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Prediction-Based Exploration

Gaussian process probes the probability distributions over the true
objective function. These distributions can be used to guide an
optimization process toward better design points. In prediction-based
exploration, we select the minimizer of the surrogate function. If we use a
Gaussian process surrogate model, prediction-based optimization has us
select the minimizer of the mean function

m—+1

X = arg minfi(x)

Xex
where fi(x) is the predicted mean of a Gaussian process at a design point
x based on the previous m design points.
Prediction-based optimization does not take uncertainty into account, and
new samples can be generated very close to existing samples, which is a
waste of time.



Error-Based Exploration

Error-based exploration seeks to increase confidence in the true function.
A Gaussian process can tell us both the mean and standard deviation at
every point. The next sample point is:

m—+1

x = arg max&(x)

xXEx
where &(x) is the predicted standard variance of a Gaussian process at a
design point x based on the previous m design points.
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Lower Confidence Bound Exploration

The error-based exploration may sample the regions that are unpromising.
Lower confidence bound exploration trades off between greedy
minimization employed by prediction-based optimization and uncertainty
reduction employed by error-based exploration with the following strategy,

LB(x) = fi(x) — a6(x)

« > 0 is to control the trade-off between exploration and exploitation.
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Probability of Improvement Exploration

We select the design point that maximizes the chance that the new point
will be better than any other. The improvement for a function sampled at
x producing y = f(x) is

) Ymin — Y if Y < Ymin
I(y) = .
0 otherwise

The probability of improvement at points where & > 0 is

Ymin A )/min _ la
P(y < Ymin) = A N(ylp, 6)dy = ¢(T)
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Expected Improvement Exploration

We can also focus our exploration of points that maximize our expected
improvement over the current best function value. Through a substitution

&
~ Y min =

_y—ﬁ Ymin—ﬁ
z= -
ag (o

we can write the improvement as

G(y'min—2) ifz<y'minand >0
I(y) = :
0 otherwise

where i and & are the predicted mean and standard deviation.
We can calculate the expected improvement using Gaussian process:

E[/(y)] = & / "™ (200, 1)dz

= (ymin - ﬁ)P(y < ymin) + 6-N(ymin|//l7 6-2)



Expected Improvement Exploration
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Summary

@ Gaussian processes can be used to guide the optimization process
using a variety of strategies that use estimates of quantities such as
the lower confidence bound, probability of improvement, and expected
improvement.

@ Some problems do not allow for the evaluation of unsafe designs, in
which case we can use safe exploration strategies that rely on
Gaussian processes.
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