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Frequently it is useful to compare experimental values of the hyperpolarizabilities f3 and y 
with calculated values. It is also often helpful to compare experimental values of f3 
obtained from dc-electric field induced second harmonic generation (dc-SHG) experiments, 
e.g., with values obtained using the solvatochromism method. In order to do this the 
hyperpolarizabilities must be defined using consistent conventions. In this paper, four 
commonly used conventions are discussed and simple factors for converting between 
them presented. In addition, the sum-over-states expression for the calculation of f3 and y is 
described and its correct use in comparing with hyperpolarizabilities obtained using 
other experimental and theoretical techniques discussed. As an illustration of the consistent 
use of conventions, ab initio and semiempirical calculations on para-nitroaniline are 
compared with experimental dc-SHG values. This comparison highlights the difference between 
theoretical values of the hyperpolarizability with the molecule in a gas phase environment 
and experimental values obtained in polar solvents-a difference that has in the past 
been obscured by inconsistent choice of conventions. 

I. INTRODUCTION 

Different conventions have been used to define hyper­
polarizabilities making it difficult to compare calculated 
and experimental values and to compare experimental val­
ues obtained using different techniques. In many cases the 
problem of comparison is further complicated because the 
precise convention used is not clearly stated. This has led 
to a situation in the literature where, for example, experi­
mental values are frequently directly compared to calcu­
lated values that use a completely different convention. 
Certainly it would be preferable to have a single universal 
convention. Short of this, it seems useful to have clearly 
defined procedures for switching among conventions. 

In this work, four frequently used conventions are dis­
cussed and compared; one based on a Taylor series expan­
sion of the induced dipole moment in terms of an external 
electric field, lone based on a perturbation series expan­
sion,2 one used by many experimentalists to describe solu­
tion results,3-5 and one in which all numerical factors are 
included in the hyperpolarizabilities.6 The first two of these 
conventions possess the useful property that hyperpolariz­
abilities of the same order extrapolate to the same value as 
the frequencies approach zero. This property not only 
makes it easy to compare frequency-dependent measure­
ments with theoretical values calculated using static elec­
tric fields, but also allows direct comparison of experimen­
tal results obtained using different techniques. For 
example, third harmonic generation experiments that mea­
sure the second order hyperpolarizability y( - 3Ul;Ul,Ul,Ul) 

have been used to estimate the value of y( -2Ul;Ul,Ul,O) in 
the analysis of dc-electric field induced second harmonic 

generation (dc-SHG or EFISH) data.4 In this case, use of 
either a Taylor series or a perturbation series conven­
tion allows straightforward transferability of the 
y( - 3Ul;Ul,Ul,Ul) value to the second harmonic analysis 
since far below resonance y( - 3Ul;Ul,Ul,Ul ) 

-y( -2Ul;Ul,Ul,O). This is shown in Fig. 1 which compares 
third harmonic y( - 3Ul;Ul,Ul,Ul ), electric field induced 
second harmonic y( - 2Ul;Ul,Ul,O) and Kerr effect 
y( -Ul;Ul,O,O) measurements of the hyperpolarizability us­
ing either the Taylor series or the perturbation series def­
inition. Note that, as the frequency Ul approaches zero, all 
three second order hyperpolarizabilities become equal. 

We also point out the changes required to the sum­
over-states expressions 7-9 in order to compare properly 
sum-over-states values of the hyperpolarizabilities with ex­
perimental values or values calculated using analytic deriv­
atives of the energy with respect to an external electric field 
(or equivalent finite field methods) (see, e.g., Ref. 10). 
This discussion is also important for correct evaluation of 
f3 using the solvatochromic technique. ll ,12 

It is certainly true that in many, if not most cases, it is 
the relative values of the hyperpolarizabilities that are 
important-and provided that quantities measured using 
the same technique are being compared, absolute values 
are not as important. Conclusions about trends in compa­
rable hyperpolarizabilities [e.g., f3hheory (para-nitroaniline) 
vs f3hheory (4,4' nitroaminostilbene) or ffxpt( -2Ul;Ul,Ul) 

(para-nitroaniline) vs ffxpt ( - 2Ul;Ul,Ul ) (4,4' nitroaminos­
tilbene)] are unaffected by differences in conventions. 
However, for comparison of f3theory ( - 2Ul;Ul,Ul) and 
ffxpt ( -2Ul;Ul,Ul) knowledge of the differing conventions 
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FIG. 1. Plot of the third harmonic r(3OJ) ==r( -3OJ;OJ,CtJ,CtJ), dc-electric 
field induced second harmonic r(2CtJ) ==r( -2CtJ;CtJ,OJ,O) and Kerr effect 
r( OJ) == r( - CtJ;CtJ,O,O) hyperpolarizabilities vs frequency using either the 
Taylor series or the perturbation series definition. All values converge to 
the static value, r(O)==r(O;O,O,O) as the frequency CtJ approaches zero. 

and the conversion factors between them is essential. Sim­
ilarly, comparison of a value of f3( - 2cv;cv,cv) obtained us­
ing the solvatochromic technique that relies on a two-level 
model approximation to the sum-over-states expression for 
the hyperpolarizability with the same value from a dc-SHG 
measurement also requires understanding of the conven­
tions in use. In many cases when comparisons of this type 
are made, they are done incorrectly (see, e.g., Refs. 3, 7, 
and 8). 

In the next section, four of the most frequently used 
conventions for defining f3 and y will be discussed and the 
factors for conversion among them will be presented. In 
Sec. III, the relationship between the sum-over-states ex­
pression for f3 and y and these conventions is discussed. 
Section IV illustrates the consistent use of these conven­
tions by comparing a variety of ab initio and semiempirical 
results with each other and with experimental results. In 
making this comparison the effect of the solvent environ-

ment on the experimental values must be explicitly consid­
ered. 

II. CONVENTIONS FOR DEFINING 
HYPERPOLARIZABILITIES 

A. The induced dipole moment 

The total dipole moment induced by the field, f.LInd' is 
often written as a Taylor series I 

I I 
f.LInd=f.LO+ aTF +21 f3TF2+Tf yTF3 + ... (1) 

in the electric field F (where we use the superscript T to 
denote the Taylor series definition). Here!Lo is the perma­
nent dipole moment, aT the linear polarizability, and f3T, 
yT the hyperpolarizabilities. In general, aT, f3T, and yT are 
frequency dependent. For a static field, 

T 1 T2 1 T3 
!LInd=!LO+ aOFo+2I f3oFo+Tf yoFo+"', (2) 

where a6, f36, and Y6 are the static (at cv=O) values of the 
linear polarizability and first and second order hyperpolar­
izabilities, respectively. A great advantage of the Taylor 
series definition is that a corresponding Taylor series ex­
pansion applies to each order, e.g., 

(3) 

and 

I I I 
E=E _IITF_-aTF2_-f3TF3 __ yTp4_... (4) 

o r- 2! 3! 4! . 

The dependence of !LInd on the applied field frequencies 
is expressed through the functions aT, f3T, yT, ... . For ex­
ample, yT =yT( -cv~evl,ev2,e(3) relates the induced dipole 
moment oscillating at frequency CVu = (CVl +CV2 +CV3) to the 
term of F3

, which oscillates at frequency CVu and which 
contains the product of the amplitudes of the field compo­
nents at frequencies cvl' cv2' and ev3' Thus for the time­
dependent field, F=Fo+F", cos evt [or equivalently, F=Fo 
+!F",(ei"'t+e-i"'t)], the induced dipole moment is 

f.Lrnd=f.Lo+alFo+aT( -cv;ev)F", cos evt+Y36F~+f3T( -cv;cv,O)FoF", cos cvt+iBT(O;cv,-ev)~ 

+iBT( -2cv;ev,cv)~ cos 2cvt+wlPo+!rT( -cv;ev,O,O)F~", cos evt+!yT(O;ev,-ev,O)F~ 

+h'T( -2cv;cv,cv,O)FoF! cos 2cvt+~T( -3cv;cv,cv,cv)F! cos 3cvt+4yT( -cv;cv,cv,-cv)F! cos evt+···, (5) 

where, for example, the terms of third order in the field arise from 

(6) 
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A second important feature of these expressions is that as 
the applied field frequencies approach zero, each 
frequency-dependent hyperpolarizability tends towards its 
static value, e.g., r T ( -0),n0)1,0)2'0)3) _rT(O;O,O,O) =:;rJ'. 
This feature is demonstrated by Eg. (5) where the second 
order terms in the field on the right-hand side become 
J}36(2Fo)2 and the third order terms become ir6(2Fo)3 as 
F -+ 2Fo in the static limit, consistent with Eq. (2). 

Consider the dc-SHG experiment as an example of the 
consistent application of the convention embodied in Eq. 
( 1). In a dc-SHG experiment one measures an effective 
second order hyperpolarizability (r) which is a quantity 
thermally averaged over the orientations of a dipolar mol­
ecule in a static electric field, 13 

< }
T _ -T JLd3if 

r -r + 3kT' (7) 

where /311 denotes the vector component of the third order 
tensor /3ijk in the direction of the dipole moment, 1311 
=t~s{{3zss+/3szs+/3ssz} (s=x,y,z), and r is the scalar 
component of the fourth order tensor rijkb 

r= l/15~S71{rSS7171+rS7171S+rS'1S71} (s,11=X,y,Z). The dc­
SHG measurement corresponds to the third order term in 
Eq. (5) with cos 20)t dependence. This term is 

I T .r.02 
JLlnd(20» ='4 <r (-20);0),0),0) ) For '" cos 20)t 

I (-T JLd3if ( - 20);0),0) ) ) ='4 r (- 20);0),0),0) + 3kT 

X F oF! cos 20)t 

1 (-T JLd3; ( - 20);0),0» ) 
=4 r (-20);0),0),0) + 5kT 

XFoF~ cos 20)t, (8) 

where /311 =lf3z and I3z is the z component of the vector 
quantity frequently used by experimentalists, /3z=t~s{f3zss 
+/3szs+l3ssz} (s=x,y,z) where z is the axis of the perma­
nent dipole moment. If Kleinman symmetry14 is assumed 
then /311=~~sfJzss (s=x,y,z) and r=~~S't/rSS7171 (5,11 
=x,y,z). In principle, the "JL/3" term may be extracted 
separately from (r) by taking measurements over a range 
of temperatures. This is often possible in the gas phase but 
not in solution since in solution only a small range of tem­
peratures are experimentally accessible. In many molecules 
with large /3 values, the contribution from rT( -20);0),0),0) 
may be assumed to be negligible and the value of (r> T 

assumed to be entirely due to the JLI3 term. 

B. Relations among conventions 

There are a number of conventions in common use that 
differ from the one employed in the previous section. The 
relations among the different conventions are illustrated by 
considering the dc-SHG terms given by Eq. (8), rewritten 
to display the parentage of the numerical factors, 

+ {~l [~lV( -20);0),0),0)FoF! cos 20)t. (9) 

The numerical factor in braces {A} is the lin! in the nth 
order term of a Taylor series ("lin! factor") while the 
numerical factor in brackets [B] is the coefficient of the 
term in F" which contains the desired product of field am­
plitudes and oscillates at the desired frequency ("field 
product factor"). Note that the factor JLoFoI3kT= (cos e> 
containing Fo, where e is the angle between the electric 
field and the dipole moment direction, arises from the ori­
entational averaging of the second order terms in Eq. (5). 
Most of the conventions in common use correspond to 
choices of the factors {A} and [B] that are displayed ex­
plicitly and those that are implicit in the definition of the 
hyperpolarizability. These conventions may be systemati­
cally labeled according to which of the factors {A} and [B] 
are displayed explicitly: AB (both factors explicit), A (lin! 
factor explicit), B (field product factor explicit), and X 
(both factors absorbed). Thus the Taylor series definition 
T of the previous section is convention AB in this scheme. 

Absorbing the lin! factor gives convention B, in which 
the induced dipole moment is written as a simple pertur­
bation series expansion,2 

(10) 

In this case the energy expression is not as simply related 
to Eg. (10) as Eg. (4) is to Eq. (1), 

The expression, in this convention, for the dipole moment 
induced by the time-dependent field F=Fo+F", cos O)t 
may be obtained from Eg. (5) by multiplying the second 
and third order terms by 2! and 31, respectively. The in­
duced dipole moment measured in a dc-SHG experiment is 
given by the analog of Eq. (8), 

JLlnd(20» =~ [roc -20);0),0),0) 

p,cJ3ft ( - 20);0),0) ) ] 2 
+ 9kT FoF", cos 20)t 

=~ [ro( -20);0),0),0) 

P,cP: ( - 20);0),0») ] 2 

+ lSkT FoF~ cos 2M, (12) 

and hyperpolarizabilities defined in the Taylor series 
(T=:;AB) and perturbation series (B) conventions are sim­
ply related by factors of 2! and 3! for /3 and r, respectively, 
for all of the different types of frequency-dependent pro-
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TABLE I. Expressions for the total dipole moment measured in a dc-electric field induced second harmonic 
generation experiment 

Zero freq. convergence" 
Label Convention [jLlnd(2w)1/(FoF~ cos 2wt) -Po -ro 
AB=T Taylor series 

I [ -T I-'P;( -2w;w,w) I + + 
4 r (-2w;w,w,O) + 5kT 

B Perturbation series 
3 [ - I-'(Ij( -2w;w,w) I + + 
2 ~(-2w;w,w,O)+ 15kT 

B'* EFISH only 
3 [ yo" I-'P:"' ( - 2w;w,w) 1 + 
2 (-2w;w,w,O) + 5kT 

A Not used 
I [ - 31-'/31 ( - 2w;w,cu) I 
"6 ~(-2w;cu,cu,O) + 5kT 

X Phenomenological [ - I-'rf.' ( - 2w;cu,cu) I V( -2cu;cu,cu,O)+ 5kT 

"Columns three and four indicate whether the convention does (+) or does not (-) converge to Po or Yo 
as w-O. 

cesses. Thus {3T =2{3B and yT =6~, and also {3B( -W",;wl, 

(2) --.eg and ~(-W"';Wl,W2,W3) -+yg in the static limit. 
There is a third convention in wide use by experimen­

talists3- S which does not fit into our scheme, but which is 
closely related to convention B and will be labeled B*. This 
convention is only defined for the dc-SHG experiment, 
where the induced dipole moment is given by 

JL Ind (2w) = ~ [ ?* ( - 2w;w,w,O) 

JLrP:* ( - 2W;W,W)] ,v2 
+ 5kT For '" cos 2wt. (13) 

The difference between Band B* conventions is that the 
field product factor (3/2) appears instead of (112) in the 
JL{3 term [see Eq. (9)]. Recall that the JL{3 term describes, 
not a third order nonlinear optical process, but instead 
arises from cascading of a second order nonlinear optical 
process (second harmonic generation mediated by {3) and 
a first order process (field-induced molecular orientation). 
The replacement of (1/2) by (3/2) arises through neglect 
of this distinction and leads to the awkward result that 
{3B* ( - 2w;w,w) --.1J]C in the static limit. Thus 
{3B* ( - 2w;w,w) must be multiplied by 3 in order to com­
pare with theoretical values determined using the pertur­
bation series convention B, and multiplied by 6 to compare 
with values defined using the Taylor series convention AB. 
The distinction between conventions Band B* is not 

widely recognized. Frequently in the literature {3:* ob­
tained from a dc-SHG measurement is directly compared 
to a calculated value of {3:. This is clearly wrong. 

The convention A in this scheme would give 

JLlnd (2w) =~ [ jtA ( - 2w;w,w,O) 

3JLcP: ( - 2w;w,w) ] 2 
+ 5kT FoE'", cos 2wt, (14) 

but to our knowledge this convention has never been used. 
The final convention, X, is the most purely phenomenolog­
ical. All the numerical factors appearing explicitly in Eq. 
(5) are, in this case, absorbed into the definitions of the 
hyperpolarizabilities. For dc-SHG this gives 

JLlnd (2w ) = [ yx ( - 2w;w,w,O) 

JL~ ( - 2w;w,w ) ] 2 
+ 5kT FoF", cos 2wt. (15) 

In this convention, rr or y¥ has a different definition for 
every different nonlinear optical process, and these defini­
tions are not equal in the static limit. 

The relations between the hyperpolarizabilities in the 
various conventions, for dc-SHG, may be determined by 
comparing Eqs. (8), (12), (13), (14), and (15). For 
i ( - 2w;w,w,O) and {3z( - 2w;w,w) one has 

(16) 

and 

(17) 

It should be noted that the numerical relations in Eqs. 
(16) and (17) are particular to dc-SHG. In the case of the 
electro-optic effect, e.g., 2{3B( -w;w,O) =rrc -w;w,O) and 
3~( -w;w,O,O) =y¥ (-w;w,O,O), as may be ascertained by 
inspection of the coefficients of the F oF '" cos wI and 
Flf", cos wt terms in Eq. (5) (multiplied by 2! and 3!, 
respectively). These five conventions and their zero fre­
quency limiting behavior are summarized for the dc-SHG 
experiment in Table I. 

III. SUM-OVER-STATES EXPRESSIONS 

The sum-over-states method is often used to calculate 
hyperpolarizabilities. 15,16 It also forms the basis of the 
solvatochromic method for determining {3 (Refs. 11 and 
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12) when reduced to a two-level model. The sum-over­
states expression is derived from a perturbation theory ex­
pansion of the energy, where we write 

(18) 

and E I , E2, E3 denote the first, second, and third order 
corrections to the energy, respectively, for a perturbation 
V = -p,F where H =Ho+J... V. The sum-over-states expres­
sion for 13 comes from the third order term (J... 3 ) in this 
expansion. 

If we choose the definition of the (hyper)polarizabili­
ties based on the Taylor series expansion of the energy [Eq. 
(4)], then the corresponding sum-over-states expression 
for the linear polarizability a(ss)T corresponds to the sec­
ond order energy multiplied by (2!), and that for the first 
hyperpolarizability f3(ss)T to the third order energy multi­
plied by (3!), [where the superscript (ss) refers to the 
sum-over-states expression]. The third order term thus 
gives 17 

(0 IJ-Ljl I) (ll,uk 1m) (m I J-L; I O)} 
+ (WOI+WI) (WOm+wa) . 

If we consider f3( - 2w;w,w) for a two-level system and we 
assume that f3z is dominated by the component along the 
dipole axis, f3ZZZ' as is frequently the case, then Eq. (20) 
simplifies to 

6W61 (01J-LzI1) (OlfLzI I ) - (0 I J-Lz I 0» (11J-Lzl 0) 

~(W~I-W2) (w~I-4w2) 

or, equivalently, 

~(W~I-W2) (w~I-4w2) 

6J-L61 (J-L II - J-Loa) 

(21) 

~W~I (I-w2 /W~I)( 1-4w2 /W~I) , 

(22) 

where J-Lll= (11J-Lzl I) and J-LoI=(OIJ-Lzll). f3(ss)T(-2w;w,w) 
corresponds to 13;( - 2w;w,w) in Eq. (8) and thus the 
value of f3(ss)T at zero frequency is 

6 2 ( ) 
aT f3(ss)T(O.O 0) _ J-LOI J-LII-J-Loa 
1-'0 - = ,,- .. 2 2 

7rWOI 
(23) 

1 
=j(- P(ij,k; -W",W\>(2) 

(19) 

where (11,ujlm)=(IIJ-Ljlm)-(OIJ-LjIO) Dim; WOI is the en­
ergy difference between the ground state and excited state, 
I; and i, j, k correspond to the molecular axes, x, y, and z. 
P(ij,k;-w",WI,W2) is a permutation operator defined such 
that for any permutation of (ij,k) an equivalent permuta­
tion of (-w",wl,W2) is made simultaneously, where Wa 
= (WI +(2). Thus for each pair of molecular energy levels 
I and m, the contribution to f3ijk( -WmWI,(2) is the sum of 
six terms. 

Namely, 

(20) 

Alternatively, if we use Eq. (11) to define the pertur­
bation theory energy [consistent with the perturbation se­
ries definition of the induced dipole moment (10)] then the 
analogy to Eq. (22) is 

f3;;;)B ( - 2w;w,w) 
~ (W~I - (

2
) (w61 - 4(2

) 

3J-L61 (J-L II - J-Loa) 

~W~I (1-w2 /W~I) (1-4w2 /W~I) . 

(24) 

This expression is directly comparable to f3B ( - 2w;w,w) in 
Eq. (12). Note again that f3(ss)T( -2w;w,w) differs from 
f3(Ss)B( -2w;w,w) by a factor of 2. 

An alternative definition of the two-level sum-over­
states expression for the hyperpolarizability is also 
used7

- 9,11,12 and is related to the fourth convention defined 
in Table I. This choice of convention has been discussed 
recently.18 Namely, 

Comparing Eqs. (22), (24), and (25), and in direct anal­
ogy with Eq. (17), we have 
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= 2{3(ss)X ( - 2w;w,w ). (27) 

=2{3(SS)X( -2w;w,w), (26) 

where {3(ss)B may be compared directly to {3B and {3(ss)T to 
{3T. Note that {3B* may not be directly compared to {3(ss)X as 
is very often done when sum-over-states calculated values 
or values obtained by solvatochromic methods are com­
pared to dc-SHG values. Comparing Eqs. (17) and (24) 
we see that 

A similar analysis may be performed to obtain sum­
over-states expressions for y. In a Taylor series definition, 
y(ss) T is determined from 4!E4 [c.r. Eq. (4)] and y(ss)B is 

determined from 4E4 [c.r. Eq. (11 )], again with the factor 
of 6 difference between yT and ~. 

{3B ( - 2w;w,w) = 3{3B* ( - 2w;w,w) 

The general expression for YUk; T ( - WmW1>W2,(3) is 
given by 

L L <olll;lm)<mllljlo)<olllkln)<nIIlIIO)}. 
m*O n*O (wmO-W(7) (WnO- W3) (WnO+W2) 

(28) 

The permutation operator leads to 24 terms which in the case of the longitudinal component for the third harmonic 
process, y~( - 3w;w,w,w) (the component which dominates the tensor for charge-transfer systems) reduces to 

6 6 
+ +~----~--~~~--~ 

(wmo+ w) (wnO - 2w) (wqO - w) (wmo + w) (wno+ 2w) (wqO-w) 

+ (wmo+w) (Wno!2W) (WqO+3W)} 

1 {6 
-'jzJ L L (Olllzlm)(mlllzIO)<Olllzln)(nlllzIO) (w -3w)(w -w)(w +w) 

m~ n*O mO nO nO 

6 6 
+ (WmO + W) (WnO + W) (WnO -W) + (wmo+W) (WnO+ 3w) (WnO+ W) 

+ (WmO+ W) (wnO~W) (Wno-3W)} 
(29) 

[where ~( - 3w;w,w,w) =tyT ( - 3w;w,w,w) =4~ ( - 3w;w,w,w)]. The corresponding longitudinal component for the sec­
ond harmonic process is given by 

x{ 2 + 2 
(wmo-2w) (wno-w) (wqO) (wmo-2w) (wno-w) (wqO-w) 

2 2 2 
+ + +~----~----~~~ 

(wmo - 2w ) (wno - 2w) (wqO - W ) (wmo + W ) (wno - W ) (wqO) (wmo + w) (wno + 2w ) (wqO) 

2 2 
+ +~----~----~----7 

(wmo+w) (wno+w) (wqO+2w) (wmo+w) (wno-w) (wqO-w) 

2 2 
+ +~----~----~----7 

(wmO + w) (wno + 2w) (wqO + 2w) (wmo + w) (wno + w) (wqO - w) 

+ + +~~~--~~--~~ 
2 2 2} 

(wmO) (wno- 2w ) (wqO- w) (wmO) (wnO + w) «((}qO - (()) (wmO) «((}nO + ((}) (((}qO + 2m) 
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-~ m~ n~ (OltLzl m) (m ItLzl O)(OltLzl n) (n ItLzl O)! «())mO-2()))(~nO)«())nO+(i)) 
2 2 2 

+ «())mO- 2())) «())nO-())) «())nO) + «())mO- 2())) «())nO-())) «())nO+())) + «())mO+())) «())nO) «())nO+())) 

2 2 2 

+ «())mO+())) «())nO-())) «())nO) + «())mO+())) «())nO) «())nO- 2())) + «())mO + ())) «())nO+ 2())) «())nO) 

2 2 
+ «())mO+())) «())nO-())) «())nO- 2())) + «())mO+())) «())nO+ 2())) «())nO+())) 

2 2 2} 
+ «())mO) «())nO-())) «())nO+())) + «())mO) «())nO-())) «())nO- 2())) + «())mO) «())nO+ 2())) «())nO+())) 

(30) 

[where ~(-2());()),()),0) =tyT( -2());()),()),0) =~r( -2()); 
()),()),O)] . 

IV. COMPARISON BETWEEN CALCULATED AND 
EXPERIMENTAL HYPERPOLARIZABILITIES 

Most measurements of gas-phase hyperpolarizabilities 
have been reported using the Taylor series convention or 
the perturbation series convention. dc-SHG measurements 
of chromophores in solution have been much less consis­
tent in the use of conventions. The convention most widely 
used, although frequently not explicitly indicated, is the 
one summarized by Eq. (13). When this convention is 
used consistently, there is reasonable agreement among dc­
SHG measurements made in different laboratories, pro­
vided the measurements are made at the same wavelength 
and in the same solvents. Table II illustrates this by com-
paring measurements of f3:* made by three different re­
search groups on para-nitroaniline (PNA) and 2-methyl,4-
nitroaniline (MNA). 

In Table III the experimental values for PNA (from 
Table I and other sources, but now multiplied by the ap­
propriate factor of 3) are compared with both ab initio and 
semiempirical values using the perturbation series conven­
tion. The ab initio self-consistent field (SCF) and second 
order perturbation theory (MP2) results reported in ref­
erences 19 and 20 were determined using analytic deriva­
tive methods. The semiempirical AMI, MNDO, and PM3 
values calculated in this work were determined using finite 
field techniques.21 The semiempirical INDO/S hyperpolar­
izabilities were evaluated via the sum-over-states expres­
sions and used the parametrization of Ridley and Zemer,zz 

TABLE II. Values of {3if* measured using the EFISH technique.' 

PNA MNA 
1064 nm 1907 nm 1064 nm 1907 nm 

Refs. 34, 3 16.3 18.8 
Ref. 4 8.7 
Ref. 7 16.9 9.6 16.7 9.5 

'All values of!3:* in units of 10- 30 esu. All measurements made in 1,4-
dioxane. 

It should be noted that the theoretical results span a con­
siderable range of values. Furthermore, comparison of the 
ab initio values and the experimental measurements using 
the same convention clearly highlights an apparent dis­
agreement between ab initio calculations and experimental 
values. 

All the theoretical calculations assumed the same 
model planar structure determined using second order per­
turbation theory (MP2).2o Geometry optimizations relax­
ing the planarity constraint at the self-consistent field 

TABLE III. Comparison of theoretical and experimental hyperpolariz­
abilities of paranitroaniline. Values in esuX 10-30 using the perturbation 
series convention (B). 

Wavelength Theory 
nm Method Value Expt. 

{3g <xl MP2' 8.55 
{3g <xl SCP 4.4 
{3g <xl MNDOb 8.03 
{3g <xl AMlb 7.34 
{3g <xl PM3b 8.20 
{3g <xl INDO/Sc 17.5 

{3:( -2w;w,w) 1910 27.6f 

f3:( -2w;w,w) 1907 MP2d 9.6 28.8± U g 

INDO/S' 21.1 (30.6) 
f3:( -2w;w,w) 1370 MP2d 10.5 35.4±0.9g 

INDO/S' 25.5(36.2) 
f3:( -2w;w,w) 1060 MP2d 12.0 50.7± 1.2g 

INDO/Se 34.7(47.4) 48.9h 

50.4; 

77.7i 

'Ab initio values from Ref. 19 (SCF) and Ref. 20 (MP2) using analytic 
derivative methods. 

hsemiempirical values calculated using finite field methods. 
cSemiempirical sum-over-states calculation. 
dAb initio frequency dependent values determined from static MP2 hy­
perpolarizability adjusted with an SCF frequency dependent correction 
(Ref. 20). 

eINDO/s semiempirical values calculated using the sum-aver-states for­
mulation. Values in parentheses are those obtained from the two-level 
model [Eq. (22)]. 

fIn acetone (Ref. 4). 
gIn 1,4-dioxane (Ref. 7). 
hIn 1 A-dioxane (Ref. 34). 
;In chloroform (Ref. 34). 
jIn acetone (Ref. 34). 
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(SCF) and MP2 levels of theory indicate that the true 
gas-phase minimum corresponds to a nonplanar struc­
ture,20 in line with x-ray crystallographic data. 23 However, 
the energy difference between the planar and nonplanar 
structures is only 1.33(0.53) kcaIlmol at the MP2(SCF) 
level of theory and so for the purpose of this work we have 
used the planar geometry. Calculations of the hyperpolar­
izability at the nonplanar geometry using the SCF and 
semiempirical methods (AMI, MNDO, PM3, INDO/S) 
indicate that the hyperpolarizabiIity decreases by about 
18% from the value corresponding to the planar 
geometry-a factor that is reasonably consistent across 
these different methods. This decrease in /3 can be ex­
plained by the fact that the conjugation of the 1T system is 
adversely affected by the nonplanarity of the phenyl-NH2 
moiety. Molecular geometry alone thus cannot account for 
the large differences among the theoretical values and be­
tween theoretical and experimental values. Furthermore, 
although vibrational effects have not been taken into ac­
count, work to date24 indicates that these have little effect 
on second harmonic generation values. 

Comparison of the ab initio SCF and MP2 static hy­
perpolarizabilities (/30) indicates that electron correlation 
increases the hyperpolarizability by about a factor of 2.20 

This large increase in /3 with electron correlation has also 
been observed for smaller molecules such as ammonia,25 
HCI,26 and water,27.28 where experimental gas-phase dc­
SHG measurements29.30 are available. In these cases there 
is reasonable agreement between the MP2 values and ex­
periment (to within to%-20% )-a fact which lends cre­
dence to the importance of electron correlation in the de­
termination of /3 and to the reliability of the MP2 method 
for estimating this electron correlation effect. 

The static hyperpolarizabilities determined with the 
MNDO, PM3, and AM 1 semiempirical methods reported 
in Table III are obtained from finite field calculations of 
the energy.25 These methods have been parametrized for 
such gas-phase properties as ground state geometries, di­
pole moments, and heats of formation,31 and in the case of 
the MNOO method for a,32 but not for the hyperpolariz­
abilities /3 and y. The hyperpolarizability values obtained 
by these methods are intermediate in magnitude between 
the SCF and MP2 results. 

The INOO/S semiempirical method is routinely used 
to aid in the interpretation of ultraviolet spectral data since 
this technique is suited to the calculation of excited state 
properties such as oscillator strengths and excitation ener­
gies. 22 In this case it is possible to determine the hyperpo­
larizability via the sum-over-states formulation [Eq. (19)] 
and these values are also reported in Table III. The 
INOO/S results for the two-level model are considerably 
larger than the MP2 results. This large difference is to 
some extent expected since the INOO/S method is known 
to overestimate the experimental gas-phase transition di­
pole moments (O! fl.!l). 33 Furthermore, the importance of 
the properties of the first excited state on the hyperpolar­
izability is overemphasized when the summation is trun­
cated at only two levels. The INOO/S result for the hy­
perpolarizability determined from the summation over all 
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FIG. 2. A log-log plot of the hyperpolarizabiIity extrapolated to zero 
frequency. 13:(0;0,0), vs the wavelength of the first absorption maximum 
for paranitroaniline in solvents of varying polarity. The intercept repre­
sents extrapolation to a value corresponding to the gas-phase A.max = 290 
nm. All data points are from Ref. 34. 

n valence electronic excited states is significantly smaller 
than the value from the two-level model. In this case, the 
accuracy of the calculated excited state properties, such as 
(II fl.! m), is unknown since in most cases transition mo­
ments and dipole moments for excited states other than the 
lowest one are unavailable experimentally and ab initio cal­
culations of the required accuracy are intractable for a 
system of this size. 

It is important to compare experiment and theory on 
an equal footing. Experimental values of /3: for PNA have 
been obtained from dc-SHG measurements in a variety of 
solvents of different polarity.34 On the other hand, all the 
calculations carried out in this work implicitly assume a 
gas-phase environment. One way to make such a compar­
ison between theory and experiment is to extrapolate the 
experimental solution phase measurements to a static gas­
phase value. This may be accomplished, for example, by 
extrapolating the experimental hyperpolarizability values 
to zero frequency using the two-level model [Eq. (22)], 
plotting these /3B(O;O,O) values against the corresponding 
wavelength of maximum absorption, Amax 0:: l/w01 and fi­
nally extrapolating /3B(O;O,O) to a value corresponding to 
the Amax observed for PNA in the gas phase. This last 
procedure is illustrated in Fig. 2. Unfortunately, the Amax 
values measured in solution are far from the value of 290 
nm determined for Amax of PNA in the gas phase7 even for 
the least polar solvents, chloroform (E=4.81, Amax=348 
nm), dichloromethane (E=7.77, Amax=350 nm), and 1,4 
dioxane (E=2.21, Amax=354 nm). (Dioxane is known to 
behave anomalously as a solvent of higher polarity than its 
dielectric constant would indicate. 35) Thus the extrapo­
lated values should only be considered as approximations 
to the true gas-phase hyperpoiarizability. From this proce­
dure we obtain an "experimental gas-phase static value" of 
/3:(0;0,0) for PNA ranging from 6X to- 30 to 15X to- 30 

esu, depending on the precise quantity extrapolated [e.g., 
fl./3B( -2w;w,w), /3B( -2w;w,w), or /3B(O;O,O)]. These ex-
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trapolated experimental gas-phase static values are consis­
tent with the theoretical static values but much smaller 
than the experimental values measured in solution and re­
ported in Table III. Furthermore, the theoretical 
frequency-dependent hyperpolarizabilities are also signifi­
cantly smaller than the corresponding experimental 
frequency-dependent solution-phase measurements in Ta­
ble III, so there appears to be a significant difference be­
tween theory and experiment which cannot be accounted 
for by dispersion. Weare lead to the conclusion that this 
difference is primarily due to the sensitivity of the hyper­
polarizability f3 to the dielectric environment. 

Another uncertainty that arises in the comparison of 
theoretical and experimental values involves the reference 
material used in the dc-SHG experiments. Almost all dc­
SHG experiments are referred directly or indirectly to the 
second harmonic generation coefficient, dll , for quartz. 
Two values for quartz have been obtained using different 
techniques.36

,37 They differ by a factor of 0.6. Choice of the 
more recent, but not necessarily more accurate, measure­
ment for quartz would result in a 40% decrease in the 
experimental values reported in Table III. 

Since there are no direct gas-phase experimental mea­
surements for hyperpolarizabilities of charge-transfer sys­
tems such as PNA, it is difficult to establish the usefulness 
of the semiempirical methods for predicting quantitative 
values. We must stress, however, that none of the semi­
empirical methods employed in this work were parame­
trized for hyperpolarizabilities and thus expectations of 
quantitative accuracy are optimistic. Based on the useful­
ness of second order perturbation theory for the determi­
nation of f3 for small gas-phase molecules (see, e.g., Refs. 
26,27, and 38) and in the determination of f3 for a model 
charge-transfer system (relative to results from higher 
level calculations), 39 we concentrate on the difference be­
tween the ab initio MP2 gas-phase values and the experi­
mental solution-phase measurements. As discussed above, 
extrapolation of the solution-phase measurements to a Amax 

value corresponding to the gas-phase molecule results in a 
significant decrease in the experimental hyperpolarizabil­
ity. Recent investigations40 explicitly including the effect of 
an Onsager reaction field41 in the determination of f3 for 
acetonitrile at the SCF and MP2 levels of theory indicate 
that the effect of the solvent environment on f3 may be 
significantly larger than the effect accounted for by the 
local field factors41 routinely used in the analysis of the 
experimental data.5 These reaction-field calculations dem­
onstrate that the "molecular" hyperpolarizability deduced 
from solution-phase measurements may significantly over­
estimate the true molecular gas-phase value. To summarize 
there are a number of avenues to be explored in order to 
understand and explicitly account for the differences be­
tween the theoretical and experimental values. The main 
emphasis in this section has been on the importance of the 
consistent use of conventions in the definition of the hy­
perpolarizabilities and on the need to compare calculated 
and experimental values in similar dielectric environments. 

v. CONCLUSIONS 

In this work we have outlined and compared the most 
widely used conventions in the determination of hyperpo­
larizabilities. Both the Taylor series and perturbation series 
conventions have the useful feature that all the different 
frequency-dependent hyperpolarizabilities of the same or­
der extrapolate to the same limiting value (i.e., the static 
value) as the frequency goes to zero. This not only leads to 
straightforward comparison between theoretical static val­
ues and experiment, but also leads to easy transferability of 
experimental values from one technique to another. We 
have also derived the corresponding sum-over-states for­
mulas for these conventions, so that it is straightforward to 
compare experimental results from solvatochromism with 
dc-SHG measurements of f3 ( - 2w;w,w) and calculations of 
frequency-dependent hyperpolarizabilities using the sum­
over-states formulation with experimental measurements. 
Comparison of theoretical and experimental values for the 
hyperpolarizability of para-nitroaniline using the same 
convention highlights the large difference between theoret­
ical gas-phase values and solution-phase measurements-a 
difference that we believe has in the past been obscured by 
inconsistent use of conventions. 
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