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The polarization dependence of hyper-Rayleigh scattering has been calculated for spherical domains
of orientation correlated molecules. Distributions with radial or azimuthal mean polar orientation of
the molecules are found that give results consistent with experimental observations, and expressions
for the polarization ratios in terms of the product of correlation strength and correlated domain size
are derived for these distributions. Assuming a plausible correlation strength, it is estimated that the
correlated domain size in typical polar liquids is of order 100 molecular diameters. © 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4799262]

I. INTRODUCTION

Hyper-Rayleigh scattering (HRS) is a second harmonic
light scattering process widely used to measure the first hy-
perpolarizability β of molecules in solution.1 It is usually as-
sumed that the orientations of dissolved chromophores in di-
lute solution are uncorrelated and random so that the HRS
intensity is proportional to the orientational average 〈β2〉
for individual chromophores.2, 3 However, HRS is sensitive
to intermolecular correlations and interactions2–6 and several
recent HRS experiments have observed such effects of in
neat liquids6–8 and solutions.9–12 Intermolecular interactions
and correlations change the observed intensity, spectrum, and
polarization dependence of the HRS light.

HRS experiments most often use the 90◦ scattering con-
figuration with incident and scattered light polarized either
perpendicular or parallel to the horizontal scattering plane.
The usual linear polarization combinations for the 90◦ scat-
tering configuration are denoted VV, HV, VH, and HH, where
V denotes vertical polarization, H denotes horizontal polar-
ization, and the first and second letters refer to the incident
and scattered light, respectively. The usual linearly polar-
ized 90◦ scattering intensities are IV V , IHV , IV H , and IHH,
and the usual polarization ratios are IV V /IHV , IHV /IV H , and
IHH /IV H .

The observed polarization dependence of HRS for many
liquids, and the observation IHV /IV H �= 1 in particular, indi-
cates long range orientation correlations for the molecules.7, 8

Expressions for non-local HRS from polar collective modes
have been derived that can account for the experimental
observations.7, 13 The signature of transverse polar mode HRS
is IV V /IHV = 9, IHV /IV H = 2, and IHH /IV H = 1, while the
signature of longitudinal polar mode HRS is IV V = IHV = 0
and IHH/IV H = 1. HRS observations are consistent with a
coherent contribution from such collective modes. However,
a detailed microscopic model of the molecular organization is
lacking.

The present work explores explicit models for HRS from
correlated molecules, with the aim of determining the forms
for the correlations that are consistent with the HRS obser-
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vations, and determining what constraints experimental ob-
servations place on the range and strength of the molecular
correlations.

II. SECOND HARMONIC DIPOLE
FOR AXIAL MOLECULES

Consider the second harmonic dipole induced in a
molecule with C∞v , C6v , or C4v point group symmetry. For
molecules with four-fold or higher axial symmetry, the non-
vanishing independent components of the first hyperpolariz-
ability tensor β in the molecular frame are

β0 = βzzz, (1a)

uβ0 = βzxx = βzyy, (1b)

vβ0 = βxxz = βxzx = βyyz = βyzy, (1c)

where u = v in the case that Kleinman symmetry holds. Let
the orientation of the molecular z axis be given by the unit
vector n̂. The second harmonic dipole �μ induced by the elec-
tric field �E = E0Ê lies in the plane spanned by the vectors
n̂ and Ê, with components parallel and perpendicular to n̂

given by

μ|| = 1
2β0E

2
0 [cos2 ψ + u sin2 ψ], (2a)

μ⊥ = 1
2β0E

2
0 [2v cos ψ sin ψ], (2b)

where cos ψ = n̂ · Ê. Using the expression n̂⊥ = [Ê
− n̂ cos ψ]/ sin ψ for the perpendicular unit vector gives

�μ = 1
2β0E

2
0 [(1 − u − 2v)(n̂ · Ê)2n̂ + u n̂ + 2v(n̂ · Ê)Ê].

(3)

For later convenience when considering non-local HRS,
the lab fixed Cartesian coordinate frame has been chosen with
Z perpendicular to the scattering plane, Y in the direction of
the scattering vector �K = 2�ki − �ks , and with X perpendicu-
lar to Y and Z. The incident and scattered light directions in
this frame are k̂i = 2−1/2(−X̂ − Ŷ ) and k̂s = 2−1/2(X̂ − Ŷ ),
respectively. With these coordinates the unit vectors for the
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incident and scattered polarizations and the scattering vector
are

V̂i = V̂s = Ẑ, (4a)

Ĥi = 2−1/2(X̂ − Ŷ ), (4b)

Ĥs = 2−1/2(X̂ + Ŷ ), (4c)

K̂ = Ŷ . (4d)

Spherical polar coordinates r, θ , φ with Y as the polar axis
are used to give the position �r and orientation n̂ of a molecule,
where the spherical polar unit vectors expressed in lab frame
Cartesian coordinates X, Y, Z are

r̂ = (sin θ sin φ, cos θ, sin θ cos φ), (5a)

θ̂ = (cos θ sin φ,− sin θ, cos θ cos φ), (5b)

φ̂ = (cos φ, 0,− sin φ). (5c)

From Eq. (3), the relevant second harmonic induced
dipole components for a C∞v molecule with its axis oriented
along n̂, for HRS in the VV, HV, VH, and HH polarization
geometries, are

μV V = 1
2β0E

2
0 [(1 − u − 2v)(n̂ · Ẑ)3 + (u + 2v) (n̂ · Ẑ)],

(6a)

μHV = 1
2β0E

2
0 [(1 − u − 2v)(n̂ · Ĥi)

2(n̂ · Ẑ) + u (n̂ · Ẑ)],
(6b)

μV H = 1
2β0E

2
0 [(1 − u − 2v)(n̂ · Ẑ)2(n̂ · Ĥs) + u (n̂ · Ĥs)],

(6c)

μHH = 1
2β0E

2
0 [(1 − u − 2v)(n̂ · Ĥi)

2(n̂ · Ĥs) + u (n̂ · Ĥs)].
(6d)

III. INCOHERENT HRS

The incoherent HRS intensity for randomly oriented
molecules with number density ρ in a spherical volume with
radius R is given by summing orientation averaged μ2(θ , φ)
for each molecule

I = (ρR3/3)

π∫
0

sin θ dθ

2π∫
0

μ2(θ, φ) dφ. (7)

The orientation-dependent factors in Eqs. (6a)–(6d) for the
induced second harmonic dipole μ(θ , φ), evaluated using
n̂ = r̂ , are

(r̂ · Ẑ) = sin θ cos φ, (8a)

(r̂ · Ĥi) = (sin θ sin φ − cos θ )/
√

2, (8b)

(r̂ · Ĥs) = (sin θ sin φ + cos θ )/
√

2. (8c)

From Eqs. (6a)–(8c), the incoherent HRS intensities for C∞v

molecules are

IV V = (
1
2β0E

2
0

)2
( 4

3πρR3)[15 + 12(u + 2v)

+ 8(u + 2v)2]/105, (9a)

IHV = IV H = IHH = (
1
2β0E

2
0

)2( 4
3πρR3)[3(1 − 2v)2

+ 8u(1 − 2v) + 24u2]/105, (9b)

which reduce to

IV V = (
1
2β0E

2
0

)2( 4
3πρR3

)
[5 + 12u + 24u2]/35, (10a)

IHV = IV H = IHH = (
1
2β0E

2
0

)2( 4
3πρR3)

× [3 − 4u + 20u2]/105 (10b)

in the case that Kleinman symmetry holds so that u = v.

IV. COHERENT HRS FROM PERFECTLY ORDERED
AXIAL MOLECULES

Spherical domains with axially symmetric molecular ori-
entation distributions will be considered next. The scattered
amplitude from each molecule is proportional to the induced
dipole, and the total scattered amplitude from a domain con-
taining correlated molecules is the sum over all the molecules
in the domain. The relative phase of the HRS contribution
from a molecule located at position �r is accounted for by the
factor

exp(i �K · �r) = exp(iKr Ŷ · r̂)

= cos(Kr cos θ ) + i sin(Kr cos θ ), (11)

where r is the distance of the molecule from the origin. For
a molecular distribution axially symmetric around the lab Y
axis, the molecular positions and orientations are given in
terms of the spherical polar coordinates r, θ , φ, with the unit
vectors given by Eqs. (5a)–(5c). A distribution with the sym-
metry axis oriented at polar angles α, β is obtained from the
distribution with Y symmetry axis, by first rotating the dis-
tribution by angle α around the X axis and then by angle β

around the Y axis. The rotation matrix R = RYRX for the
transformation to the rotated distribution is

R =

⎛
⎜⎝

cos β − sin α sin β − cos α sin β

0 cos α − sin α

sin β sin α cos β cos α cos β

⎞
⎟⎠ , (12)

giving the transformed unit vectors r̂ ′ = R r̂ , θ̂ ′ = R θ̂ , and
φ̂′ = R φ̂, and transformed coordinates r′ = r, θ ′ = θ ′(θ , φ,
α, β), and φ′ = φ′(θ , φ, α, β).

The total scattered field from a spherical domain with in-
duced dipoles given by Eqs. (6a)–(6d) is proportional to the
integral

F ≈ ρ

R∫
0

r2dr

π∫
0

sin θ dθ

2π∫
0

μ(r, θ ′, φ′)(1 + iKr cos θ ′)dφ,

(13)
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where the approximation exp (iKr cos θ ′) ≈ 1 + iKr cos θ ′,
which is valid when Kr � 1, has been applied to simplify the
integrand in Eq. (13). For even (odd) functions μ, the integral
evaluated with phase factor iKr cos θ ′ (1) vanishes. The HRS
intensity I = |F|2 obtained from the field integral F may be
a function of the orientation of the domain axis, given by an-
gles α, β. The observed HRS intensity is the average intensity
for randomly oriented, axially symmetric, spherical domains,
given by the integral

I = (4π )−1

π∫
0

sin α dα

2π∫
0

|F (α, β)|2 dβ. (14)

One must specify the distribution of orientations n̂ for the
molecules to evaluate the integrals in Eqs. (13) and (14).
Three distributions will be considered, with the molecules ori-
ented in the directions of each of the polar unit vectors, n̂ = r̂ ′,
n̂ = θ̂ ′, or n̂ = φ̂′, as shown in Figure 1.

For radial oriented molecules, there is no loss of gener-
ality using n̂ = r̂ rather than n̂ = r̂ ′ since the radial oriented
distribution is spherically symmetric, so μ(θ , φ) may be eval-
uated using Eqs. (8a)–(8c) and (r̂ · Ŷ ) = cos θ . The integrals
for a spherical domain with radially oriented molecules give
HRS intensities

IV V = IHV = 0, (15a)

IV H = IHH = (
1
2β0E

2
0

)2( 1
4ρKR4)2

(8π2/225)(1 + 4u − 2v)2.

(15b)

The intensities IV V = IHV = 0 and polarization ratios
IHV /IV H = 0 and IHH/IV H = 1 for the radial oriented
molecular distribution are consistent with a pure longitudinal
polar mode.

For molecules oriented in the n̂ = θ̂ ′ direction, the scat-
tering integrals are evaluated with the substitutions

(θ̂ ′ · Ẑ) = sin β cos θ sin φ − sin α cos β sin θ

+ cos α cos β cos θ cos φ, (16a)

(θ̂ ′ · Ĥi) = (cos β cos θ sin φ + sin α sin β sin θ

− cos α sin β cos θ cos φ + cos α sin θ

+ sin α cos θ cos φ)/
√

2, (16b)

(θ̂ ′ · Ĥs) = (cos β cos θ sin φ + sin α sin β sin θ

− cos α sin β cos θ cos φ − cos α sin θ

− sin α cos θ cos φ)/
√

2, (16c)

(r̂ ′ · Ŷ ) = cos θ ′ = cos α cos θ − sin α sin θ cos φ. (16d)

The scattered field integrals FV V , FHV , FV H , FHH are func-
tions of the orientation of the domain axis given by angles α,
β, and the observed average intensities for randomly oriented

(a)

(b)

(c)

FIG. 1. Spherical domains containing 250 molecules at random positions are
shown. The arrows denote the polar axis for each molecule, and the molecules
exhibit perfect (a) radial (r̂), (b) polar (θ̂ ), or (c) azimuthal (φ̂) orientational
order about the Y symmetry axis. Domains in liquid water with R = 20 nm
would contain 106 molecules.

domains with θ̂ ′ oriented molecules are

IV V = (
1
2β0E

2
0

)2( 1
3ρR3

)2
(π4/1680)[207 + 258(u + 2v)

+ 95(u + 2v)2], (17a)

IHV = IV H = IHH

= (
1
2β0E

2
0

)2( 1
3ρR3

)2
(π4/840)[13(1 − 2v)2

+ 86u(1 − 2v) + 181 u2]. (17b)
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For molecules oriented in the n̂ = φ̂′ direction, the scat-
tering integrals are evaluated with the substitutions

(φ̂′ · Ẑ) = sin β cos φ − cos α cos β sin φ, (18a)

(φ̂′ · Ĥi) = (cos β cos φ + cos α sin β sin φ − sin α sin φ)/
√

2,

(18b)

(φ̂′ · Ĥs) = (cos β cos φ + cos α sin β sin φ + sin α sin φ)/
√

2,

(18c)

(r̂ ′ · Ŷ ) = cos α cos θ − sin α sin θ cos φ. (18d)

The intensities averaged over angles α, β for randomly ori-
ented domains with φ̂′ oriented molecules are

IV V = (
1
2β0E

2
0

)2( 1
4ρKR4

)2
(π4/840)[27 + 30(u + 2v)

+ 13(u + 2v)2], (19a)

IHV = (
1
2β0E

2
0

)2( 1
4ρKR4

)2
(π4/3360)[15(1 − 2v)2

+ 82u(1 − 2v) + 183u2], (19b)

IV H = (
1
2β0E

2
0

)2( 1
4ρKR4

)2
(π4/1680)[5(1 − 2v)2

+ 18u(1 − 2v) + 47 u2], (19c)

IHH = (
1
2β0E

2
0

)2( 1
4ρKR4

)2
(π4/480)[(1 − 2v)2

+ 6u(1 − 2v) + 13u2]. (19d)

For a 1D chromophore where u = v = 0, Eqs. (19a)–(19d)
give polarization ratios IHV /IV H = 7.2, IHV /IV H = 1.5, and
IHH /IV H = 0.7, results different from those for a pure trans-
verse polar mode. The polarization ratios for azimuthally po-
larized domains containing C∞v molecules with Kleinman
symmetry (u = v) are plotted as functions of the parameter
u in Figure 2. The pure transverse mode polarization ratios
IHV /IV H = 9, IHV /IV H = 2, and IHH/IV H = 1 are obtained
only for u = v = 1/3.

V. COHERENT HRS FOR STATISTICAL MOLECULAR
DISTRIBUTIONS

Consider the perturbed orientation distribution for polar
molecules with permanent dipole moment �μ(0) in an external
electric field �E. The orientation dependence of the electric
dipole interaction energy U = −�μ(0) · �E = −μ(0)

α Eα results
in a perturbed orientation distribution

G(	) = 1 + (μ(0)E/kBT ) cos θ = 1 + a1 cos θ (20)

to lowest order in the perturbing field. The lab frame average
of the tensor β with the perturbed orientation distribution is

〈β(	)〉E =
∫

β(	) exp(−U/kBT )d	/

∫
exp(−U/kBT )d	

= 〈ββγ δ〉 + (Eα/kBT )
〈
μ(0)

α ββγ δ

〉 + · · · , (21)

where 〈 · 〉 denotes the isotropic average, and the summa-
tion convention is assumed for repeated dummy indices. The

(a)

(b)

(c)

FIG. 2. Polarization ratios (a) IV V /IHV , (b) IHV /IV H , and (c) IHH /IV H

for spherical domains with azimuthal molecular orientation correlations. The
solid curves show results from Eqs. (19a)–(19d) for perfectly ordered C∞v

molecules with Kleinman symmetry (u = v = βzxx/βzzz = βxxz/βzzz) plot-
ted as functions of u. The dashed curves show results from Eqs. (29a)–(29c)
for molecules with statistical correlations and arbitrary symmetry plotted as
functions of u1, where u1 = 〈β〉EZXX / 〈β〉EZZZ for effective β is given by
Eqs. (24a)–(24c). In this case, deviations from u1 = 1/3 indicate deviations
from Kleinman symmetry. Results for the perfectly ordered and statistical
distributions agree only for u = u1 = 1/3, shown by the dotted lines.

isotropic average 〈βαβγ 〉 = Aεαβγ = 0 due to intrinsic per-
mutation symmetry of the β tensor for second harmonic gen-
eration, βαβγ (−2ω; ω, ω) = βαγβ (−2ω; ω, ω). The quantity
〈μ(0)

α ββγ δ〉 = 〈Aαβγ δ〉 is an isotropic fourth rank tensor with
the general form

〈Aαβγ δ〉 = A1δαβδγ δ + A2δαγ δβδ + A3δαδδβγ , (22a)

A1 = 1
30 (4Aααββ − Aαβαβ − Aαββα), (22b)

A2 = 1
30 (−Aααββ + 4Aαβαβ − Aαββα), (22c)

A3 = 1
30 (−Aααββ − Aαβαβ + 4Aαββα). (22d)
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Since βαβγ = βαγβ one has Aαβγ δ = Aαβδγ and therefore
A2 = A3. Substituting Aαβαβ = Aαββα and choosing the dipole
direction as the molecular z axis, �μ(0) = μ(0)ẑ = μ(0)δzα , one
obtains

A1 = 1
30 (4Aααββ − 2Aαββα) = 1

30μ(0)(4βzββ − 2βββz),

(23a)

A2 = A3 = 1
30 (−Aααββ + 3Aαββα) = 1

30μ(0)(−βzββ + 3βββz).

(23b)

Thus, the effective hyperpolarizability 〈β〉E has C∞v symme-
try with three different non-vanishing components

〈β〉EZZZ = a1(A1 + A2 + A3) = 1
15a1(βzββ + 2βββz) = a1β1,

(24a)

〈β〉EZXX = a1A1 = 1
15a1(2βzββ − βββz) = a1u1β1, (24b)

〈β〉EXXZ = a1A2 = a1A3 = 1
30a1(−βzββ + 3βββz) = a1v1β1,

(24c)
but since (u1 + 2v1) = 1 there are only two independent com-
ponents. In these expressions, z is the molecular axis and
n̂ = Ẑ has been chosen as the axis of the molecular orien-
tation distribution. Although Eqs. (24a)–(24c) were obtained
by considering the orientation of a dipolar molecule by an
electric field, they are more generally valid, including the case
that molecular z axis is not the dipole axis or even a molecular
symmetry axis, provided that the chosen molecular z axis has
orientation distribution G(	) = 1 + a1cos θ around the sym-
metry axis n̂ of the distribution. For the special case where
z is the dipole axis of a C∞v molecule, Eqs. (24a)–(24c)
give β1 = 1

15 (3βzzz + 2βzxx + 4βxxz) and u1β1 = 1
15 (βzzz

+ 4βzxx − 2βxxz), which reduce to β1 = 1
5 (βzzz + 2βzxx) and

u1 = 1
3 when Kleinman symmetry applies and βzxx = βxxz.

Now consider a spherical domain where the mean molec-
ular orientation n̂ varies over the domain, and the orientation
distribution is G(	) = 1 + a1cos θ around n̂ for the molecules
in the neighbourhood of each point in the domain. The vec-
tor n̂ is analogous to the director n̂ in a liquid crystal. There
the orientation distribution around the director is G(	) = 1
+ a2(3cos 2θ − 1)/2, where n̂ has a fixed direction in the case
of a nematic liquid crystal, and rotates as a helix in the case of
a cholesteric liquid crystal. The factor a1 specifies the strength
of the orientation correlation, and the domain must be suffi-
ciently large and n̂ slowly varying for the statistical distribu-
tion to be defined at each point. Then the components of the
average induced second harmonic dipole for molecules with
mean orientation n̂ are given by Eqs. (6a)–(6d) previously
derived for a C∞v molecule, but with β0, u, and v replaced
by a1β1, u1, and v1. Applying the constraint (u1 + 2v1) = 1,
these expressions reduce to

μV V = (
1
2a1β1E

2
0

)
(n̂ · Ẑ), (25a)

μHV = (
1
2a1β1E

2
0

)
u1 (n̂ · Ẑ) = u1μV V , (25b)

μV H = (
1
2a1β1E

2
0

)
u1 (n̂ · Ĥs), (25c)

μHH = (
1
2a1β1E

2
0

)
u1 (n̂ · Ĥs) = μV H . (25d)

From these, it immediately follows that:

IV V /IHV = u−2
1 , (26a)

IHH/IV H = 1, (26b)

for any n̂. In the case that Kleinman symmetry holds,
u1 = v1 = 1/3 and IV V /IHV = 9.

The HRS intensities from a radially oriented domain,
where n̂ = r̂ , have the form of a pure longitudinal polar mode

IV V = IHV = 0, (27a)

IV H = IHH = (
1
2a1β1E

2
0

)2( 1
4ρKR4

)2
(8π2u2

1/9), (27b)

the coherent HRS from domains where n̂ = θ̂ ′ has the same
polarization dependence as incoherent HRS

IV V = (
1
2a1β1E

2
0

)2( 1
3ρR3

)2
(π4/3), (28a)

IHV = IV H = IHH = u2
1IV V , (28b)

and the HRS intensities from azimuthally oriented domains,
where n̂ = φ̂′, have the form of a pure transverse polar mode

IV V = (
1
2a1β1E

2
0

)2( 1
4ρKR4

)2
(π4/12), (29a)

IHV = u2
1IV V , (29b)

IV H = IHH = 1
2IHV . (29c)

The polarization ratios for azimuthally oriented domains, ob-
tained using Eqs. (29a)–(29c), are plotted as functions of u1 in
Figure 2. The results given by Eqs. (25a)–(29c) for coherent
HRS follow directly from the form G(	) = 1 + a1cos θ for
the molecular orientation distribution and require no assump-
tion regarding molecular symmetry. In the case that the mean
molecular orientation is n̂ = c1r̂

′ + c2θ̂
′ + c3φ̂

′, the r, θ , φ

coherent contributions add in quadrature, and the polarization
dependence of the coherent HRS is

IV V /IHV = u−2
1 , (30a)

IHV /IV H =
128

9

( c2

KR

)2
+ 2c2

3

64

3π2
c2

1 + 128

9

( c2

KR

)2
+ c2

3

. (30b)

Thus, IV V /IHV varies only due to deviations from Kleinman
symmetry, and IHV /IV H depends on the relative size of the
components of n̂.

VI. DOMAIN SIZE AND CORRELATION STRENGTH

The radial electric field of a dissolved ion acting as the
aligning agent results in large spherical domains of radial ori-
ented molecules around the dissolved ions in a polar liquid.
The HRS due to these domains has been observed and sys-
tematically studied, varying either the ion concentration14 or
the chromophore concentration,12 and the observations agree
closely with theory except for the predicted and measured ab-
solute HRS intensities. Typically the molecules at R ≈ 100 nm
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with a1 ≈ 10−4 make the main contribution to this coherent
HRS signal.12

In pure isotropic liquids, there is an absence of evi-
dence for oriented domains derived from the usual probes
(x-ray and neutron diffraction15–17 and molecular dynamics
simulations18–21), but information about the molecular corre-
lations can be derived by comparing predicted and measured
values for the HRS polarization ratios. The total HRS inten-
sity from a domain with correlated molecules is the sum of the
incoherent and coherent HRS intensities, giving polarization
ratios intermediate between the values for the separate inco-
herent and coherent contributions. The observed HRS polar-
ization dependence for several neat liquids is consistent with
domains having either radial and azimuthal orientation order
but is inconsistent with short range correlations.8 Domains
with a perfectly ordered fraction of the molecules are ruled
out by the experimentally observed result IHH /IV H = 1,8

which is inconsistent with the calculated result for azimuthal
domains with a perfectly ordered fraction of the molecules
(solid curve in Fig. 2(c)). The result for domains with a
statistical orientation distribution (horizontal dashed line in
Fig. 2(c)) is in perfect agreement with experiment, so only
domains with statistical molecular distributions will be con-
sidered further.

The polarization ratio IHV /IV H distinguishes incoherent
and coherent HRS from domains with correlated molecules
since incoherent HRS gives IHV /IV H = 1, whereas coherent
HRS gives IHV /IV H = 2 for azimuthal correlated domains
and IHV /IV H = 0 for radial correlated domains. Simple ex-
pressions for IHV /IV H are obtained by combining Eqs. (10a),
(10b), (27a), (27b), and (29a)–(29c) in the case of molecules
for which βzzz is the only non-vanishing component. In this
case, β1 = β0/5, u = v = 0, and u1 = v1 = 1/3. The result
for domains with radial orientation correlations is

IHV /IV H =
[

1 + 7πρ K2

1080
a2

1R
5

]−1

, (31a)

while the result for domains with azimuthal orientation corre-
lations is

IHV /IV H =
1 + 7π3ρ K2

11520
a2

1R
5

1 + 7π3ρ K2

23040
a2

1R
5

. (31b)

The product a2
1R

5 of correlation strength and domain size
can be determined from the experimental value for IHV /IV H

using these expressions. For typical values, ρ = 10 mol/l
= 6 nm−3 and K = 2π /(250 nm) the coefficients of a2

1R
5 for

the coherent contributions in Eqs. (31a) and (31b) are 7πρ

K2/1080 = (6.6 nm)−5 and 7π3ρ K2/11520 = (6.8 nm)−5.
Assuming equal incoherent and coherent HRS contributions
in Eqs. (31a) or (31b) gives IHV /IV H = 0.5 or 1.33, within
the observed range.8 The domain size estimate is then R(nm)
= 6.7 a

−2/5
1 , giving R = 17 nm (42 nm, 106 nm) for the do-

main radius assuming a1 = 0.1 (0.01, 0.001) for the molecular
correlation strength.

Figure 3 shows experimental data for solutions of p-
nitroaniline (PNA) in acetone-d6.12 A good fit to the data is
obtained assuming domains with a statistical orientation dis-

(a)

(b)

FIG. 3. Polarization ratios (a) IV V /IHV and (b) IHV /IV H measured with
0.3 or 60 cm−1 spectral bandwidth for solutions of p-nitroaniline (PNA) in
acetone-d6 for PNA concentrations up to 1.7 mol/l are shown by the open
circles.12 The solid curves are fits as described in Ref. 12, with the incoherent
contribution to the HRS signal determined from the zero concentration limit
for the data, and IV V /IHV = 7.53 and IHV /IV H = 2.00 for the coherent
contribution.

tribution and taking the values of IV V /IHV and IHV /IV H for
the coherent contribution as free parameters, whereas a poor
fit was previously obtained assuming a distribution with a
perfectly ordered fraction.12 The fit value IV V /IHV = 7.53
for the coherent contribution indicates a 10% deviation from
Kleinman symmetry and the fit value IHV /IV H = 2.00 in-
dicates azimuthal orientation for the PNA molecules. Com-
bining the fit to the 60 cm−1 data in Fig. 3 with Eq. (29b) and
K = 2π /(279 nm) gives a2

1R
5 = (11.3 nm),5 and indicates that

the domain radius is R > 28 nm if the azimuthal correlation
strength a1 < 0.1.

Although uniform correlation strength a1 within a spher-
ical domain has been assumed, radial variation of the correla-
tion parameter a1 does not change the polarization ratios for
the coherent HRS contribution. Since the coherent HRS con-
tribution is a strong increasing function of radius the quan-
titative result will be determined essentially by a1 near the
maximum radius for the domain. Angular variations of the
correlation parameter a1 that preserve axial symmetry also
do not change the polarization ratios for the coherent HRS
contribution. The coherent HRS is due to acentric orienta-
tion order in the domains, and the anisotropy of the local field
tensor22, 23 due to the anisotropy of the individual molecules
and the molecular distribution has not been explicitly
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considered. However, the liquid is macroscopically isotropic
since the proposed orientation ordered domains are small
compared to the light wavelength and each domain has small
average anisotropy, so one expects the local field anisotropy
effects to be essentially the same as for a liquid of anisotropic
molecules with only short range molecular correlations.

In summary, coherent HRS from spherical domains con-
taining molecules with orientational correlations has been cal-
culated. Molecular distributions with a highly ordered com-
ponent give results inconsistent with HRS observations, but
the statistical distributions that naturally arise as the leading
terms of the general expansion for an axially symmetric dis-
tribution give results consistent with the observations. Radial
or azimuthal orientation correlations for the molecules give
HRS polarization ratios observably different from the results
for incoherent HRS. The product of correlation strength and
correlated domain size can be determined from the polariza-
tion ratio, and agreement with experiment given plausible val-
ues of the correlation strength requires a domain size of order
100 molecular diameters.
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