24.1 Partition Functions for Composite Systems

Consider a system of just two particles, 1 and 2. If these particles do not interact with each other, their energy is just simply $E 1+E 2$, then

$$
\begin{equation*}
Z_{\text {total }}=\sum_{s} e^{-\beta\left[E_{1}(s)+E_{2}(s)\right]}=\sum_{s} e^{-\beta E 1(s)} e^{-\beta E 2(s)} \tag{24.1}
\end{equation*}
$$

Where the sum runs over all states s for the composite system. If the two particles are distinguishable,

$$
\begin{equation*}
Z_{\text {total }}=\sum_{s 1} \sum_{s 2} e^{-\beta E 1(s 1)} e^{-\beta E 2(s 2)} \tag{24.2}
\end{equation*}
$$

In this case, we split the total partition functions Z into separate $Z 1$ and $Z 2$.

$$
\begin{equation*}
Z_{\text {total }}=Z_{1} Z_{2} \tag{24.3}
\end{equation*}
$$

If the two particles are indistinguishable, we have to apply $1 / 2$ to reduce double counts.

$$
\begin{equation*}
Z_{\text {total }}=\frac{1}{2} Z_{1} Z_{2} \tag{24.4}
\end{equation*}
$$

This formula is not precisely correct, because there are some terms in the double sum in which both particles are in the same state when the system is very dense.

Therefore, the generalization of the equation is the following

$$
\begin{gather*}
Z_{\text {total }}=Z_{1} Z_{2} Z_{3} \cdots Z_{N} \tag{24.5}\\
Z_{\text {total }}=\frac{1}{N!} Z_{1}^{N} \tag{24.6}
\end{gather*}
$$

24.2 The Partition Function of an Ideal Gas

An ideal gas should have the following partition function form,

$$
\begin{equation*}
Z_{\text {total }}=\frac{1}{N!} Z_{1}^{N} \tag{24.7}
\end{equation*}
$$

To calculate Z_{1}, we must make the Boltzmann factor,

$$
\begin{equation*}
e^{-E(s) / k T}=e^{-E_{\mathrm{tr}}(s) / k T} e^{-E_{\mathrm{int}}(s) / k T} \tag{24.8}
\end{equation*}
$$

Since Z is additive,

$$
\begin{equation*}
Z_{1}=Z_{\mathrm{tr}} Z_{\mathrm{int}} \tag{24.9}
\end{equation*}
$$

Where

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{tr}}=\sum e^{-E_{\mathrm{tr}} / k T} \quad \mathrm{Z}_{\mathrm{int}}=\sum e^{-E_{\mathrm{int}} / k T} \tag{24.10}
\end{equation*}
$$

To calculate $Z_{\text {tr }}$, we can start with the case of a molecule confined to a one-dimensional box.

$$
\begin{gather*}
\lambda_{n}=\frac{2 L}{n}, \quad n=1,2, \ldots, \tag{24.11}\\
p_{n}=\frac{h}{\lambda_{n}}=\frac{h n}{2 L} \quad n=1,2, \ldots \tag{24.12}\\
E_{n}=\frac{p_{n}^{2}}{2 m}=\frac{h^{2} n^{2}}{8 m L^{2}} \tag{24.13}
\end{gather*}
$$

Therefore,

$$
\begin{equation*}
Z_{1 \mathrm{~d}}=\sum_{n} e^{-E_{n} / k T}=\sum e^{\frac{-h^{2} n^{2}}{8 m L^{2} k T}} \tag{24.14}
\end{equation*}
$$

By doing integration

$$
\begin{equation*}
Z_{1 \mathrm{~d}}=\int_{0}^{\infty} e^{\frac{-h^{2} n^{2}}{8 m L^{2} k T}} d n=\frac{\sqrt{\pi}}{2} \sqrt{\frac{8 m L^{2} k T}{h^{2}}}=\sqrt{\frac{2 \pi m k T}{h^{2}}} L=\frac{L}{L_{Q}} \quad\left(L_{Q}: \text { Quantum length }\right) \tag{24.15}
\end{equation*}
$$

For 3 dimension,

$$
\begin{gather*}
E_{\mathrm{tr}}=\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}+\frac{p_{z}^{2}}{2 m} \tag{24.16}\\
Z_{\mathrm{tr}}=\frac{L_{x}}{L_{Q}} \frac{L_{y}}{L_{Q}} \frac{L_{z}}{L_{Q}}=\frac{V}{V_{Q}} \quad\left(V_{Q}: \text { Quantum Volume }\right) \tag{24.17}\\
Z_{1}=\frac{V}{V_{Q}} Z_{\mathrm{int}} \tag{24.18}
\end{gather*}
$$

where

$$
\begin{equation*}
Z=\frac{1}{N!}\left(\frac{V Z_{\text {int }}}{V_{Q}}\right)^{N} \tag{24.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln Z=N\left[\ln V+\ln Z_{\mathrm{int}}-\ln N-\ln V_{Q}+1\right] \tag{24.20}
\end{equation*}
$$

Knowing Z can help us to compute many quantities,

$$
\begin{equation*}
U=-\frac{1}{Z} \frac{\partial Z}{\partial \beta}=-\frac{\partial \ln Z}{\partial \beta} \tag{24.21}
\end{equation*}
$$

$$
\begin{gather*}
U=-N \frac{\partial \ln Z_{\mathrm{int}}}{\partial \beta}+N \frac{1}{V_{Q}} \frac{\partial V_{Q}}{\partial \beta}=N \bar{E}_{\mathrm{int}}+N \frac{3}{2 \beta}=U_{\mathrm{int}}+\frac{3}{2} N k T \tag{24.22}\\
C_{V}=\frac{\partial U}{\partial T}=\frac{\partial U_{\mathrm{int}}}{\partial T}+\frac{3}{2} N k \tag{24.23}\\
F=-k T \ln Z=-N k T\left[\ln V-\ln N-\ln V_{Q}+1\right]+F_{\mathrm{int}} \tag{24.24}
\end{gather*}
$$

From this, it is easy to compute

$$
\begin{equation*}
P=-\left(\frac{\partial F}{\partial V}\right)_{T, N}=\frac{N k T}{V} \tag{24.25}
\end{equation*}
$$

