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26.1 Einstein Model

The Einstein Model of a solid crystal is expressed as an independent three dimensional harmonic oscillator.
The multiplicity of an Einstein solid containing N oscillators and q energy units is approximately
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Starting with this formula, the entropy could be expressed as
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Let us express the energy as U = qε
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So the U can be expressed as follows
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(26.4)

The heat capacity is therefore
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When kT � ε,
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(ε/kT)2 = Nk (26.6)
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Remember we would have 3N oscillators for N atoms, therefore CV = 3Nk. This exactly follows the
equipartition theorem.

Below kT ≈ ε, the heat capacity falls off, approaching zero as the temperature goes to zero. This prediction
generally agrees with experiment but not in detail. The equation predicts CV exponentially goes to 0, when
T→ 0. But experiments show that the true low-temperature behavior is cubic: CV ∝ T3. The problem with
the Einstein model is that the atoms in a crystal do not vibrate independently of each other. Therefore a
better assumption is needed.

26.2 Debye Model

In reality, there should be low-frequency modes of oscillation in which large groups of atoms are moving
together, and also high-frequency modes in which atoms are moving opposite to their neighbors. The units
of energy come in different sizes, proportional to the frequency of the modes of the vibration. Even at very
low temperatures, a few low-frequency modes are still active. This is the reason why the heat capacity goes
to 0 less dramatically than the prediction by the Einstein model.

Based on this reasoning, Debye proposed that each mode of oscillation has a set of equally spaced energy
levels with the unit of energy equal to

ε = h f =
hcs

λ
=

hcsn
2L

(26.7)

Where L is the length of crystal, n is the magnitude of the vector in n-space specifying the shape of the
wave, and cs is the speed of the wave.

When the mode is in equilibrium at temperature T, the number of units of energy is given by the Plank
distribution:

n̄ =
1

eε/kT − 1
(26.8)

We can think of these units of energy as particles obeying the Bose-Einstein statistics with µ=0. These
particles are called phonons.

To calculate the total thermal energy, we add up the energies of all allowed modes:

U = 3 ∑
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∑
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∑
nz

εn̄(ε) (26.9)

The factor of 3 counts the three polarization states for each polarization states for each n̄.

In a crystal, the atomic spacing puts a strict lower limit on the wavelength. n cannot exceed the number of
atoms in a row. If the 3D crystal is a cube, the n along any direction is N

1
3 , where N is the total volume.

Summing over a cube depends on nx, ny and nz in a very complicated way. Debye got the idea to pretend
that the relevant region of n-space is a sphere. He chose a sphere whose total volume is N. You can easily
show that the radius of the sphere has to be

nmax = (
6N
π

)1/3 (26.10)

Physical explanations:

1. At high T, only the total number of modes matters.
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2. At low T, modes with large n̄ are frozen out anyway.

3. In the intermediate region, not exact, but a continuous function.

Therefore, we apply the Debye’s approximation and convert the sums to integrals in spherical coordinates,
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Since the angular integrals gives π/2, leaving us with

U =
3π

2

∫ nmax

0

hcs

2L
n3

ehcsn/2LkT − 1
dn (26.12)

Let’s make a substitution,
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Then
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TD is the Debye Temperature, a characteristic temperature.

After substitution, we get
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When T � TD, the upper limit of the integral is much less than 1, so x is always very small, and we can
approximate ex ≈ 1 + x. Then 1 cancels, and the integral is simply x2dx, leading to the final result
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When T � TD, the upper limit goes to infinity, and the integral gives a constant of π4/15, so the total
energy is
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And the heat capacity becomes proportional to T3.

The prediction agrees very well with low-temperature observations. However, for metal there is linear
contribution from the conduction electrons.

C = γT +
12π4Nk

5T3
D

T3, (26.18)

where γ is a dimensionless coefficient. The Debye temperature ranges from 88 K for lead to 1860 K for
diamond. Since the heat capacity reaches 95 of its maximum value at T = TD, the Debye temperature gives
you a rough idea of when you can get away with just using the equipartition theorem.

The Debye model gives you a rough idea still. For a more rigorous analysis, one needs to know exactly the
distribution of phonons, which belongs to a book in solid state physics.
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26.3 Further Discussions

1. Both Einstein and Debye models give the correct high temperature limit. It indicates that all oscillators
under high T essentially have the same energy, even though the oscillators follow that Bose-Einstein
distribution in the Debye model. Try to apply the distribution model to prove it.

2. In low temperature limit, the Debye model captures the right physics, but why does it fail in the inter-
mediate temperature? In the Debye model, it assumes that the oscillators with lower frequencies have
more populations, and the phonon numbers monotonically decrease with the increase of frequency.
Not true in reality!

Figure 26.1: The Debye prediction for the heat capacity of a solid, with the prediction of the Einstein model
plotted for comparison. The constant in the Einstein model has been chosen to obtain the best agreement
with the Debye model at high temperatures. Note that the Einstein curve is much flatter than the Debye
curve at low temperatures. Copyright 2000, Addison-Wesley.
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