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The choice of descent direction

In the previous chapter, we have talked about the general strategy for
optimization is to decide a direction and then use the line search method
to obtain a sufficient decrease. Repeating it for many time, we expect to
arrive at the local minimum.

XKLk 4 gk gk
The search direction often has the form
dk = —(BF)7IVF(xK) (1)

where B¥ is a symmetric and nonsingular matrix. In some method (e.g.,
steepest descent), BX is the identify matrix, while in (quasi-) Newton's
method, BX is the approximate or exact Hessian.

In this lecture, we will cover the first-order methods which purely rely on
the gradient information.



Gradient descent

An intuitive choice for the descent direction is the direction of steepest
descent (g = V£ (x¥)).

dk_ gk

Il
If we optimize the step size at each step, we have

of = arg minf (x* + ad")
«

Since
VF(xK +ad)Td =0
ghH VF(xk + adk)

IVF(xk + ak)]|
It is obvious that the two consecutive directions are orthogonal.

(dk-‘rl)Tdk — 0
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__ Conugaegndent]
Conjugate gradient

Gradient descent can perform poorly in narrow valleys. The conjugate
gradient method overcomes this issue by doing a small transformation.
When minimizing the quadratic functions:
.. 1 T T
minimize : f(x) = 5% Ax — b' x
(e
is equivalent to solving the linear equation

Ax=b

where A is N x N symmetric and positive definite, and thus f has a unique
local minimum.

When solving Ax = b, a powerful method is to find a sequence of N
conjugate directions satisfying

()AL =0 (i #])



To find the successive conjugate directions

One can start with the direction of steepest descent

dl _ 7g1
We then use line search to find the next design point. For quadratic
functions f = %XTAX — b7 x, the step factor a can be computed as

of(x +ad) 0
oo " da
=dTA(x+ad)+d"b
=d"(Ax + b) + ad” Ad
Let the gradient be zero,

( +ad)TA(x + ad) + b7 (x + ad) +

d"(Ax + b)
~ dTAd
Then the update is
x? = x! + ad!
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To find the successive conjugate directions (continued)
For the next step
dk+l —_ _gk+1 + 5kdk

where 3% is a series of scalar parameters. Larger values of 3 indicate that
the previous descent direction contributes strongly.
We solve 3, from the followings

d< DT Adk =0
(=gt + gkdk )T adk) =0
— gkt AdK) 4 gkg(T Ag(k) = o
— dT Ad(k)

The conjugate method is exact for quadratic functions. But it can be
applied to non quadractic functions as well when the quadratic function is

a good approximation.
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____Conugecgndient
To Approximate A and (3

Unfortunately, we don't know the value of A that best approximate f
around x¥. So we choose some way to compute /3.

Fletcher-Reeves

g — gT g(k)
(k=1 T g(k=1)

Polak-Ribiere
6 _ g(k)T(g(k) — g(kil))
g (kDT g(k=1)
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Comparison between Conjugate Gradient and Steepest

Descent

p
gradient
—— conjugate gradient
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Summary

o Gradient descent follows the direction of steepest descent
@ Two consecutive search directions in gradient descent are orthogonal

@ In conjugate gradient, the search directions are conjugate with
respect to an approximate hessian.

@ Both SD and CG work with the line search method
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