Chapter 9 Problems 6, 8, 14, 16, 17, 21, 24, 25

(5 points)

(9.6) As stated in Ex 9-2, we create antisymmetric wavefunctions via the determinant: \(\Psi = \frac{1}{\sqrt{A}} \begin{vmatrix} \Psi_x(1) & \Psi_x(2) & \Psi_x(3) \\ \Psi_y(1) & \Psi_y(2) & \Psi_y(3) \\ \Psi_z(1) & \Psi_z(2) & \Psi_z(3) \end{vmatrix} \)

This determinant will yield 3 x 2 terms.

When computing \(\langle \Psi_A | \Psi_A \rangle = 1 = \frac{1}{A} \left[\langle \Psi_x(1) | \Psi_x(1) \rangle \times \langle \Psi_y(2) | \Psi_y(2) \rangle \times \langle \Psi_z(3) | \Psi_z(3) \rangle + \text{other terms} \right] \)

All cross terms such as \(\langle \Psi_B(1) | \Psi_x(2) \rangle = 0 \) due to orthogonality.

\(\frac{1}{A} \left[6 \right] = 1 \Rightarrow A = \frac{1}{6} \Rightarrow \text{Normalized} \)

Constant = \(\frac{1}{\sqrt{6}} = \frac{1}{\sqrt{3!}} \)

\(\langle \Psi_x(1) | \Psi_y(1) \rangle = 1 \) etc.

\(\sum_{i,j,k=1,2,3} \langle \Psi_x(i) | \Psi_x(j) \rangle \langle \Psi_y(k) | \Psi_y(l) \rangle = 3 \times 2 = 6 \text{ possibilities} \)

\(= 1+1+1+1+1+1 = 6 \text{ over} \)

Here, we assumed that the wavefunctions are orthogonal normal.
(5 points)

\[\alpha : (\mathbf{PP}) \Rightarrow P \text{ are antisymmetric w.r.t. exchange} \]

\[\Rightarrow \psi = \frac{1}{\sqrt{2}} \left[\psi_{p_1}(1) \psi_{p_2}(2) - \psi_{p_1}(2) \psi_{p_2}(1) \right] \times \frac{1}{\sqrt{2}} \times \]

\[\times \left[\psi_{\alpha_1}(3) \psi_{\alpha_2}(4) - \psi_{\alpha_1}(4) \psi_{\alpha_2}(3) \right] \]

Now, if the \(\alpha \)-particle is a collective Fermion, then exchanging one \(\alpha \) with another yields \(-1\). If it is a Boson, then:

\[\psi_{\alpha_1}(1) \psi_{\alpha_2}(2) = + \psi_{\alpha_1}(2) \psi_{\alpha_2}(1) \]

Fermion:

\[\psi_{\alpha_1}(1) \psi_{\alpha_2}(2) = - \psi_{\alpha_1}(2) \psi_{\alpha_2}(1) \]

Exchanging \(\alpha_1 \) with \(\alpha_2 \) implies that each \(P \) and each \(n \) MUST BE EXCHANGED! \(-1 \times (-1) \times (-1) \times (-1) \) for exchange of the 4 constituent particles (Fermions)

\[\Rightarrow \psi_{\alpha_1}(1) \psi_{\alpha_2}(2) = (-1)^4 \psi_{\alpha_1}(2) \psi_{\alpha_2}(1) = (+1) \psi_{\alpha_1}(2) \psi_{\alpha_2}(1) \]

\(\Rightarrow \) The \(\alpha \)-Particle behaves as a BOSON!

QED
Phys 411 HW # 9 SOLNS (EX) [3]

9.14 (5 points)

\(E = - \frac{\mu Z_i^2 e^2}{2 \hbar^2 n^2} \) (eqn 9-27)

(a)

\(Z_i \Rightarrow n=1 \Rightarrow E = -\frac{Z_i^2}{2} (13.6 \text{eV}) \)

Examining Fig 9-6, we see that \(E_1 = -79 \text{eV} \) (on the right) experimentally (most important).

\(\Rightarrow \) Solve for \(Z_n = \sqrt{\frac{79}{13.6}} = Z_n = 2.4 \)

(b) \(Z_i > Z (= 2) \).

(c) As \(Z_i \) is considerably greater than 2, we argue that \(Z_i \) is not very meaningful for an atom with only 2 electrons as one \(e^- \) poorly shields the second \(e^- \) from a statistical perspective.

\(e^- e^- \) later:

\(e^- e^- \) partial shielding.
9.16 (5 points) \[n=1 \quad \frac{3}{2} \frac{3}{3} \] \[z_n = \frac{1}{16} \]

From p. 326, \(z \approx \frac{n^2 a_0}{z_n} \)

\[\Rightarrow \quad \bar{r}_1 = \langle \bar{r}_1 \rangle \approx \frac{1^2 a_0}{16} = \frac{a_0}{16} \]

\[\bar{r}_2 = \langle \bar{r}_2 \rangle \approx \frac{2^2 a_0}{8} = \frac{a_0}{2} = 0.5a_0 \]

\[\bar{r}_3 = \langle \bar{r}_3 \rangle \approx \frac{3^2 a_0}{3} = 3a_0 = \langle \bar{r}_3 \rangle \]

b. From Fig 9.10, \(\langle r_1 \rangle \approx 0.06a_0 \Rightarrow \) Good agreement!

\(\langle r_2 \rangle \approx 0.45a_0 \ (l=1) \Rightarrow \) Good agreement!

\(\langle r_3 \rangle \approx 1.2a_0 \ (l=0) \Rightarrow \) Not so good

Note that Ar has 3 shells \(\Rightarrow \) Hartree Fock works well for inner shells but not outer shell.
(5 points)

Z = 110 My guess:

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f
2 2 6 2 6 10 2 6 10 14 \[= 60 \text{ e}\]
5s 5p 5d 6s 5f 6p 7s 6d
2 6 10 2 14 6 2 8 \[= 50 \text{ e}\]

110 \text{ e}^+ \text{ TOTAL}

5. p

\text{transition level METAL —}

\text{Similar perhaps to Ni, Pd, Pt (low P/ resistivity)}

\text{high thermal conductivity}

\text{Radioactive — maybe! Not necessarily but probably}

\text{If it has a long half-life (tr2), the perhaps in}

\text{meteorites or alloyed with Pd, Pt in Traces —}

\text{Amounts! Synthesized in supernovae or in an accelerator}

(5 points)

\[\text{74 W} \]

\[^{74} \text{W} \text{ } K_\alpha \Rightarrow \lambda = 0.21 \AA \Rightarrow 9.5 \times 10^{-15} = 59.2 \text{ keV} \]

\[K_\beta \Rightarrow \lambda = 0.184 \AA \Rightarrow 1.1 \times 10^{-14} = 67.5 \text{ keV} \]

\[K_\gamma \Rightarrow \lambda = 0.179 \AA \Rightarrow 1.11 \times 10^{-14} = 69.4 \text{ keV} \]

\text{K absorption edge = 0.178} \AA \Rightarrow 69.8 \text{ keV} \rightarrow
Phys 411 HW#9 Solns. (E) EXTRA CREDIT DR. PRANITI

9.24 cont'd. So we have the following diagram:

- n=4 \Rightarrow -400\text{eV}
- n=3 \Rightarrow -2.3\text{keV}
- n=2 \Rightarrow -10.6\text{keV} \Rightarrow E_2
- n=1 \Rightarrow -69.8\text{keV} \Rightarrow E_1

\[E_\alpha = E_2 - E_1 = 59.2\text{keV} \Rightarrow E_2 = -10.6\text{keV} \]
\[E_\beta = E_3 - E_1 = 67.5\text{keV} \Rightarrow E_3 = -2.3\text{keV} \]
\[E_\gamma = E_4 - E_1 = 69.4\text{keV} \Rightarrow E_4 = -0.4\text{keV} \]
(5 Points) \(26F{e} \rightarrow Z = 26 \)

(9) \(L_x \rightarrow E_3 - E_2 = \Delta E = k\alpha \)

Following the hint (ex 9-5): \(Z_2 = Z - 10 = 26 - 10 = 16 \)

\(Z_3 = 18 - 15 = 3 \) for \(^{18}Ar \rightarrow Z = 15\) concept

\(\Rightarrow Z_3 = 26 - 15 = Z = 15 \) for \(^{26}Fe \) (\(Z = 26 \))

As in ex 9-8 \(V_{\text{min}} \text{ must eject } n = 2 \) electron

\(E_2 - E_\infty = E_2 = \frac{-13.6 Z_2^2}{2^2} \) (eV) =

\(= -13.6 \left(\frac{16}{2^2} \right)^2 = -13.6 \left(\frac{26 - 10}{4} \right)^2 = -870 \text{ eV} \)

\(\Rightarrow 870 \text{ V required} \)

Finally \(E_3 = \frac{-13.6(Z_3)^2}{2^n} \) eV; \(Z_3 = 26 - 15 = 11 \)

\(\Rightarrow E_3 = -13.6(11)^2 = -183 \text{ eV} \)

\(\Rightarrow E_2 - E_3 = (870 - 183) \text{ eV} = 687 \text{ eV} \)

\(\Rightarrow 1.81 \text{ nm} \)