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Uncertainty

In many engineering tasks, however, there may be uncertainty due to a
number of factors, such as model approximations, imprecision, and
fluctuations of parameters over time. We want to minimize f(x, z), but we
do not have control over z. Feasibility depends on both the design vector
x and the uncertain vector z.
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Polynomial chaos

Polynomial chaos is a method for fitting a polynomial to f(x, z) and using
the resulting surrogate model to estimate the mean and variance.

In one dimension, we approximate f(z) with a surrogate model consisting
of k polynomial basis functions, by, - - , by:

=f(z Z 0:bi(z
The mean of £ can be derived as follows
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Polynomial chaos

The variance of f can be derived as follows
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Orthogonal polynomial basis

The mean and variance can be efficiently computed if the basis functions
are chosen to be orthogonal under p. Two basis functions b; and b; are
orthogonal with respect to a probability density p(z) if

/Z bi(2)bi(2)p(2)dz = 0. (if i # j)

If the chosen basis functions are all orthogonal to one another and the first
basis function is b1(z) = 1, the mean is:
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s /Z B2(2)p(2)dz + - -+ + 6, /Z by (2)bn(2)p(2) dz
— 6,

6/12



Orthogonal polynomial basis

Similarly, the variance is

k k i—1
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Orthogonal polynomial basis

The mean thus falls immediately from fitting a surrogate model to the
observed data, and the variance can be very efficiently computed given the
values [, b?(z)p(z)dz for a choice of basis functions and probability
distribution. All orthogonal polynomials satisfy the recurrence relation:

( - I)b( ) =1
biva(2) = {(z — aj)bi(z) — Bibi—1z else
with b1(z) = 1 and weights

' /7 zb2 ( )dz
= fz z)dz

' fZ z)dz
BI fZ i— 1 )dZ

The recurrence relation can be used to generate the basis functions. Each
basis function b; is a polynomial of degree i — 1.
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Orthogonal polynomial basis functions

Distribution Domain Density Name Recursive Form Closed Form
i1 g i i
. ik k i—1 —i-2 1-x
Uniform [-1,1] % Legendre  Le(x) = ## (x*-1) } bi(x) = ,E“( j )( ; )(T)
[ . =i 1\ (=1)
Exponential [0,00) e Laguerre ﬂ[.a;-(.\‘) = (ﬁ - 1)I.ak_| bi(x) = (J P )(I—IJ.\"
j=0 :
. R ’ |(i-1)/2 (—1)' P ,
Unit Gaussian ~ (—09,00) e oz L Hermite  Hj(x) = xHp_y — fiH bi(x) = ,Zé (i—1)! @i =) (2x)9
Legendre Laguerre Hermite
— b
by
by
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b
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Coefficients

The coefficients 61, - - , 0 can be inferred by exploiting the orthogonality

of the basis functions, producing an integration term amenable to
Gaussian quadrature.
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Multivariate

Polynomial chaos can be applied to functions with multiple random inputs.

Multivariate basis functions over m variables are constructed as a product
over univariate orthogonal polynomials:
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Summary

@ Polynomial chaos is a powerful uncertainty propagation technique
basedon orthogonal polynomials.

@ Bayesian Monte Carlo uses Gaussian processes to efficiently arrive at
the moments with analytic results for Gaussian kernels.
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