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A general model for optimization

Optimization involving multivariate functions

Similar to the single variable function, a common approach to optimization
is to incrementally improve a design point x by taking a step that
minimizes the objective value based on a local model. The local model
may be obtained, for example, from a first- or second-order Taylor
approximation.

Check whether xk satisfies the termination conditions. If it does,
terminate; otherwise proceed to the next step.

Determine the descent direction dk using local information such as
the gradient or Hessian.

Determine the step size or learning rate αk .

Compute the next design point according to:

xk+1 = xk + αkdk
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Line Search

Line Search

Assuming that we have chosen a descent direction d . We need to choose
the step factor α to obtain our next design point. One approach is to use
line search, which selects the step factor that minimizes the
one-dimensional function:

minimize
α

: f (x + αd)

Line search is a univariate optimization problem, which was covered in the
previous lecture. We can apply the univariate optimization method of our
choice. To inform the search, we can use the derivative of the line search
objective, which is simply the directional derivative along d at x + αd .
One needs to be cautious in choosing α. Large steps will result in faster
convergence but risk overshooting the minimum. Smaller steps is more
stable but very slow. A fixed step factor α is sometimes referred to as a
learning rate.
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Line Search

Approximate line search

It is often more computationally efficient to perform more iterations of a
descent method than to do exact line search at each iteration. In this case,
the goal is to find a suitable step size with a small number of evaluations.
Ideally, it needs to satisfy the following

Sufficient decrease

f (xk+1) ≤ f (xk) + βα∇dk f (xk)

Curvature condition

∇dk f (xk+1) ≥ σ∇dk f (xk)
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Line Search

Sufficient decrease

f (xk+1) ≤ f (xk) + βα∇dk f (xk)

where β ∈ [0, 1]. A common choice is 1e-4.

Question: what will happen if you adjust β?
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Line Search

Curvature condition

∇dk f (xk+1) ≥ σ∇dk f (xk)

where σ controls how shallow the next directional derivative must be. It is
common to set β < σ < 1 with σ = 0.1 in the conjugate gradient method
and 0.9 in Newtons method.
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Line Search

More restrictive curvature condition (strong Wolfe)

|∇dk f (xk+1)| ≤ −σ∇dk f (xk)

where σ controls how shallow the next directional derivative must be. It is
common to set β < σ < 1 with σ = 0.1 in the conjugate gradient method
and 0.9 in Newtons method.
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Line Search

When both conditions are applied
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A practical line search

Graphical illustration of line search

Initial Bracket

Fibonacci/0.618/bisection until it satisfies the conditions
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A practical line search

Terminations conditions

Maximum iterations.

Absolute improvement. If the change is smaller than a given
threshold, it will terminate:

f (xk)− f (xk+1) < εa

Relative improvement. If the change is smaller than a given threshold,
it will terminate:

f (xk)− f (xk+1) < εr |f (xk)|

Gradient magnitude. We can also terminate based on the magnitude
of the gradient:

|∇f (xk+1)| < εg
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Summary

Summary

Descent direction methods incrementally descend toward a local
optimum.

Univariate optimization can be applied during line search.

Approximate line search can be used to identify appropriate descent
step sizes.

Termination conditions for descent methods can be based on multiple
criteria
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