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25.1 The Gibbs Factor

Remember when deriving the Boltzmann factor in the previous chapter, we wrote the ratio of probabilities
of two different states as follows,

P(s2)

P(s1)
=

ΩR(s2)

ΩR(s1)
=

eSR(s2)/k

eSR(s2)/k
= e[SR(s2)−SR(s1)]/k (25.1)

According to the thermodynamic identify,

dSR =
1
T
(dUR + PdVR − µdNR) (25.2)

When constructing the Boltzmann factor, we ignored PdV and µdN terms. However, we want to keep the
µdN to account for the exchanges in the number of particles.

P(s2)

P(s1)
=

e[−E(s2)−µN(s2)]/kT

e[−E(s1)−µN(s1)]/kT
(25.3)

And here we call the exponential factor Gibbs factor.

Accordingly, the probability functions is written as

P(s) =
1
Z

e−E(s)/kT (25.4)

Where Z is called the grand partition function

Z = ∑ e[−E(s)−µN(s)]/kT (25.5)

If more than one type of particle can be present, the µdN term becomes ∑ µidNi

The grand partition is very useful in dealing with situation where the particles exchange during the process.

25.2 Bosons and Fermions

More importantly, the concept of Gibbs factors is very useful in quantum statistics, the study of dense
systems in which two or more identifcal particles have reasonable chance to occupy the same single-particle
state.
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Bosons: phontons, helium-4, integer spin

Fermions: electrons, protons, neutrons, half-integer spin.

When the system is very dense, namely Z1 � N, this becomes important. Quantum length/volume.

25.3 The Distribution Functions

P(n) =
1
Z

e−(nε−µn)/kT =
1
Z

e−n(ε−µ/kT (25.6)

If the particles are fermions, n could be only 0 or 1, so the grand partition function becomes

Z = 1 + e−(ε−µ)/kT (25.7)

And the average number of particles is

n̄ = ∑
n

nP(n) = 0 · P(0) + 1 · P(1)

=
e−(ε−µ)/kT

1 + e−(ε−µ)/kT

=
1

e−(ε−µ)/kT + 1

(25.8)

If the particles are Bosons,

Z = 1 + e−(ε−µ)/kT + e−2(ε−µ)/kT + ...

= 1 + e−(ε−µ)/kT + (e−(ε−µ)/kT)2 + ...

=
1

1 − e−(ε−µ)/kT

(25.9)

and
n̄ = ∑

n
nP(n) = 0 · P(0) + 1 · P(1) + .... (25.10)

Similar to what we did on Ē, let x = (ε − µ)/kT,

n̄ = ∑
n

n
e−nx

Z
= − 1

Z ∑
∂e−nx

∂x
= − 1

Z
∂Z
∂x

(25.11)

Therefore,

n̄ = − 1
1 − e−x

∂(1 − e−x)−1

∂x
=

=
1

e(ε−µ)/kT − 1

(25.12)

For the classical particles,

P(s) =
1
Z

e−ε/kT (25.13)
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and
n̄ = NP(s) =

N
Z1

eε/kT (25.14)

According to the result of Problem 6.44, the chemical potential for such system is

µ = −kTln(Z1/N) (25.15)

n̄ = NP(s) =
N
Z1

eε/kT = eµ/kTeε/kT = e−(ε−µ)/kT (25.16)

Show the plots of n versus ε for Bosons, Fermions and Boltzmann particles. Clearly, the three distributions
become equal when (ε − µ)/kT � 1. For any of these applications, we can apply the distributions as long
as we know the chemical potential.
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