

2010 HIPACC Astro-Computing Summer School

Galaxy Simulations Using the N-Body/SPH code GADGET

T.J. Cox (Carnegie Observatories)

Outline

- I. Who am I and what am I doing here? My perspective, my science, and where my focus will be this week
- 2. An overview of GADGET projects (+other practical I hope information)
- 3. A brief overview of GADGET
- 4. Adding "Astrophysics" to GADGET
- 5. Loose Ends ... data structures, analysis, and visualization (w/ P. Hopkins)
- 6. What's next? (higher resolution, new models, and Arepo: the next generation of code)

4. Adding Astrophysics to Gadget

- 4.1 Cooling and Star formation
- 4.2 Sink Particles (both stars and BHs)
- 4.3 Feedback
- 4.4 Additional Odds and Ends ...

4. Adding Astrophysics to Gadget

- 4.1 Cooling and Star formation
- 4.2 Sink Particles (both stars and BHs)
- 4.3 Feedback
- 4.4 Additional Odds and Ends ...

Disclaimer: This is NOT a comprehensive review, and will focus primarily on SPH codes, techniques, and past results

4.1 Cooling and Star Formation

4.1 Cooling and Star Formation

4.1 Cooling and Star Formation

* Tabulated cooling curves: H/ He/Z from Sutherland & Dopita (1993)

* Explicitly track the ionization state and cooling rate (see, e.g., Weinberg et al. 1997)

* Tabulated cooling rate including molecules, ISRF, and metals from CLOUDY (Ferland et al. 1998)

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} = \frac{1}{2} \sum_{j=1}^N m_j \left(\frac{P_i}{\rho_i^2} + \frac{P_j}{\rho_j^2} \right) \mathbf{v}_{ij} \cdot \nabla_i \overline{W}_{ij}$$
$$+ \Pi_{ij}$$

$$-\frac{\Lambda_{\rm net}(\rho,T)}{\rho}$$

simply becomes an additional term in the energy (or entropy) equation

* Relation holds for all environments, and physical conditions probed and spans many orders of magnitude

* Large scatter

* Evidence that the relation holds at high redshift (see, e.g., work by Bouche,Daddi,Genzel)

Kennicutt (1998)

-

* A gas particle is then converted to a star particle probabilistically (i.e., star formation itself does not factor into the dynamics of the simulations - later we'll talk about feedback, which does).

* SF implemented in a volumetric manner, but it still satisfies the observed surface density relation

Cox et al. (2006)

Kennicutt (1998)

$$\frac{d\rho_{\star}}{dt} = c_{\star} \frac{\rho_{\text{gas}}}{t_{\text{dyn}}}$$

$$t_{\text{dyn}} = (4\pi G\rho_{\text{gas}})^{-1/2}$$

$$\overset{\circ}{\overset{\circ}}_{\overset{\circ}$$

Cox et al. (2006)

16

Kennicutt et al. (2007)

Robertson & Kravtsov (2008)

$$\dot{\rho}_{\star} = (1 - \beta) f_{H_2} \frac{\rho_g}{t_{\star}} \left(\frac{n_H}{10h^2 \text{ cm}^{-3}} \right)^{0.5}$$

$$\int_{0}^{\frac{1}{p_{\star}}} \int_{0}^{\frac{1}{p_{\star}}} \int_{$$

Robertson & Kravtsov (2008)

Halpha - Kennicutt (1998)

UV - Boissier et al. (2007)

Shock-induced star formation (Barnes 2004)

$$\dot{\rho}_* = C_* \rho_g^n \text{MAX}(\dot{u}, 0)^m$$

ŧ

4.2 Sink Particles

* Based upon a specific set of criteria (density, converging flow, distinct from other sinks, etc.) an individual is wholly converted to a non-SPH "sink" particle.

*The sink particle can then accrete neighboring particles under certain conditions (r<r_accretion, bound)

* BH's are modeled as sink particles that are still contain an SPH component and additionally inject energy into local particles

see, e.g., Bate et al. (1995), Jappsen et al. (2005)

Somerville et al. (2008)

Behroozi, Conroy, & Wechsler (2010)

Bubble and jets in appear to offset the efficient cooling which should be occurring in clusters (see, e.g., Allen et al. 2006)

"radio-mode" AGN feedback

* Galactics winds are ubiquitous (in high-z star-forming galaxies, local starbursts, and moderate-z poststarburst systems, see, e.g., Heckman, Strickland, Veilleux, Rupke, Martin, Tremonti, Weiner, Steidel, ..)

types of feedback:

* Radiative: UV/X-rays from young stars and AGN

* Energetic: Outflows driven by SN, stellar winds, and AGN

* Mass, metals, and dust deposited by SN, stellar winds, AGB stars, AGN

A multitude of models exist to include feedback in simulations (several of which you've heard about this week):

A multitude of models exist to include feedback in simulations (several of which you've heard about this week):

*Thermal feedback is generally ineffective (see, e.g., Katz 1992 - the cooling time is short in these high density regions and any addition SN energy is quickly radiated away)

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} = \frac{1}{2} \sum_{j=1}^N m_j \left(\frac{P_i}{\rho_i^2} + \frac{P_j}{\rho_j^2} \right) \mathbf{v}_{ij} \cdot \nabla_i \overline{W}_{ij} - \frac{\Lambda_{\mathrm{net}}(\boldsymbol{\rho}, \boldsymbol{T})}{\boldsymbol{\rho}} + \mathrm{SN \ energy}$$

A multitude of models exist to include feedback in simulations (several of which you've heard about this week):

* turn off cooling for a period of time post-SF (see, e.g., Governato et al. 2004)

A multitude of models exist to include feedback in simulations (several of which you've heard about this week):

* deliver the energy in a kinetic fashion, rather than thermally (e.g., Navarro et al. 1993, Mihos & Hernquist 1994, Springel & Hernquist 2005, Oppenheimer & Dave 2006)

A multitude of models exist to include feedback in simulations (several of which you've heard about this week):

* Stinson et al. (2006) energy comes from starparticles, not star-forming gas, and come from SN II, Ia, and stellar winds, but it still adopts a similar restriction on the cooling

A multitude of models exist to include feedback in simulations (several of which you've heard about this week):

* Stinson et al. (2006) energy comes from starparticles, not star-forming gas, and come from SN II, Ia, and stellar winds, but it still adopts a similar restriction on the cooling

A multitude of models exist to include feedback in simulations (several of which you've heard about this week):

* Models which try to explicitly track a multiphase ISM (see, e.g., Yepes et al. 1997, Hultman & Pharasyn 1999, Springel & Hernqsuit, Marri & White 2004) and some even treat cold material differently within the SPH calculation.

A multitude of models exist to include feedback in simulations (several of which you've heard about this week):

In practice, many of the aforementioned models simply act to artificially push or pressurize the ISM for a period of time after a star-formation event.

The McKee & Ostriker (1978) view of the ISM:

39

A simplified picture of McKee & Ostriker (1978) within Gadget (Springel & Hernquist 2003, see also Yepes et al. 1997)

$$\frac{\mathrm{d}\rho_{\mathrm{c}}}{\mathrm{d}t} = -\frac{\rho_{\mathrm{c}}}{t_{\star}} - A\beta \frac{\rho_{\mathrm{c}}}{t_{\star}} + \frac{1-f}{u_{\mathrm{h}}-u_{\mathrm{c}}}\Lambda_{\mathrm{net}}(\rho_{\mathrm{h}}, u_{\mathrm{h}}),$$
$$\frac{\mathrm{d}\rho_{\mathrm{h}}}{\mathrm{d}t} = \beta \frac{\rho_{\mathrm{c}}}{t_{\star}} + A\beta \frac{\rho_{\mathrm{c}}}{t_{\star}} - \frac{1-f}{u_{\mathrm{h}}-u_{\mathrm{c}}}\Lambda_{\mathrm{net}}(\rho_{\mathrm{h}}, u_{\mathrm{h}}).$$

- * f=1 when thermally unstable
- * cold temp= 1000 K
- * assume that the two components are in pressure equilibrium
- * leads to a self-regulated model for the ISM when the thermal instability is operating

Gas is "pressurized" in the star-forming regime.

The amount of pressurization can be modulated by a simple interpolation with 10^4 K

Springel & Hernquist 2003

computes accelerations

(accel.c)

- compute gravitational acceleration in gravtree.c
- determine SPH density in density.c
- compute hydrodynamic forces in hydra.c
- do cooling and star formation (sfr_eff.c and cooling.c)

=> Additional compile-time options and parameter file options.

4.3 Feedback: we've made progress but still work to do

4.3 Questions and Comments

*Will our SF model hold as we go to higher resolution?

*What should the SF law be at low densities? Tracking CO is a necessity, but will that reproduce the GALEX observations?

*What, if any, is the best feedback model?

*Theory (Murray et al.) suggests that radiation pressure may dominate the feedback over thermal or kinetic effects, don't we need to include this? And B, and CR, and

*What tests can we perform to address the above question?

* Can we use our existing models as we go to higher resolution?

*Will a sub-grid model always be required, even if we can resolve some form of multiphase structure within the ISM?

*

IRAC 3.6/5/8 um image of a 40 pc region of the Carina Nebula containing 10^5, <10^5, ~10^4 M_solar of atomic, molecular, and young stellar objects.

Eta Carinae and ~70 O stars are just above this image.

McKee & Ostriker 2007 (image: Spitzer/Smith)