)% ;) account for only about 5 per cent of the total y'. While the terms

Table 3. Calculated values of the static " at 293 K.

Pixxx(0; 0, 0, 0)/10762C4m* ] 73

Equation (IS)T %(all — al)(z)lI y;xxx(o; Oy 0’ 0)§

Molecule Equation (17) Equation (18) Equation (17) (), + 20, /33 ¥ixx(0; 0, 0, 0)

H, 1-140|| 1-149 0-993 0-061 0-292
D, 1-104|] 1-110 0-994 0-059 0-286
N, 0-5069 0-506 1-000 0-039 0-094
0, 07349 0-734 1-000 0-089 0-141

+ Equation (18) is essentially the classical limit of the quantum mechanical expression
given by equation (17), so this ratio is a measure of the size of quantum effects.

1 This ratio measures the relative size of the second and zeroth rank tensor components
contributing to y*.

§ The electronic contribution ¢ is obtained from [18] and [22].

| The ab initio transition polarizabilities ,; ., from [20] have been used.

4 The J-averaged transition polarizabilities given in table 2 have been used.
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in (o) — ,)3, evaluated by equation (18) are in error by +8, +5, +0-5 and +0-3
per cent for H,, D,, N, and O,, respectively, as compared to the results of
equation (17), these terms only make a small contribution to the total. Thus, no
significant error is incurred by using equation (18) in place of equation (17) unless
the term in (), — )3, is required in particular.

Also shown in table 3 is a comparison of the vibrational contribution and the
electronic contribution [18, 22] to y, in the static limit. Typically, the vibrational
contribution is about 10 per cent of the total, which is significant but not domin-
ant. However, ab initio calculations for the H; molecule [23-25] show that the
vibrational contribution is dominant in this case, amounting to more than 90 per
cent of the total y. For H; the internuclear bond is much less stiff than for H,,
which accounts for the large enhancement of y*.

7. VIBRATIONAL HYPERPOLARIZABILITIES AT OPTICAL FREQUENCIES

One may make use of equation (18) to compare the various nonlinear optical
processes at optical frequencies. By direct substitution of the appropriate fre-
quency arguments, the following result is obtained for the frequency dependence
of the vibrational contribution for CARS

y;xxx(—zwl + @35 Wy, Wy, —(1)2) = ’Y;xxx(O; 0) 0, 0)

ST LT

Several other processes of interest may be evaluated by simply choosing suitable
values of w,; and w, . For example, for ESHG one takes @, = @ and @, = 0, while
for THG one chooses w; = w and w, = —w in equation (22). At optical fre-
quencies such that w;, w, > wy; the value of y¥ will be reduced by a factor of
order (wg,/®,)? compared to its static value, unless pairs of field frequencies sum
to zero or near to it. In the later case y¥ will have a value near its static limiting
value.

The expression for the dc Kerr hyperpolarizability doesn’t fit the pattern of
equation (22) because yji. k., is defined as the difference between two tensor
components. The definition reflects the fact that the experimental observable 1s
an induced birefringence. The expression for Y} ke, I8

y‘éc Kerr = %[‘y‘;xxx(_w; 0) O) O)) - ’y‘x,yyx(—w; 0) 0) (D)]

-]
~ hwg, { 45 [3 ! Woy
(5=l -G
+ 1 —{— . (23)
3 01 Woy

The value of yj ke, is much smaller than %, (0; 0, 0, 0), even though a pair
of frequencies sums to zero, because of a cancellation of terms. Also for this
reason, the dc Kerr hyperpolarizability has the peculiar property that the
() — 2,)%; term will dominate yY k.., for optical frequencies w > wg,. Therefore,
if an accurate estimate of yj .., is desired one must use equation (17) for the
calculation, rather than equation (18) from which equation (23) has been
obtained. Similar considerations apply to the ac Kerr effect [y(—w,; w,,
— g, W,)].
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Table 4. Vibrational contributions to the hyperpolarizability at optical frequencies. The
fundamental optical field frequency is v, = 15800cm™! (4= 633nm). For the
CARS case the second optical field frequency is v, = v, — 2500cm™!. The 3" are
calculated using equation (18). For comparison, y* & 5 x 107%2C*m* ]~ for the
molecules considered.

yv/10—62 C4m4J'3

Molecule vg,/em 1 dc Kerrt DFWM} CARS$§ ESHG| THGY

H, 4156 —0-032% +0-759 +1:194 —0-042 —0-020
D, 2998 +0-007* +0-737 +2:426 —0-020 -0-010
N, 2331 +0-003* +0-336 —2-231 —0-006 —0-003
0, 1555 +0-038* +0-489 —-0-310 —0-004 —0:002

T 3/2[Vixxn( —®; 0, 0, @) = y},,.(—w; 0, 0, w)], see equation (23).

I Y —@; ©, , —w), see equation (22).

§ Viexx(— 201 + 0,5 @y, ©;, —®,), see equation (22).

| 7 xx(—2w; @, w, 0), see equation (22).

9 Pxx( —30; 0, @, ), see equation (22).

* The dc Kerr hyperpolarizability is particularly sensitive to the approximations made
in order to obtain equation (18) from equation (17). Using equation (17) one obtains
77/107%2C*m*J "3 = —0-041, +0-001, +0-003 and +0-038 for H,, D,, N, and O,,
respectively, at 293 K. The calculation uses the ab initio %,; ,.; and w,; ., of [20] for H,
and D, and the J-averaged transition polarizabilities given in table 2 for N, and O, .

In table 4 are presented the values of 7' calculated for five representative
nonlinear optical processes, for light of wavelength 633 nm incident on the mol-
ecules H,, D,, N, and O,. As expected, y' is negative and very small for ESHG
and THG. We note in passing that the calculated y* for ESHG has been experi-
mentally verified for H, and D, [18]. The calculated " for the dc Kerr effect is
also of about the same magnitude, but it has the opposite sign. In contrast, the y*
for degenerate four wave mixing (i.e. the nonlinear refractive index) DFWM, is
nearly as large as the static value of y'. Finally, one sees from table 4 that 7 for
CARS may be larger than the static value of 7' even when the frequency differ-
ence @; — @, is tuned more than 1000 cm ™! off resonance. Even far off resonance
the value of y{,gs may be quite comparable to y°. It has been suggested [8] that
the resonant CARS amplitude could be calibrated against the nonresonant back-
ground. The above considerations indicate that care must be taken in dealing with
the broad, strong wings of the vibrational resonance if such a procedure is to be
implemented.

8. DiscussioN

So far we have restricted our consideration to homonuclear diatomic mol-
ecules for reasons of simplicity. The question naturally arises as to whether the
above derivation may be extended to more complicated molecules, and as to
whether the behaviour of y¥ for homonuclear diatomic molecules illustrates the
essential features and relationships which exist in the more general case. The
special features of homonuclear diatomic molecules which make the treatment
especially simple are that the vibrations are totally symmetric, there is no per-
manent dipole moment and the angular momentum vector has a fixed orientation
with respect to the molecular axes. Provided one considers only those vibrations
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for which there is no nonvanishing dipole matrix element between states of the
ground rotation—vibration manifold (i.e. infrared inactive vibrations), the exten-
sion to symmetric top molecules is straightforward [10]. Thus, the " for the
breathing vibrational mode (only) of CO, or CH, would be quite similar in form
to the expressions obtained above.

However, for an infrared active molecular vibration the transition polarizabil-
ity of equation (3) will no longer be a good approximation to the factors in
equation (2 a), especially if the optical field frequencies are near vibrational tran-
sition frequencies. Furthermore, for a molecule with a permanent dipole moment
equation (1) is no longer adequate [5]. In these cases one expects 7' to be
enhanced, perhaps dramatically, as compared to y* for a homonuclear diatomic
molecule. This is consistent with the results of the approximate calculations that
have been done for the series of fluorinated methanes [9], and which suggest that
in the static limit ' may dominate y¢ for many polyatomic molecules. In order to
quantitatively assess the effect of the restriction to homonuclear diatomic mol-
ecules in our derivation, an extension is warranted. An extension of the above
treatment to consider more general linear molecules is probably the most tractable
alternative. The two cases of particular interest would be the symmetric, linear
triatomic molecule (e.g. CO,), which would show the effect of infrared active
vibrations in the absence of a permanent dipole moment, and the heteronuclear
diatomic molecule (e.g. HCl), which is the simplest molecule with a permanent
dipole moment. In fact, a detailed calculation of y* for the dc Kerr effect in CO,
has recently been performed [26] which demonstrates that the additional terms
which arise for y¥ of CO, are at least as large as those given by equation (23).
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