Syllabus for PHYS 411 – Spring 2011

Instructor: Len Zane (BPB-202) email: len.zane@unlv.edu Phone: 895-1789

Course Website: www.physics.unlv.edu/~lenz/ Class: MW 10-11:15 in BPB-248

The text is a serious compendium of topics and covers substantially more material than can fit into a one semester course. On the optimistic side, the text is also an excellent reference for introductions into a vast number of important topics and should prove to be a valuable resource for students. I will make no serious effort to cover even a majority of the book. The last time I taught this course using this book, I covered seven chapters. My goal will be to cover topics in depth with less concern about covering as many topics as possible. Therefore the following outline of topics ought to be taken with a grain of salt.

The basic aim will be to cover the first seven chapters with some sections skipped in the name of expediency. Although this is NOT a course in quantum mechanics, I would like to cover the solution for the Hydrogen Atom wave function, Chapter 7, in some detail since it was one of the early successes for the Schrodinger version of quantum mechanics. This will require some serious mathematics which may be new to some of the students in the class. My inclination is that it is useful to see the importance of mathematics as early and as often as possible but students will not be expected to learn the details of this particular calculation.

If time permits, we will end with a short section on Special Relativity.

My idiosyncratic slant on modern physics is that it deals primarily with the development of the “modern” worldview that happened during the period 1900 to 1930. This is the period when various experiments highlighted shortcomings of classical physics forcing physicists to develop new theories, primarily special relativity and quantum physics, to explain these experiments.

In order to appreciate the failure of classical physics it is important to understand in detail why classical physics failed and how those failures led to the new physics. Consequently the material covered will include a revisit of many topics seen early
which ought to give students the opportunity to improve their understanding of classical physics.

Physics works by comparing the result of experiments to theoretical constructs. In order to work well, the theories need to quantitatively agree with experiments. Therefore it is essential for students to be able to derive correct expressions that can be compared to experiments. That means getting all the $\sqrt{2}$’s, π’s, etc. in the correct places and being able to use those correct expressions to calculate actual numbers!!

Grading: There will be a midterm at an undetermined date and final, scheduled for Monday, May 9 at 10:10 a.m. There will also be a series of assignments that will be collected and graded.

Assignments: 30%
Midterm: 30%
Final: 40%

Assignments for PHYS 411

Assignment 1: Read Chapter 1, *Thermal Radiation and Planck’s Hypothesis*, and do the following problems at the end of the Chapter: 3, 4, 10, 14, 15, 17, and 18.

Assignment 2: Read Chapter 2, *Photons – Particle-Like Properties of Radiation*, and do the following problems at the end of the Chapter: 2, 5, 8, 9, 14, 17, 18, 27, and 30.

Assignment 3: Read Chapter 3, *De Broglie’s Postulate – Wave-Like Properties of Particles*, and do the following problems at the end of the Chapter: 1, 7, 11, 14, 16, 22, 27, 28, 31, and 34.

Assignment 4: Read Chapter 4, *Bohr’s Model of the Atom*. (Note that sections 4.9 and 4.10 will not be covered in class and none of the assigned problems involve those two sections.) Do the following problems and note that hints for some of the problems are listed below: 1, 5, 6, 10, 13, 14, 16, 23, 25, 29, 36, and 43.

Problem 1: The Thomson atom is a sphere of radius R and charge Q. The charge is uniformly distributed throughout the sphere. Show that an electron orbiting the sphere in a circular orbit of radius R has the same frequency as an electron oscillating back and forth through the atom’s center.
Problem 5: Start from equation 4.3, let r -> infinity, and use the trig identities for sin(A + B) and cos(A + B) with A = B = \(\theta/2 \) to replace sin \(\theta \) and cos \(\theta \) in terms of sine and cosine of \(\theta/2 \).

Problem 10: Calculate the numbers I, n, d\(\Omega \), and d\(\sigma/d\Omega \) separately and carefully. This problem encapsulates the quantitative details of Rutherford scattering, a pivotal experiment in the development of the nuclear atom.

Assignment 5: Read Chapter 5, *Schroedinger’s Theory of Quantum Mechanics*. Do the following problems: 2, 5, 7, 9, 10, 11, 12, 13, 16, 18, 19, 20, 24, 25, 27, 28, 29, and 30. The problem in bold type, 24, 25, 27, 28, 29, and 30, are particularly useful for developing some good intuition about wave functions.

Assignment 6: Read sections 6.1 through 6.4 and 6.7 through 6.10 in Chapter 6, *Solutions of the Time-Independent Schrodinger Equations*. Do the following problems and note that hints for some of the problems are listed below: 1, 2, 3, 4, 24, 25, 26, 27, 28, 30, 31, 32, and 34.

Problem 25: Some of the integrals required can be done by using integration by parts. This is a good time and place to hone your skills with respect to this valuable integration technique!

Problem 28: Set up the coordinate system for your box so that one corner of the cube is at the origin, (0, 0, 0) with the other corners at: (a, 0, 0), (0, a, 0), (0, 0, a), (a, a, 0), (a, 0, a), (0, a, a), and (a, a, a). The allowed energies and wave functions only depend on the size of the box and the potential, so the answers with wave functions only depend on the size of the box and the potential, so the answers with origin here are identical to the answers with the origin at the center of the box!

Problem 32: Since this problem involves a pendulum, this is a good time to review how \(F = ma \) is used to solve for the motion of pendulum swinging through “small” angles.

Problem 34: This is straightforward but messy. I set \(u = \alpha x \) and used the chain rule to differentiate \(\psi(x) \), \(d\psi/dx = (d\psi/du)(du/d\alpha) \) and waited to the end to replace \(\alpha \) with \((cm)/h \). I think this made a transcription error less likely but it is still a messy problem!

Assignment 7: Read Chapter 7, *One-Electron Atoms*. The solution to this problem provides an explanation for the structure of the periodic table and the nature of the elements in various groups, i.e. understanding this chapter is very important. Do the following problems: 3, 4, 8, 11, 13, 16, and 18.
Statements of University Policy

Academic Misconduct – Academic integrity is a legitimate concern for every member of the campus community; all share in upholding the fundamental values of honesty, trust, respect, fairness, responsibility and professionalism. By choosing to join the UNLV community, students accept the expectations of the Academic Misconduct Policy and are encouraged when faced with choices to always take the ethical path. Students enrolling in UNLV assume the obligation to conduct themselves in a manner compatible with UNLV’s function as an educational institution.

An example of academic misconduct is plagiarism. Plagiarism is using the words or ideas of another, from the Internet or any source, without proper citation of the sources. See the Student Academic Misconduct Policy (approved December 9, 2005) located at: http://studentconduct.unlv.edu/misconduct/policy.html.

Copyright – The University requires all members of the University Community to familiarize themselves and to follow copyright and fair use requirements. You are individually and solely responsible for violations of copyright and fair use laws. The university will neither protect nor defend you nor assume any responsibility for employee or student violations of fair use laws. Violations of copyright laws could subject you to federal and state civil penalties and criminal liability, as well as disciplinary action under University policies. Additional information can be found at: http://www.unlv.edu/committees/copyright/.

Disability Resource Center (DRC) – The Disability Resource Center (DRC) determines accommodations that are “reasonable” in promoting the equal access of a student reporting a disability to the general UNLV learning experience. In so doing, the DRC also balances instructor and departmental interests in maintaining curricular standards so as to best achieve a fair evaluation standard amongst students being assisted. In order for the DRC to be effective it must be considered in the dialog between the faculty and the student who is requesting accommodations. For this reason faculty should only provide students course adjustment after having received this “Academic Accommodation Plan.” If faculty members have any questions regarding the DRC, they should call a DRC counselor.

UNLV complies with the provisions set forth in Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act of 1990. The DRC is located in the Student Services Complex (SSC-A), Room 143, phone (702) 895-0866, fax (702) 895-0651. For additional information, please visit: http://drc.unlv.edu/.

Religious Holidays Policy -- Any student missing class quizzes, examinations, or any other class or lab work because of observance of religious holidays shall be given an opportunity during that semester to make up missed work. The make-up will apply to the religious holiday absence only. It shall be the responsibility of the student to notify the instructor no later than the last day of late registration of his or her intention to participate in religious holidays which do not fall on state holidays or periods of class recess. This policy shall not apply in the event that administering the test or examination at an alternate time would impose an undue hardship on the instructor or the university which could have been avoided. For additional information, please visit: http://catalog.unlv.edu/content.php?catoid=4&navoid=164.

Tutoring -- The Academic Success Center (ASC) provides tutoring and academic assistance for all UNLV students taking UNLV courses. Students are encouraged to stop by the ASC to learn more about
subjects offered, tutoring times and other academic resources. The ASC is located across from the Student Services Complex, #22 on the current UNLV map. Students may learn more about tutoring services by calling (702) 895-3177 or visiting the tutoring web site at: http://academicsuccess.unlv.edu/tutoring/.

UNLV Writing Center
One-on-one or small group assistance with writing is available free of charge to UNLV students at the Writing Center, located in CDC-3-301. Although walk-in consultations are sometimes available, students with appointments will receive priority assistance.

Appointments may be made in person or by calling 895-3908. The student's Rebel ID Card, a copy of the assignment (if possible), and two copies of any writing to be reviewed are requested for the consultation. More information can be found at: http://writingcenter.unlv.edu/

Rebelmail – By policy, faculty and staff should e-mail students’ Rebelmail accounts only. Rebelmail is UNLV’s Official e-mail system for students. It is one of the primary ways students receive official university communication such as information about deadlines, major campus events, and announcements. All UNLV students receive a Rebelmail account after they have been admitted to the university. Students’ e-mail prefixes are listed on class rosters. The suffix is always @unlv.nevada.edu.