28.1 The statistical behavior for Bosons

As stated in the introduction to Fermions and Bosons, quantum statistics starts to play a role in dense system and low temperatures. For an atom at room temperature, the quantum volume is

$$
\begin{gather*}
\epsilon_{0}=\frac{h^{2}}{8 m L^{2}}\left(1^{2}+1^{2}+1^{2}\right)=\frac{3 h^{2}}{8 m L^{2}} \tag{28.1}\\
N_{0}=\frac{1}{e^{\left(\epsilon_{0}-\mu\right) / k T}-1} \tag{28.2}
\end{gather*}
$$

When T is very small, N_{0} will be quite large. In this case, the denominator must be small,

$$
\begin{equation*}
N_{0}=\frac{1}{1+\left(\epsilon_{0}-\mu\right) / k T-1}=\frac{k T}{\epsilon_{0}-\mu} \quad\left(\text { when } N_{0} \gg 1\right) \tag{28.3}
\end{equation*}
$$

The chemical potential μ must be equal to ϵ_{0} at $T=0$, and just a bit less than ϵ_{0} at small T. Now the question is at which temperature we can observe that N_{0} remains very large?

28.2 Computing the total number of Bosons

$$
\begin{equation*}
N=\sum_{s} \frac{1}{e^{\left(\epsilon_{s}-\mu\right) / k T}-1} \tag{28.4}
\end{equation*}
$$

In practice, we can turn it to an integral,

$$
\begin{equation*}
N=\int_{0}^{\infty} g(\epsilon) \frac{1}{e^{\left(\epsilon_{s}-\mu\right) / k T}-1} d \epsilon \tag{28.5}
\end{equation*}
$$

Where $g(\epsilon)$ is the density of states, which has a similar form following the electron gas model.

$$
\begin{equation*}
g(\epsilon)=\frac{2}{\sqrt{\pi}}\left(\frac{2 \pi m}{h^{2}}\right)^{3 / 2} V \sqrt{\epsilon} \tag{28.6}
\end{equation*}
$$

Figure 28.1: The distribution of bosons as a function of energy is the product of two functions, the density of states and the Bose-Einstein distribution. Copyright 2000, Addison-Wesley.

The trouble is that we cannot evaluate eq.(28.5) analytically. In order to work it out, we must guess some value for the μ term. A good starting point is let $\mu=0$. Changing the variable to $x=\epsilon / k T$

$$
\begin{align*}
N & =\frac{2}{\sqrt{\pi}}\left(\frac{2 \pi m}{h^{2}}\right)^{3 / 2} V \int_{0}^{\infty} \frac{\sqrt{\epsilon} d \epsilon}{e^{\epsilon / k T}-1} \\
& =\frac{2}{\sqrt{\pi}}\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2} V \int_{0}^{\infty} \frac{\sqrt{x} d x}{e^{x}-1} \tag{28.7}
\end{align*}
$$

The integral over x gives 2.315, which leaves us with

$$
\begin{equation*}
N=2.612\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2} V \tag{28.8}
\end{equation*}
$$

That result is wrong! It means that the number of particles purely depends on T. In fact, there can be only one T corresponds to this value.

$$
\begin{equation*}
N=2.612\left(\frac{2 \pi m k T_{c}}{h^{2}}\right)^{3 / 2} V \tag{28.9}
\end{equation*}
$$

When $T<T_{c}$, this will be no longer valid during the transformation from summation to integral. This is because the terms from $\epsilon=0$ are missing. Therefore, it should be better expressed as

$$
\begin{equation*}
N_{\text {exited }}=2.612\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2} V \tag{28.10}
\end{equation*}
$$

While the gap between N and $N_{\text {exited }}$ is the number of atoms in the ground state.

$$
\begin{equation*}
N_{0}=N-N_{\text {exited }}=\left[1-\left(\frac{T}{T_{c}}\right)^{3 / 2}\right] N \tag{28.11}
\end{equation*}
$$

The abrupt accumulation of atoms in the ground state below $T_{\mathcal{c}}$ is called Bose-Einstein condensation.

Figure 28.2: Number of atoms in the ground state $\left(N_{0}\right)$ and in excited states, for an ideal Bose gas in a threedimensional box. Below T_{c} the number of atoms in excited states is proportional to $T^{3 / 2}$. Copyright 2000, Addison-Wesley

28.3 Real World Examples

In 1995 BEC of a gas of weakly interacting atoms was first achieved using Rb-87. Later, BEC was achieved with dilute gases of atomic $\mathrm{Li}, \mathrm{Na}, \mathrm{H}$, etc.

The superfluid phase of ${ }^{4} \mathrm{He}$ is also considered to be an example of BEC.

28.4 Why does it happen?

