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Population Methods

Population Methods

Previous lecture discussed some methods require a group of points to
colleHaving a large number of individuals distributed throughout the
design space can help the algorithm avoid becoming stuck in a local
minimum. Information at different points in the design space can be
shared between individuals to globally optimize the objective function.
Most population methods are stochastic in nature, and it is generally easy
to parallelize the computation.
These methods typically have the following steps

Initialization

Encoding

Mutation

Crossover

Selection
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Initialization

Initialization

Population methods begin with an initial population, just as descent
methods require an initial design point. The initial population should be
spread over the design space to increase the chances that the samples are
close to the best regions. The following strategies can be applied

Uniform distribution in a bounded region

Multivariate normal distribution centered over a region of interest.

The Cauchy distribution has an unbounded variance and can cover a
much broader space.
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Genetic Algorithm

Chromosomes

There are several ways to represent chromosomes. The simplest is the
binary string chromosome, a representation that is similar to the way DNA
is encoded.
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Genetic Algorithm

Selection

Selection is the process of choosing chromosomes to use as parents for the
next generation. For a population with m chromosomes, a selection
method will produce a list of m parental pairs for the m children of the
next generation. The selected pairs may contain duplicates.

Truncation, random one from the best k truncation

Tournament, the fittest out of k randomly chosen

Roulette wheel, chosen with a probability proportional to the fitness
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Covariance Matrix Adaptation

Covariance Matrix Adaptation

Covariance matrix adaptation maintains a mean vector µ, a covariance
matrix Σ, and an additional step-size scalar δ. The covariance matrix only
increases or decreases in a single direction with every iteration, whereas the
step-size scalar is adapted to control the overall spread of the distribution.
At every iteration, m designs are sampled from the multivariate Gaussian

x ∼ N (µ, σ2Σ)

The designs are then sorted according to their objective function values
such that f (x1) ≤ f (x2) ≤ · · · ≤ f (xm). A new mean vector µk+1 is
formed using a weighted average of the sampled designs:

µk+1 ←
m∑
i=1

wix i

m∑
i

wi = 1 w1 > w2 > · · · > wm > 0
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Particle Swarm Optimization

Particle Swarm Optimization

Particle swarm optimization introduces momentum to accelerate
convergence toward minima. Each individual (particle), in the population
keeps track of its current position, velocity, and the best position it has
seen so far. Momentum allows an individual to accumulate speed in a
favorable direction, independent of local perturbations.

x i ← x i + v i

v i ← wv i + c1r1(x i
lbest − x i ) + c2r2(xgbest − x i )

where

xlbest : the current local best locations for the given population

xgbest : the global best locations

w , c1, c2: empirical parameters

r1, r2: random numbers drawn from U(0, 1)
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Particle Swarm Optimization

PSO search
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Particle Swarm Optimization

Firefly Algorithm

The firefly algorithm was inspired by the manner in which fireflies flash
their lights to attract mates. In the firefly algorithm, each individual in the
population is a firefly and can flash to attract other fireflies. At each
iteration, all fireflies are moved toward all more attractive fireflies. A firefly
xa is moved toward a firefly xb with greater attraction according to

xa ← xa + βI (||xb − xa||)(xb − xa) + αε

where I is the intensity of the attraction and β is the source intensity.
When β = 0, it returns to a random walk. where ε is drawn from a
zero-mean, unit covariance multivariate Gaussian, and α scales the step
size. The resulting update is a random walk biased toward brighter fireflies
The intensity I decreases as the distance r between the two fireflies
increases and is defined to be 1 when r = 0. It can be approximated as

I (r) = e−γr2
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Particle Swarm Optimization

Firefly search

Firefly search with α = 0.5, β = 1,and γ = 0.1 applied to the Branin
function.
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Summary

Summary

Population methods use a collection of individuals in the design space
to guide progression toward an optimum.

Genetic algorithms leverage selection, crossover, and mutations to
produce better subsequent generations.

Particle swarm optimization and the firefly algorithm include rules and
mechanisms for attracting design points to the best individuals in the
population while maintaining suitable state space exploration.

Population methods can be extended with local search approaches to
improve convergence.
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