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Prediction-Based Exploration

Prediction-Based Exploration

Gaussian process probes the probability distributions over the true
objective function. These distributions can be used to guide an
optimization process toward better design points. In prediction-based
exploration, we select the minimizer of the surrogate function. If we use a
Gaussian process surrogate model, prediction-based optimization has us
select the minimizer of the mean function

xm+1 = arg min
x∈χ

µ̂(x)

where µ̂(x) is the predicted mean of a Gaussian process at a design point
x based on the previous m design points.
Prediction-based optimization does not take uncertainty into account, and
new samples can be generated very close to existing samples, which is a
waste of time.
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Error-Based Exploration

Error-Based Exploration

Error-based exploration seeks to increase confidence in the true function.
A Gaussian process can tell us both the mean and standard deviation at
every point. The next sample point is:

xm+1 = arg max
x∈χ

σ̂(x)

where σ̂(x) is the predicted standard variance of a Gaussian process at a
design point x based on the previous m design points.
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Lower Confidence Bound Exploration

Lower Confidence Bound Exploration

The error-based exploration may sample the regions that are unpromising.
Lower confidence bound exploration trades off between greedy
minimization employed by prediction-based optimization and uncertainty
reduction employed by error-based exploration with the following strategy,

LB(x) = µ̂(x)− ασ̂(x)

α ≥ 0 is to control the trade-off between exploration and exploitation.
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Probability of Improvement Exploration

Probability of Improvement Exploration

We select the design point that maximizes the chance that the new point
will be better than any other. The improvement for a function sampled at
x producing y = f (x) is

I (y) =

{
ymin − y if y < ymin

0 otherwise

The probability of improvement at points where σ̂ > 0 is

P(y < ymin) =

∫ ymin

0
N (y |µ̂, σ̂)dy = Φ(

ymin − µ̂
σ̂

)

6 / 9



Expected Improvement Exploration

Expected Improvement Exploration

We can also focus our exploration of points that maximize our expected
improvement over the current best function value. Through a substitution

z =
y − µ̂
σ̂

y ‘min =
ymin − µ̂

σ̂

we can write the improvement as

I (y) =

{
σ̂(y ‘min − z) if z < y ‘min and σ̂ > 0

0 otherwise

where µ̂ and σ̂ are the predicted mean and standard deviation.
We can calculate the expected improvement using Gaussian process:

E[I (y)] = σ̂

∫ y ‘min

−∞
N (z |0, 1)dz

= (ymin − µ̂)P(y ≤ ymin) + σ̂N (ymin|µ̂, σ̂2)

7 / 9



Expected Improvement Exploration

Expected Improvement Exploration
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Summary

Summary

Gaussian processes can be used to guide the optimization process
using a variety of strategies that use estimates of quantities such as
the lower confidence bound, probability of improvement, and expected
improvement.

Some problems do not allow for the evaluation of unsafe designs, in
which case we can use safe exploration strategies that rely on
Gaussian processes.
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