
Physics 467/667: Thermal Physics Spring 2019

Lecture 11: Entropy and Chemical Potential
Lecturer: Qiang Zhu Scribes: scribe-name1,2,3

11.1 Chemical Potential

When we talk a system of ideal gas, it is described by the following fundamental parameters, T, P, N,

1. uneven T→ heat flow (S ↑), we call it thermal equilibrium

2. uneven P→ pressure flow (S ↑), we call it mechanical equilibrium

3. uneven N→ particle flow (S ↑), we call it ?
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Figure 11.1: A schematic particle flow between two gases.

Such a process due to an exchange of particles is called diffusion. Since diffusion is also a spontaneous
process, it must lead to the increase of entropy (recall we have learned the mixing entropy). This indicates
that S is also a function of N (as we learned in Chapter 2). Therefore, we can also derive the equilibrium
condition for a diffusion (analogous to P).

∂SA
∂NA

=
∂SB
∂NB

(11.1)

What’s the physical meaning of ∂SA/∂NA?
If we dig into the units, we will find ∂SA/∂VA has a unit of J/K. Not a very pleasant quantity. Let’s multiply
it by −T so that it has the dimension of energy.

µ = −T(
∂S
∂N

)U,V (11.2)

So it means the equilibrium condition for diffusive process is µA = µB.

Now let us generalize the processes which was shown in the beginning.

1. uneven T( ∂S
∂U = 1/T)→ heat flow (S ↑) , we call it thermal equilibrium.
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2. uneven P( ∂S
∂V = P/T)→ pressure flow (S ↑) , we call it mechanical equilibrium.

3. uneven N( ∂S
∂N = µ/T)→ particle flow (S ↑) , we call it diffusive equilibrium.

11.2 The Generalized Thermodynamic Identity

dS = (
∂S
∂U

)dU + (
∂S
∂V

)dV + (
∂S
∂N

)dN (11.3)

dS =
1
T

dU +
P
T

dV − µ

T
dN (11.4)

dU = TdS− PdV + µdN (11.5)

1. ∆U = 0 , ∆V=0, µ=

2. ∆S = 0 , ∆V=0, µ=

µ is the system’s energy change when you add one particle while S and V is fixed. Normally, µ is negative.

dU = TdS− PdV + ∑
i

µidNi (11.6)

11.3 Chemical potential for Einstein Solid

N=3, q=3, Ω=10 N=4, q=2, Ω=10

For an Einstein solid, µ=-ε

µ = (
∂U
∂N

)S,V (11.7)

11.4 Chemical potential for ideal gas

For a more realistic example, let us look at an ideal gas

S = Nk[ln(
V
N
(

4πmU
3Nh2 )3/2) +

5
2
] (11.8)
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Differentiating with respect to N gives

µ =− Tk[ln(V(
4πmU

3h2 )3/2)− lnN5/2 +
5
2
]− Nk

5
2

1
N

=− kTln[
V
N
(

4πmU
3Nh2 )3/2]

=− kTln[
V
N
(

2πmkT
h2 )3/2]

(11.9)

Note that here U = 3/2NkT was used in the last step.

He (0.32 eV, how to calculate?) Ar (0.42 eV, how to calculate?)

1. Mixing 1 mol He with 1 mol He (both at standard conditions)

2. Mixing 1 mol He with 1 mol Ar (both at standard conditions)

11.5 Exercise

Problem 3.37. Consider a monoatomic ideal gas that lives at a height z above sea level, so each molecule
has potential energy mgz in addition to its kinetic energy.
(a) Show that the chemical potential is the same as if the gas were at sea level plus mgz

µ = −kTln[
V
N
(

2πmkT
h2 )3/2] + mgz (11.10)

(b) Suppose you have two chunks of He gas, one at sea level, and one at height z, each having the same tem-
perature and volume. Assuming that they are in diffusive equilibrium, show that the number of molecules
in the higher chunk is

N(z) = N(0)e−mgz/kT (11.11)

11.6 Homework

Problem 3.36, 3.37, 3.38
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