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Structural correlation in water probed by hyper-Rayleigh scattering
David P. Sheltona)

Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154-4002, USA

(Received 23 June 2017; accepted 3 October 2017; published online 17 October 2017)

Second-harmonic or hyper-Rayleigh scattering (HRS) is sensitive to molecular interactions and corre-
lations, and there is a large coherent HRS contribution for water. This work shows that the distinctive
angle and polarization dependence observed for HRS from water is due to the long-range orientation
correlation of the molecules. The results of HRS experiments for water are analyzed in combina-
tion with a molecular dynamics simulation to determine the molecular hyperpolarizability and the
short-range and long-range orientation correlation functions for the molecules. At long range, the lon-
gitudinal and transverse dipole-dipole orientation correlation functions are BL(r) = �2BT(r) = a3/r3

with a = 0.166 nm. Molecular correlation at distances r > 100 nm must be included to account for
the HRS observations. Published by AIP Publishing. https://doi.org/10.1063/1.4991893

I. INTRODUCTION

Second-harmonic or hyper-Rayleigh scattering (HRS) is
a nonlinear light scattering technique widely used to measure
the first hyperpolarizability β of molecules in solution.1,2 It is
usually assumed that only incoherent scattering from the indi-
vidual molecules contributes, and this is a good approximation
for the contribution of a strong nonlinear optical chromophore
in dilute solution, but it is not a good approximation for the
solvent itself. Theoretical expressions including the coherent
HRS contribution have been known from the earliest work,3,4

but these expressions are not often applied to calculate the
coherent HRS contribution since the correlations are usually
unknown and changes in β due to the intermolecular inter-
actions also significantly affect the HRS intensity. In simple
liquids, the range of molecular correlation is assumed to be at
most a few nm. In this case, correlations can affect the HRS
intensity, but the angle and polarization dependence of HRS
will be the same as for fully incoherent HRS from individual
randomly oriented molecules.

The assumption that there are only short-range correla-
tions in liquids is contradicted by the observed angle and
polarization dependence of HRS for a number of polar liq-
uids.5–7 These HRS observations appear to require molecular
orientation correlations on the scale of the optical wavelength,
and the observed HRS angle and polarization dependence is
found to match the functional form calculated for HRS from
nonlocal polar modes of an isotropic liquid.8 However, the ori-
gin and nature of such nonlocal polar modes was unclear, and a
number of unsuccessful ideas were proposed and investigated.
Most recently, the relations between HRS and correlation func-
tions of a vector field have been investigated,9,10 and it is now
proposed that the dipole correlations known to exist in polar
liquids account for the nonlocal polar modes and the HRS
observations.

a)shelton@physics.unlv.edu

In the following work, the HRS observations for water
are analyzed in combination with molecular dynamics (MD)
simulation results, including the contributions of both the
short-range correlations and long-range dipole correlations.
The simplest model is assumed, with rigid molecules and a
fixed average β tensor, to focus on the effect of orientation
correlation without added complications. First the MD sim-
ulation results are presented, and then the HRS observations
are presented and analyzed. The results presented below are
in contrast to those in another recent work, which evaluated
the HRS signal directly from a MD simulation trajectory and
concluded that just short-range correlations can account for
the HRS observations.11 A similar analysis using the present
MD simulation results is performed and compared with that
work to reconcile the opposite conclusions. Then the anal-
ysis is extended to extract information about the molecular
hyperpolarizability tensor β and the long-range orientation
correlations in water. Long-range dipole correlations are found
to be essential to account for the HRS observations.

II. MOLECULAR DYNAMICS SIMULATION

Molecular dynamics simulations were performed with the
GROMACS software package (version 5.0.6)12 using the rigid
TIP4P/2005 water model.13,14 Liquid water was simulated
with 60 000 molecules in a 12.17 nm cubic box with periodic
boundary conditions (PBC); long-range Coulomb interactions
were treated by the particle mesh Ewald (PME) method with
conducting boundary conditions, while Lennard-Jones (LJ)
6-12 interactions were treated using a 1.0 nm cutoff radius and
analytical dispersion correction.15 Temperature and pressure
were controlled using a modified velocity rescaling thermostat
and Berendsen barostat.16 Equilibrium density at T = 298 K
and p = 101 kPa was obtained using NPT simulation, while
NVT simulation at the equilibrium density was used to deter-
mine the correlation functions. The NVT simulation was equi-
librated for 1 ns before a 25 ns production run with 2 fs time
steps.
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TABLE I. MD simulation results for TIP4P/2005 water at T = 298 K.

Property MD value

ρ (kg/m3) 996
ρ (nm�3) 33.30
µ (D) 2.306
GK 3.196
ya 6.011
gK

b 2.177
εc 59.4
a3 (10�3 nm3)d 5.072
a (nm) 0.1718

aEquation (4).
bEquation (5).
cEquation (6).
dEquation (7).

Table I summarizes the results and Fig. 1 shows the cor-
relation functions obtained from the MD simulation. Figure
1(a) shows the radial pair distribution function g(r), Fig. 1(b)
shows the orientation pair correlation function F(r) = 〈µ̂i · µ̂j〉

= 〈cos θij(r)〉, while Fig. 1(c) shows the longitudinal and

FIG. 1. The solid (blue) curves are the results from TIP4P/2005 water MD
simulation for (a) the pair distribution function g(r) and (b) and (c) the orien-
tation correlation functions F(r), L(r), and T (r). The dashed (black) curves in
(b) and (c) are the correlation functions given by Eqs. (22) and (23) with the
value a3 = 5.07 × 10�3 nm3 determined from the MD simulation, while the
dashed-dotted (red) curves are the correlation functions with a3 = 4.58 × 10�3

nm3 obtained by fitting the HRS data. Orientation correlation functions mul-
tiplied by r3 are plotted to emphasize the long-range part of the functions.
The vertical dashed line at 0.20 nm marks the radius of the excluded volume
around each molecule.

transverse dipole correlation functions L(r)= 〈(µ̂i · r̂ij)(µ̂j · r̂ij)〉
and T (r) = 1

2 [F(r)−L(r)] which enter the analysis of the HRS
observations. The full, longitudinal, and transverse dipole-
dipole correlation functions were calculated from the MD
trajectory using the expressions17

F(r) =

〈
1
N

∑
i

1
ni(r)

ni(r)∑
j=1

(µ̂i · µ̂j)

〉
, (1)

L(r) =

〈
1
N

∑
i

1
ni(r)

ni(r)∑
j=1

(µ̂i · r̂ij)(µ̂j · r̂ij)

〉
, (2)

T (r) = 1
2 [F(r) − L(r)], (3)

where µ̂i is the dipole unit vector on molecule i, r̂ij is the unit
vector in the direction from molecule i to j, and ni(r) is the num-
ber of molecules with center-of-mass distance between r and r
+ δr from molecule i. Results for an infinite homogeneous sys-
tem were obtained from the MD simulation results by apply-
ing the corrections δF = 3δL = 3δT =− (ε − 1)2/(9yεN),18,19

where ρ is the molecular number density, µ is the molecular
dipole moment, ε is the dielectric constant, and

y = ρµ2/(9ε0kBT ) (4)

is the dimensionless dipole strength. The correction is δL
= �5.9 × 10�6 for the simulations with N = 60 000 molecules.
The radial pair distribution function g(r) plotted in Fig. 1(a)
shows that other molecules are excluded for r < 0.20 nm
and that positional correlations vanish for r > 2 nm. The ori-
entation correlation functions plotted in Figs. 1(b) and 1(c)
have been multiplied by the factor r3 to distinguish the short-
range functions, which decrease more rapidly than r�3, from
the long-range functions. The orientation correlation function
F(r) is short range and r3F(r) vanishes for r > 2 nm, whereas
r3L(r) and r3T (r) reach constant long-range limiting values for
r > 2 nm.

This work uses the same TIP4P/2005 water MD model
as Ref. 11 so that the present results can be directly compared
with results from that work. Dipole correlations have also been
investigated for SPC/E, SPC/Fd, and swm4-DP potential mod-
els in Ref. 17, with simulations of up to 27 648 molecules. The
constant offset in F(r) that is corrected by δF can be seen in
the inset to Fig. 1 of Ref. 17, and L(r) from Ref. 17 plotted
as r3L(r) in Fig. 2 of Ref. 10 shows the effect of the missing
δL correction. The correlation functions vary in detail with
the potential model used for the simulation, as can be seen
by comparing Fig. 1 with simulation results in Ref. 17. Both
Refs. 11 and 17 find that the simulation results have converged
for system size about N = 4000 molecules.

The dielectric constant εmay be calculated from the mean
square fluctuation of the total dipole M, using the expressions
GK = (〈M2〉 − 〈M〉2)/(N〈|µ|〉2) and ε = 1 + 3yGK, but the
accuracy is limited (±2% for a 25 ns run) by slow fluctua-
tions of 〈M2〉 which do not decrease with increasing system
size. Smaller statistical error was obtained using the correlation
function expression18

gK = 1 + 4πρ
∫

F(r)g(r)r2dr (5)
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for the Kirkwood correlation factor gK and solving the
Kirkwood relation

(ε − 1)(2ε + 1)/ε = 9ygK (6)

for ε. The asymptotic limits for the longitudinal and transverse
correlation functions are L(r → ∞) = a3r�3 and T (r → ∞)
= − 1

2 a3r−3, where the value for the correlation length
parameter a can be determined using the theoretical result
for the longitudinal dipole correlation function BL(r) for a
non-polarizable polar fluid5,18

a3 = lim
r→∞

r3BL(r) =
(ε − 1)2

18περy
, (7)

with the result for a3 shown in Table I.

III. HRS OBSERVATIONS

Figure 2 shows measurements from Ref. 6 of the HRS
intensity ratios IVV/IHV, IHV/IVH, and IHH/IVH for D2O as a
function of scattering angle θs. Scattering configurations with
incident and scattered light polarized either perpendicular or
parallel to the horizontal scattering plane are denoted as VV,
HV, VH, and HH, where V denotes vertical polarization, H
denotes horizontal polarization, and the first and second let-
ters refer to the incident and scattered light, respectively. The
expressions fit to the HRS intensity ratio data are5,6,10

IVV = A0P2 + ATR2, (8)

IHV = A0 + AT, (9)

IVH = A0 + ATsin2(θs/2) + ALcos2(θs/2), (10)

IHH = A0[sin2θs + P2cos2θs]

+ AT[1 − (R − 1) cos θs]
2sin2(θs/2)

+ AL[1 + (R − 1) cos θs]
2cos2(θs/2), (11)

FIG. 2. HRS intensity ratios measured for water from Ref. 6. The solid curves
are the fit to the data (symbols) using Eqs. (8)–(11) with the parameters P2

= 1.50, R = 2.900 ± 0.005, AT/A0 = 5.571 ± 0.128, and AL/AT = 0.0834
± 0.0044. Incoherent HRS gives curves symmetric around θs = 90◦ (vertical
dashed line) and IHV/IVH = 1 (horizontal dashed line). The dashed (blue)
curves are the results obtained using a3 = 5.07 × 10�3 nm3 from the MD
simulation, whereas the solid curves are obtained using a3 = 4.58 × 10�3 nm3

instead.

TABLE II. HRS results calculated from a 25 ns MD trajectory using Eqs. (13)
and (14) with K = 0 are shown, for three β tensors specified by A and B. Fully
incoherent HRS results (inc subscript) are also given for comparison. The
number in parentheses is the statistical uncertainty of the last digits, estimated
from the fluctuations for five successive 5 ns segment of the trajectory. The
last column gives experimental HRS values taken from the solid fitted curves
in Fig. 2.

θs Vector Octupolar Mixed
(deg) β β βa Expt.b

A 1/3 �1/2 0.68
B 1/3 �1/2 �0.20
(IVV/IHV)inc 0 9 3/2 4.434

90 9 3/2 4.434
180 9 3/2 4.434

(IHV/IVH)inc 0 1 1 1
90 1 1 1
180 1 1 1

(IHH/IVH)inc 0 9 3/2 4.434
90 1 1 1
180 9 3/2 4.434

(IVV)inc 0 1/3 1/7 0.3310
90 1/3 1/7 0.3310
180 1/3 1/7 0.3310

IVV/(IVV)inc 0 3.20 (14) 1.11 (5) 2.69 (12)
90 3.20 (14) 1.11 (5) 2.69 (12)
180 3.20 (14) 1.11 (5) 2.69 (12)

IVV/IHV 0 9.0000 (0) 1.52 (6) 7.34 (13) 7.36
90 9.0000 (0) 1.52 (6) 7.34 (13) 7.36
180 9.0000 (0) 1.52 (6) 7.34 (13) 7.36

IHV/IVH 0 0.96 (5) 1.11 (7) 0.98 (4) 4.49
90 1.03 (6) 1.08 (5) 1.00 (5) 1.64
180 0.96 (5) 1.11 (7) 0.98 (4) 1.00

IHH/IVH 0 9.0000 (0) 1.62 (4) 7.46 (11) 3.69
90 1.0000 (0) 1.06 (2) 0.97 (3) 1.00

180 9.0000 (0) 1.62 (4) 7.46 (11) 7.36

aReference 11.
bReference 6.

with the fit parameters P2 = 1.500, R = 2.900 ± 0.005, AT/A0

= 5.571 ± 0.128, and AL/A0 = 0.465 ± 0.022 [AL/AT = 0.0834
± 0.0044]. The fitted curves obtained using Eqs. (8)–(11) are
invariant for changes to alternative parameters P′2, A′T/A

′
0,

A′L/A
′
0, where

R2 − P′2

R2 − P2
=

1 + A′T/A
′
0

1 + AT/A0
=

1 + A′L/A
′
0

1 + AL/A0
. (12)

Data for θs < 10◦ are not shown since it follows a more com-
plicated function due to the divergence of the focused laser
beam. The values from the fitted curves for the HRS intensity
ratios at θs = 0◦, 90◦, and 180◦ are given in the last column
of Table II. The fitted curves are not symmetric around θs

= 90◦, and IHV/IVH , 1, two observations that incoherent HRS
cannot account for.

IV. SHORT RANGE HRS

HRS including the effect of molecular correlation at dis-
tances less than the box length can be calculated directly
from the MD simulation trajectory and the molecular hyper-
polarizability tensor. The Cartesian tensor expression for the
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second-harmonic dipole induced in a molecule by the optical
electric field at frequency ω is

µi(2ω) = βijk(−2ω;ω,ω)Ej(ω)Ek(ω)

= aiαajβakγ βαβγ(−2ω;ω,ω)Ej(ω)Ek(ω), (13)

where βijk and βαβγ are the lab frame and molecule frame
hyperpolarizability tensors, respectively, and aiα is the direc-
tion cosine between the lab i axis and the molecule α axis.
The scattered field radiated by the induced molecular dipoles
oscillating at the second-harmonic frequency, summed over
molecules b at positions ~rb, is

Ei(2ω) ∝
∑

b

βijk,b exp(i~K ·~rb)EjEk , (14)

where the scattering vector is ~K = 2
⇀

k (ω)−~k(2ω) and the HRS
intensity is Ii(2ω) ∝ |Ei(2ω)|2.

HRS intensities calculated including correlations will
be compared to HRS from uncorrelated, randomly oriented
molecules, where the individual molecule contributions add
incoherently and the HRS intensity is proportional to the
isotropic average

〈
β2

ijk

〉
. Expressions have been derived for

these isotropic averages in terms of the β Cartesian tensor
components and also in terms of β spherical tensor compo-
nents.3,4,10,20 For the water molecule with C2v symmetry, the
7 non-vanishing molecule-frame components are βzzz, βzxx,
βxxz = βxzx, βzyy, and βyyz = βyzy, where z is the 2-fold axis, y
is perpendicular to the molecular plane, and permutation sym-
metry for the last indices follows from the indistinguishability
of the two applied fields. The tensor can be specified by βzzz

and the four ratios A = βzxx/βzzz, A′ = βxxz/βzzz, B = βzyy/βzzz,
and B′ = βyyz/βzzz. Far from resonance, there is approximate
permutation symmetry for all indices (Kleinman symmetry),
which gives A = A′ and B = B′ and reduces to 3 the number
of independent tensor components. For incoherent HRS with
C2v and Kleinman symmetry, one has4,20

(IVV)inc ∝
〈
β2

ZZZ

〉
/β2

zzz

= (1/35)
[
5 + 6(A + B) + 9(A2 + B2) + 6AB

]
, (15)

(IHV)inc ∝
〈
β2

ZXX

〉
/β2

zzz

= (1/105)
[
3 − 2(A + B) + 11(A2 + B2) − 2AB

]
,

(16)

and β is the direct sum of irreducible spherical tensors of first
and third rank (vector β and octupolar β).4,10 The limiting case
of pure vector β, with HRS intensity ratio (IVV/IHV)inc = 9, is
obtained for A = B = 1/3, while the opposite limiting case of
pure octupolar β, with (IVV/IHV)inc = 3/2, is obtained for A + B
= �1. Table II gives the incoherent HRS results calculated for
three combinations of A and B, producing vector, octupolar,
and mixed β tensors.

The effect of molecular correlations is addressed by eval-
uating Eqs. (13) and (14) directly from the MD trajectory
for TIP4P/2005 water. The fluctuating total induced second-
harmonic dipole and HRS intensity are obtained by summing
over all the molecules in the box for each frame of the tra-
jectory. The scattering wave vector magnitude for the HRS
measurements in Fig. 2 ranges from 0.0030 nm�1 at 11◦ to
0.031 nm�1 at 180◦, but wave vectors satisfying the MD

periodic boundary condition for a box of length L have compo-
nents km = 2πm/L, where the smallest non-zero wave number
k1 = 0.516 nm�1 is much larger than the largest scattering wave
number K in the HRS experiment. HRS results calculated from
the MD trajectory using K = k0 = 0 in Eq. (14) are given in
Table II. The statistical uncertainty of the results was estimated
from the fluctuations for the five successive 5 ns segments of
the trajectory.

The results given in Table II for vector β are the same
for HRS with correlations and for incoherent HRS, except for
a 3.20 × increase in IVV. This factor is just equal to GK, the
increase in the mean square total dipole moment due to cor-
relations in the MD simulation. These factors are equal since
the dipole vector and vector β are sensitive to the same corre-
lations. The Kirkwood factor gK measures the effect of dipole
vector correlations for an infinite homogeneous medium, and
GK overestimates gK by about 50% in this simulation (see
Table I). The HRS results for octupolar β are increased by
5%–10% compared to the results for fully incoherent HRS.
This increase is comparable to or larger than the 5% uncer-
tainty due to fluctuations, is larger than expected, and may in
part be an artefact due to the cubic simulation box. The third β
tensor example uses the best fit values for A and B from Ref. 11
and has mixed vector and octupolar β contributions. The vec-
tor part is dominant, so the increase in IVV/IHV compared to
incoherent HRS is close to that for the vector β example. Oth-
erwise, the angle and polarization dependence have the same
form as for incoherent HRS. In particular, the HRS results
calculated from the MD simulation are symmetric about θs

= 90◦, and IHV/IVH = 1. HRS calculated directly from the MD
simulation does not have the key features seen in the experi-
mental HRS results, given for comparison in the last column of
Table II.

The above result is contrary to the results presented in
Ref. 11. The most direct comparison is between the mixed β
results in Table II of this work and the results shown in Fig.
1(c) of Ref. 11 since both are calculated using exactly the
same β tensor and MD model. And despite the difference in
notation, the calculation using Eq. (14) in this work is identical
to the calculation using Eq. (1) or its reformulation as Eq. (4)
in Ref. 11. However, the calculated values for IHV/IVH at θs

= 0◦, 90◦, and 180◦ are 1.0, 1.0, and 1.0 from Table II (mixed
β column) in this work, as compared to 4.0, 1.8, and 1.0 from
Fig. 1(c) in Ref. 11. The conclusion in Ref. 11 that short-range
correlations fully account for the HRS observations is based
on these results, which are incompatible with the results for
IHV/IVH from the present work.

The results in this work and Ref. 11 are given at K = 0,
and the only apparent difference in the calculations is how the
K = 0 results are obtained. The results in Table II are calculated
at K = 0, whereas the results in Ref. 11 are obtained by extrapo-
lating results calculated for K in the range 0.3<K < 10 nm�1 to
K = 0, as shown in Fig. S4 of Ref. 11. To understand the effect
of this calculation difference, Fig. 3 shows IVV/(IVV)inc and
IHV/IVH for vector β (A = B = 1/3) and θs = 90◦, computed
from the MD simulation for a range of K values. The com-
puted results at K = 0 differ insignificantly from the predicted
values IVV/(IVV)inc = GK and IHV/IVH = 1. The HRS results
computed at the experimental K value also are insignificantly
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FIG. 3. HRS results calculated for a 5 ns MD simulation trajectory using
Eqs. (13) and (14), for pure vector β and 90◦ scattering angle, are shown as a
function of K [for the scattering wave vector (0, K, 0)] by open circles joined
by solid lines. The representative error bars shown for several points are the
standard deviation for results calculated from successive 5 ns segments of the
simulation. The HRS experimental results were obtained at K = 0.022 nm�1,
marked by the left vertical dashed line. The right vertical dashed line marks K
= k1, and points satisfying PBC (filled circles) are plotted at K = mk1 for m = 1,
2, 3, 4, 5, 10, 15, and 20. The horizontal dashed lines mark the K = 0 expected
values IVV/(IVV)inc = GK = 3.196 and IHV/IVH = 1. The values IVV/(IVV)inc
= 3.21 ± 0.14 and IHV/IVH = 1.04 ± 0.05 at K = 0 are calculated for this 5 ns
simulation trajectory. A fourth-degree polynomial fit to the filled circles and
extrapolated to K = 0, as in Ref. 11, gives IVV/(IVV)inc = 3.73 and IHV/IVH
= 2.08.

different from the K = 0 values. However, the results for K = 0
and for K ≥ k1 are very different. The extrapolation in Ref. 11
uses only results for K values satisfying PBC, K = km = 2π
m/L, but excludes the results for m = 0, which is the first and
most important K value for this calculation. Extrapolating the
results at K = km for m ≥ 1 (the filled circles in Fig. 3), using
a fourth-degree polynomial as stated for Fig. S4 of Ref. 11,
gives IVV/(IVV)inc = 3.73 and IHV/IVH = 2.08. These results,
obtained by extrapolation of just the high K points, are very
poor approximations to the values at K = 0, and this appears to
be the source of the disagreement between the present results
and the results in Ref. 11. The results directly evaluated at K
= 0 are the correct results for this calculation.

The MD simulation approximates a liquid of infinite
extent using a finite cell with periodic boundary conditions.
The periodicity of the system is strictly enforced during the
simulation, so every frame of the MD simulation with PBC
specifies an infinite perfect single crystal with lattice spacing
equal to the box length. Liquid properties are calculated by
treating the simulation cell instead as if it is a small sample
from an infinite non-periodic system. The HRS sum in Eq.
(14) evaluated for a single simulation cell is a Fourier trans-
form with continuous spectrum, the sum is well behaved at
K = 0, and it is simple and direct to calculate the HRS intensities
at K = 0 or at small K. Correlations with short range compared
to the simulation box length are correctly treated by the sum
over the simulation box but do not account for the HRS obser-
vations. Correlations with long range compared to the simula-
tion box are not adequately treated by this sum over the simula-
tion box. Since the volume integral of r�3 diverges logarithmi-
cally, the effect of dipole correlations that vary as r�3 requires
a more careful treatment of the K = 0 limit, which is given in
Sec. V.

V. LONG RANGE HRS

The long-range coherent contribution to HRS is due to
dipole correlations and vector β. The molecular dipoles in
liquid water form a random vector field, and the most general
pair correlation function for a homogeneous, isotropic random
vector field ~U(~r) has the form10,21

Bαβ(~r) = 〈Uα(~0)Uβ(~r)〉

= BT(r)[δαβ − rαrβ/r
2] + BL(r)rαrβ/r

2, (17)

where BT(0) = BL(0). The tensor Bαβ is diagonal when one
coordinate axis is aligned along ~r, with the transverse and
longitudinal correlation functions BT and BL as the diagonal
components. The corresponding spatial spectrum is

Sαβ(~K) =
∫

d3rBαβ(~r) exp(i~K ·~r)

= ST(K)[δαβ − KαKβ/K
2] + SL(K)KαKβ/K

2, (18)

where the tensor Sαβ is diagonal when one coordinate axis is
aligned along the scattering vector ~K , with the transverse and
longitudinal spectra ST and SL as the diagonal components.

HRS intensities with the functional form given by Eqs.
(8)–(11) are obtained by expressing HRS from the vector
part of β in terms of the vector correlation functions in Eq.
(17).10 The intensity coefficients AT and AL are proportional
to ST(K) and SL(K). The expressions for ST and SL obtained
by substituting Eq. (17) for Bij(~r) into the integral in Eq. (18),
transforming to polar coordinates, and integrating are10

ST(K) = 4π
∫ ∞

0
r2dr

[{
j0(Kr) −

j1(Kr)
Kr

}
BT(r)

+
j1(Kr)

Kr
BL(r)

]
, (19)

SL(K) = 4π
∫ ∞

0
r2dr

[
2

j1(Kr)
Kr

BT(r)

+

{
j0(Kr) − 2

j1(Kr)
Kr

}
BL(r)

]
, (20)

where jn(x) are spherical Bessel functions.
An arbitrary isotropic random vector field can be repre-

sented as the sum of two uncorrelated isotropic vector fields,
one of which is solenoidal (zero divergence) and one of which
is potential (zero curl).21 For an uncharged, homogeneous
dielectric with zero applied electric field, ~∇ · ~D = ~∇ · ε~E = ~∇ ·

(ε0~E + ~P) = 0 and ~∇ · ~P = 0 for the polarization ~P, so the
dipole vector field is solenoidal in the unperturbed liquid. The
condition on the correlation function for a solenoidal field, for
which SL(K) = 0, is21

BT(r) = BL(r) +
r
2

d
dr

BL(r). (21)

A correlation function for a solenoidal vector field which has
the r�3 asymptotic dependence for dipole-dipole correlation
in a polar liquid is10

BL(r) = [1 + (r/a)2]−3/2, (22)

BT(r) = [1 + (r/a)2]−3/2[1 − 3
2 r2/(r2 + a2)]. (23)
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FIG. 4. Integrals for ST (solid curves) and SL (dashed curves) given by Eqs.
(19) and (20), for the correlation functions given by Eqs. (22) and (23), are
plotted as a function of the upper integration limit r2, for θs = 10◦, 90◦, and
180◦ (K = 0.0027, 0.022, and 0.031 nm�1). Both short-range and long-range
correlations increase the HRS intensity, but the difference between ST and SL
is due entirely to correlations at distances r2 > 10 nm. The final value for the
ST and SL integrals is approached when correlations at distances up to r2 >
500 nm are included, where r2 diverges as θs → 0.

This correlation function, with a3 = 5.07 × 10�3 nm3 deter-
mined from the MD simulation, is plotted as the dashed curves
in Figs. 1(b) and 1(c). This function accurately represents the
MD correlation functions F(r), L(r), and T (r) for r > 2 nm
and is a rough approximation for r < 2 nm.

Evaluating the integrals in Eqs. (19) and (20) using the
correlation functions given by Eqs. (22) and (23) gives the
spectra10

ST(K) = 2πa3KaK1(Ka), (24)

SL(K) = 0, (25)

where Kn(x) is the modified Bessel function of the second kind,
of order n. The value of ST(K) for small K is nearly constant,
with the K = 0 value10

ST(0) = 2πa3. (26)

The range of the correlations that make the main contribution
to the coherent HRS spectrum depends on K. Figure 4 shows
results for the integrals in Eqs. (19) and (20), for the correlation
function given by Eqs. (22) and (23), but with upper integration
limit r2. For a << r2 <<K�1, the integrals give ST(r2) = SL(r2)
= 4πa3/3, whereas for a << r2 and K�1 << r2, the integrals
give ST(r2) = 4πa3/2 and SL(r2) = 0. For the values of a and K
in the HRS experiment for water, the first result is obtained for
r2 ≈ 3 nm, while the second result is obtained for r2 ≈ 300 nm
at θs = 180◦ and 3000 nm at θs = 10◦. When only correlations
at distances up to r2 ≈ 3 nm are included, the HRS intensity
is increased but the form remains the same as for incoherent
HRS. The observed HRS with ST , SL (AT , AL) is obtained
when correlations at distances up to r2 ≈ 300–3000 nm are
included.

VI. HYPERPOLARIZABILITY AND DIPOLE
CORRELATION OF WATER

The molecular hyperpolarizability and orientation cor-
relation combine to determine the HRS intensities, and

conversely, one may use HRS observations to solve for the
molecular hyperpolarizability and orientation correlation. To
allow for a different treatment of the vector and octupolar β
HRS contributions, the tensor β is expressed as the direct sum
of four irreducible spherical tensors,4

β = β[ss,1] ⊕ β[ms,1] ⊕ β[ms,2] ⊕ β[ss,3], (27)

where β[ν,l]
m is a spherical tensor of rank l with 2l + 1 com-

ponents m, index ν labels the symmetry under permutation
of the Cartesian tensor indices (ss is totally symmetric, while
ms is non-symmetric for the first index permutations), and
the mixed symmetry ν = ms tensors vanish when Kleinman
symmetry holds. For C2v symmetry, the seven non-vanishing
spherical components are4

β[ss,1]
0 /βzzz = (−i/

√
15)

[
3 + (A + 2A′) + (B + 2B′)

]
, (28)

β[ms,1]
0 /βzzz = (−i/

√
3)

[
(A − A′) + (B − B′)

]
, (29)

β[ms,2]
±2 /βzzz = (∓i/

√
6)

[
(A − A′) − (B − B′)

]
, (30)

β[ss,3]
0 /βzzz = (−i/

√
10)

[
−2 + (A + 2A′) + (B + 2B′)

]
, (31)

β[ss,3]
±2 /βzzz = (+i/

√
12)

[
(A + 2A′) − (B + 2B′)

]
. (32)

(The entry in Table II of Ref. 4 for ν = ss, l = 3, m = 0, ijk
= zzz should have a + sign.)

HRS intensities IVV and IHV expressed in terms spherical
tensor components are4,10

IVV = R2AT + P2A0 = CT
9

45
���β

[ss,1]
0

���
2

+
6

105
���β

[ss ,3���
2
, (33)

IHV = AT + A0 = CT
1
45

���β
[ss,1]
0 +

√
5β[ms,1]

0
���
2

+
1

15
���β

[ms,2]���
2

+
4

105
���β

[ss ,3���
2
, (34)

where | β[ν,l] |2 =
∑

m | β
[ν,l]
m |

2
. The β components with l = 1

transform as vectors under rotations, and R2 = (IVV/IHV)l=1

is the HRS intensity ratio due to just these terms. Similarly,
P2 = (IVV/IHV)l=2,3 is the HRS intensity ratio due to just the
terms with l = 2 and 3. Dipole orientation correlation affects
only the l = 1 HRS contribution, increasing the l = 1 terms
in IVV and IHV by the factor CT. Possible quadrupolar and
octupolar orientation correlation effects for the l = 2 and 3
terms are ignored. The β tensor components determine R2

and P2, dipole correlations determine CT, and both combined
determine AT/A0 and IVV/IHV. With CT determined from the
MD simulation, one can solve for β tensor component ratios
A, A′, B, and B′ that fit the observed values for IVV/IHV, R2,
and AT/A0, where the dependence of AT/A0 on P2(A, A′, B, B′)
is given by Eq. (12).

The HRS intensity factor CT accounting for vector β
correlation effects is calculated from the MD orientation cor-
relation functions using Eqs. (19) and (20), with the integrals
evaluated piecewise over three regions,5,10

ST = ST,1 + ST,2 + ST,3, (35)

SL = SL,1 + SL,2 + SL,3. (36)
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The delta function self-correlation in region 1 (r < r1

= 0.20 nm) gives

ST,1 = SL,1 = (1/3)(4πr3
0/3), (37)

where 4πr3
0/3 = ρ

−1 is the volume per molecule, r0 = 0.1928
nm, and ST,1 = SL,1 = 10.010× 10�3 nm3 for TIP4P/2005 water.
In region 2 (r1 < r < r2 = 5.0 nm), the correlation functions
BL(r) = L(r) and BT(r) = T (r) obtained from the MD simulation
are integrated to give ST,2 and SL,2. At short range, where Kr
<< 1, it is a good approximation to take the K = 0 limit for the
integrand in Eqs. (19) and (20), which gives

ST,2 = SL,2 = 4π
∫ r2

r1

r2drg(r)[BL(r) + 2BT(r)]. (38)

The contribution from region 3 (r > r2 = 5.0 nm) is obtained
by subtracting STL,3 from Eqs. (25) and (26),

ST,3 = 2πa3 − STL,3, (39)

SL,3 = 0 − STL,3, (40)

where

STL,3 = 4π
∫ r2

0
r2dr[BL(r) + 2BT(r)]

= 4π
∫ r2

0
r2dr[1 + (r/a)2]−5/2

= (4πa3/3)[1 + (a/r2)2]−3/2 (41)

is obtained using the K = 0 limit for the integrand in Eqs. (19)
and (20), with Eqs. (22) and (23) for the correlation functions.
For the values K < 0.03 nm�1 probed by the experiment, Eq.
(41) differs from the exact integral by <0.3%. [The K = 0 limit
is incorrectly evaluated in Eqs. (22) and (23) of Ref. 10 and
Eqs. (35), (36), (38), and (39) of Ref. 5.]

Table III shows the vector β HRS intensity contributions
calculated using Eqs. (35)–(41) with the correlation length
parameter a3 = 5.07 × 10�3 nm3 [obtained from the MD simu-
lation using Eq. (7)]. The three contributions to the transverse
spectrum are about equal, but for the longitudinal spectrum,
the long-range correlation contribution nearly cancels the self-
correlation and short-range contributions. The result is a nearly

TABLE III. The values at K = 0 for the transverse (T) and longitudinal (L)
components of the vector HRS spatial spectra are obtained by integrating
the orientation correlation functions for water [see Eqs. (35)–(41)]. The total
integrals and the piecewise contributions from the self-correlation (1), short-
range (2) and long-range (3) regions are given for two values of the long-range
orientation correlation strength a3.

Property MD HRS fit

a3 (10�3 nm3) 5.072 4.584

ST,1 = SL,1 (10�3 nm3) 10.010 10.010

ST,2 = SL,2 (10�3 nm3) 11.783 11.783

ST,3 (10�3 nm3) 10.661 9.634

SL,3 (10�3 nm3) −21.209 −19.172

ST (10�3 nm3) 32.454 31.426

SL (10�3 nm3) 0.583 2.621

SL/ST 0.0180 0.0834

CT = ST/ST,1 3.242 3.140

pure transverse spectrum with SL/ST = 0.018 and with the
HRS intensity ST larger by the factor CT = ST/ST,1 = 3.242
than the intensity ST,1 that would be obtained for vector β
HRS in the absence of orientation correlation. There are mul-
tiple combinations of the β component ratios A, A′, B, and
B′ which fit the observed values of IVV/IHV, R2, and AT/A0

for this value of a3. However, using this a3 gives SL/ST much
smaller than AL/AT from the fit to the HRS data and results in
a very poor fit to the data, as shown by the dashed curves in
Fig. 2.

The correlation strength parameter a3 may be overesti-
mated by the MD simulation since non-polarizable models
such as TIP4P/2005 tend to overestimate the molecular dipole
to compensate for the lack of polarizability. An even larger
value a3 = 6.07 × 10�3 nm3 is obtained from a MD simulation
with the simple point charge (SPC) water model.14 One may
treat a3 as an adjustable parameter, to be determined from the
fit to the observed values for IVV/IHV, R2, AT/A0, and AL/A0.
An essentially exact fit is obtained for a continuum of com-
binations of the β component ratios, with A, A′, B, and B′ in
the range from �0.1 to +1.3, a3 in the range from 4.40 to 4.59
× 10�3 nm3, and CT in the range from 3.10 to 3.14. Most of
the solutions exhibit large deviations from Kleinman symme-
try, with P2 as low as 0.1. However, the solutions with small
deviations from Kleinman symmetry are clustered near the
solution (A, A′, B, B′, a3) = (0.150, 0.149, 0.880, 0.840, 4.584
× 10�3 nm3) with P2 = 1.498 and CT = 3.140. The last col-
umn of Table III shows the calculation giving SL/ST = AL/AT

= 0.0834 using this value of a3. The value obtained for a3

from the fit depends on the model-dependent short-range cor-
relation contribution ST,2 calculated from the MD simulation.
A 10% change in ST,2 produces a 5% change in a3 (and CT),
and the largest uncertainty for a3 may be due to the systematic
uncertainty for ST,2. Nevertheless, a3 obtained by fitting the
HRS experimental value for AL/AT provides the most direct
available experimental determination for the long-range cor-
relation strength. This HRS result for a3 is 10% smaller than
the TIP4P/2005 MD result.

The β tensor component ratios (A, A′, B, B′) = (0.150,
0.149, 0.880, 0.840) from the example HRS fit are similar to
the result A = A′ = 0.138 and B = B′ = 1.02 for the liquid
phase model II in Ref. 22. This is an ab initio calculation at
the Moller-Plesset MP2 level of theory, for the static hyperpo-
larizability of the water molecule in a local environment with
a strong axial field and symmetric field gradient. The effect
of the local environment is to induce an increment ∆β large
enough to reverse the sign of β (with respect to the dipole). A
Hartree-Fock semicontinuum model calculation gives (A, A′,
B, B′) = (0.256, 0.287, 1.376, 1.363) at the laser frequency
for the HRS measurements.23 The deviations from Kleinman
symmetry are �12% (A/A′) and +1% (B/B′) for this model, as
compared to 1% and 5% for the HRS fit example. The effects
of intermolecular interactions and orientation correlations for
liquid phase HRS can be separated by fitting the HRS data and
then setting the correlation factor CT = 1 in Eqs. (33) and (34).
The resulting value IVV/IHV is in the range 5.84–6.01 for all
the fits and is 5.92 for the particular A, A′, B, B′ example given
above. This value of IVV/IHV for a molecule in the liquid is
smaller than the value 8.02± 0.05 measured in the gas phase,20
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so the magnitude of vector β is decreased relative to octupolar
β for a molecule in the liquid.

VII. SUMMARY AND CONCLUSION

The trajectory obtained from a MD simulation has been
used to calculate the molecular orientation correlation func-
tions and also to directly compute HRS including molecu-
lar correlation. Molecular position and orientation correlation
result from the combined effects of the interactions represented
in the MD model, and dipole interactions make a major con-
tribution to orientation correlation. Due to the long range of
this interaction, the calculated results are sensitive to the MD
simulation boundary conditions, and the short-range coher-
ent contribution to the HRS intensity is overestimated. The
long-range contribution is completely missed in the direct cal-
culation of HRS from the MD simulation trajectory due to the
small size of the simulation cell.

HRS for water is dominated by the vector part of β, so the
HRS intensities can be calculated using the dipole correlation
function determined from the MD simulation trajectory, after
applying the known boundary condition corrections for a fluid
of rigid dipoles. The dipole correlation function has transverse
and longitudinal components, and the HRS spectrum due to the
vector part of β sees these dipole correlations and has trans-
verse and longitudinal contributions. The dipole correlations
at short range give equal transverse and longitudinal spectral
contributions, but when long-range correlations are included,
the longitudinal spectrum nearly vanishes. This is the origin
of the distinctive polarization and angle dependence observed
for HRS from water and other polar liquids. The asymmetry
between the transverse and longitudinal HRS spectral compo-
nents depends on the strength of the long-range orientation
correlation, so the fit to the observed asymmetry provides

an experimental determination of the long-range orientation
correlation strength.
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