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Abstract

The cosmological evolution of primordial black holes (PBHs) is considered. A
comprehensive view of the accretion and evaporation histories of PBHs across
the entire cosmic history is presented, with focus on the critical mass holes.
The critical mass of a PBH for current era evaporation is Mcr ∼ 5.1 × 1014

g. Across cosmic time such a black hole will not accrete radiation or matter
in sufficient quantity to hasten the inevitable evaporation, if the black hole
remains within an average volume of the universe. The accretion rate onto
PBHs is most sensitive to the mass of the hole, the sound speed in the
cosmological fluid, and the energy density of the accreted components. It is
not easy for a PBH to accrete the average cosmological fluid to reach 30M⊙

by z ∼ 0.1, the approximate mass and redshift of the merging BHs that were
the sources of the gravitational wave events GW150914 and GW151226. A
PBH located in an overdense region can undergo enhanced accretion leading
to the possibility of growing by many orders of magnitude across cosmic
history. Thus, two merging PBHs are a plausible source for the observed
gravitational wave events. However, it is difficult for isolated PBHs to grow
to supermassive black holes (SMBHs) at high redshift with masses large
enough to fit observational constraints.

Keywords:

1. Introduction

Primordial black holes (PBHs) are among the most intriguing ghosts in the
universe. A singular PBH of sufficient mass can navigate the history of the
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universe without detectable clues to its existence; a true cosmic ghost. Low
mass PBHs evaporate before the current epoch and the radiation signature
of an isolated high mass PBH is too weak to detect. The last moments of
a PBH evaporation reveal the hole through a burst of high-energy radiation
that is distinguishable from that of short gamma-ray bursts (GRBs) [1].

The upper limits on the number density of PBHs across a wide range of
masses is discussed extensively in [2, 3]. To date there are no confirmed PBH
burst signals, but these compelling ghosts are ripe cosmological messengers
that will enhance our understanding of the universe if observed. The PBHs
evolving through cosmic history could be used as a proxy for understanding
the conditions in the early universe. PBHs of significant mass may gain a
dark matter (DM) halo, e.g. [4, 5]. Since the PBH evaporation rate depends
only on the mass of the hole and the assumed particle physics model [6],
PBHs in similar astrophysical environments should produce similar radia-
tion signatures; the ultimate “standard candles.”

This study explores the evolution of PBHs through accretion and evap-
oration across the entire cosmic history. Special attention is paid to the
changes in the density, temperature, and sound speed in the cosmological
fluid because of their influence on the accretion rate of that fluid onto the
PBHs. In §2 the concordance cosmological model of ΛCDM is discussed. In
§3 the PBH accretion and evaporation models are discussed and formulae
are given for the accretion rates in the various cosmological eras. In §4 the
results of the study are discussed. Finally in §5 the conclusions are presented
and a discussion of astrophysical implications is made.

2. Cosmological model

The concordance cosmology assumed throughout this study is the six pa-
rameter ΛCDM model, implementing the most recent Planck Collaboration
results [7]. The model consists of the homogeneous and isotropic Friedmann-
Robertson-Walker (FRW) geometry dynamically evolving according to the
Einstein field equations. The Einstein equations, also called the Friedmann
equations [8, 9] in this case, describe the evolution of the curvature and
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energy content of the universe as

(

ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ, (1)

ä

a
= −4πG

3

(

ρ+
3P

c2

)

, (2)

where the scale factor is a ≡ a0(1 + z)−1, with the scale factor today a0 ≡ 1
and z the cosmological redshift, k = 0,±1 indicating zero, positive, or neg-
ative spatial curvature respectively, G is the universal gravitation constant,
and c is the speed of light. The term ρ is the sum of the proper inertial mass
densities of the cosmological fluid and the contribution from spatial curva-
ture, and P is the pressure contribution from matter, radiation, and vacuum
energy (or cosmological constant Λ).

The equation of state of each cosmological fluid can be expressed Pi =
wiρic

2 (no sum over i) with equation of state parameter wi. The equation
of state parameters for matter, radiation, cosmological constant, and spatial
curvature are 0, 1/3, −1, and −1/3 respectively. Note that the equation of
state of a baryonic gas P ∝ ργ , where γ is the adiabatic index, is relevant
when calculating accretion rates onto a compact object. The approximation
wi=b ≈ 0 for a baryonic gas holds on cosmological scales.

The Hubble parameter H is a measure of the temporal (extrinsic) curva-
ture of the FRW geometry and is defined

(

ȧ

a

)2

≡ H2 = H2
0E2, (3)

where subscript-0 implies evaluation of a quantity today. The Hubble con-
stant is H0 = 100h km s−1Mpc−1 where the dimensionless Hubble parameter
is h = 0.6774 from Planck [7]. Before defining E2, it is convenient to intro-
duce the dimensionless density parameters today

Ωi,0 ≡
ρi,0
ρcr,0

=
8πG

3H2
0

ρi,0, (4)

where i indicates baryonic matter, dark matter, radiation, and Λ. Dividing
Eq. (1) by H2 and evaluating the quantities today gives an expression for
the ‘effective’ dimensionless density parameter for spatial curvature

Ωk,0 = 1− Ω0, (5)
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where Ω0 ≡ Ωr,0 + Ωm,0 + ΩΛ,0. The combined Planck and baryon acoustic
oscillation data [7] are consistent with Ωk,0 = 0.000± 0.005, i.e. the universe
has zero spatial curvature to within 0.5% accuracy. The term E2 in Eq.
(3) is a function of the dimensionless density parameters with their redshift
dependencies

E2 ≡
∑

i

Ωi,0(1 + z)3(1+wi)

= Ωr,0(1 + z)4 + Ωm,0(1 + z)3

+ (1− Ω0)(1 + z)2 + ΩΛ,0. (6)

In the FRW geometry, proper time is related to redshift through the
differential ż = −H(z)(1 + z). Therefore the time ∆t ≡ t2 − t1 elapsed
between any two redshifts z1 and z2 is given by the integral

∆t ≡
∫ t2

t1

dt = H−1
0

∫ z1

z2

dz

(1 + z)E(z) , (7)

which has no tractable analytic solution ordinarily, but may be calculated
analytically in simple cases or numerically in general. The age of the universe
calculated numerically from Eq. (7) is t0 = 13.8 Gyr, which was reported in
the 2015 Planck results [7].

The spatially-averaged inertial mass densities of the various components
of the cosmological fluid decrease as power-laws with decreasing redshift ac-
cording to their equation of state, i.e.

ρi ∝ (1 + z)3(1+wi) (8)

for matter, radiation, curvature, and the cosmological constant. The average
matter density in the universe evolves as ρm ∝ (1 + z)3. The effective mass
density of radiation evolves as ρr ∝ (1+z)4. In the early universe the redshift
dependence of this term is more complicated due to the presence of radiation
in the form of neutrinos and other relativistic Standard Model (SM) particles
in addition to photons. Thus ρr evolves [10, 11] according to the expression

ρr(T ) =
π2

30
g⋆(T )

k4
BT

4

c5~3
, (9)

where g⋆(T ) is the effective number of relativistic degrees of freedom, kB is
Boltzmann’s constant, and T is the temperature. Thus the effective radiation
mass density evolves with redshift as ρr ∝ g⋆(1 + z)4.
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Table 1: Standard model elementary particles and other mass thresholds important in the
early universe. Listed are the particles that freeze out below each temperature threshold,
the mass of each particle or threshold from [12], the effective relativistic degrees of freedom
at the temperature corresponding to that mass threshold, and the change in the degrees
of freedom as the radiation temperature of the universe crosses the threshold. See also
Fig. 1.

Particle(s) Mass [MeV] g⋆
a −∆g⋆

All > mt,t̄ 106.75 —

t, t̄ 1.73× 105 96.25 7
8
· 2 · 2 · 3

H0 1.26× 105 95.25 1

Z0 9.12× 104 92.25 3

W± 8.04× 104 86.25 2 · 3
b, b̄ 4.18× 103 75.75 7

8
· 2 · 2 · 3

τ± 1.78× 103 72.25 7
8
· 2 · 2

c, c̄ 1.28× 103 61.75 7
8
· 2 · 2 · 3

ΛQCD
b 170 17.25 44.5

π± 140 15.25 2 · 1
π0 135 14.25 1 · 1
µ± 106 10.75 7

8
· 2 · 2

νdec
c 2.6 7.25 7

8
· 2 · 2

e± 0.511 3.38d −∆g⋆,f
e

a g⋆ at or below corresponding mass threshold
b QCD phase transition [13]; remaining quarks
(ss̄, dd̄, uū) and gluons are bound in hadrons

c Neutrino decoupling energy threshold
d g⋆(T < me) = 2+ 7

8
·2 ·Neff ·(4/11)4/3 ∼ 3.38;

where Neff ∼ 3.04 [7]
e −∆g⋆,f = 7

8
· 2 · 3− 7

8
· 2 ·Neff · (4/11)4/3
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A list of the important particle mass and energy thresholds is given in
Table 1. Shown in Fig. 1 is the corresponding plot of g⋆ as a function of
temperature. The factor g⋆ increases by up to a factor 106.75/3.38 ∼ 31.6 at
high redshift when all SM particles are relativistic. The factor g⋆(T ) for all
relativistic particle species in thermal equilibrium can be calculated as the
sum [10]

g⋆(T ) =
∑

i=b

gi

(

Ti

T

)4

+
7

8

∑

i=f

gi

(

Ti

T

)4

, (10)

where the first term is the sum over all bosons and the second term is the
sum over all fermions.

Each component of the cosmological fluid has an associated temperature
whose value depends on redshift. At high redshift after inflation the universe
is dominated by radiation and the components of the cosmological fluid are
in equilibrium. The temperature of radiation evolves simply as Tr = T0(1+z)
where Tr is the radiation temperature at any redshift lower than the neutrino
decoupling redshift zdec,ν and the temperature today is T0 = 2.72548 K [14].
The baryonic matter is coupled to the radiation through Compton scattering
prior to the thermalization redshift [15]

1 + zth ∼ 800
(

Ωb,0h
2
)2/5 ∼ 174, (11)

and in this redshift regime the baryonic matter temperature evolves as Tb =
T0(1 + z). After zth, the baryonic matter temperature evolves adiabatically
until reionization as

Tb = T0
(1 + z)2

1 + zth
, (12)

so that at thermalization, Tb = Tr(z = zth).
It is assumed that the dark matter is mostly weakly interacting massive

particles (WIMPs) denoted χ. For simplicity other dark matter models are
not considered in this study; see [16] for more details on all the dark matter
models. For a discussion on the possibility of the PBHs themselves being
the dark matter see [2]. If the dark matter is composed of WIMPs the DM
temperature decouples from the radiation temperature at high redshift when
thermal freeze out of the dark matter particles occurs [16]. The model forces
the DM thermal freeze out to occur when kBTfr ∼ mχc

2/20. If mχc
2 =
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Figure 1: Stepwise approximation of g⋆ as a function of temperature, including only
relativistic particles whose number density is high enough to contribute. Steps occur at
temperatures corresponding to the rest mass of elementary SM particles with the largest
step occuring at the QCD phase transition scale ΛQCD ∼ 170 MeV [13]. The value of
g⋆ is a minimum for temperatures less than the neutrino decoupling temperature and a
maximum for temperatures greater than or equal to the top quark mass. See [10] for a
discussion of g⋆s.
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100 GeV the freeze out redshift is 1 + zfr = Tfr/T0 ∼ 2× 1013.
The root-mean-square velocity vrms is approximated by comparing the

relativistic kinetic energy of the dark matter particles to their thermal energy:

(γχ − 1)mχc
2 =

3

2
kBTχ, (13)

where the Lorentz factor associated with βχ ≡ vrms/c of the dark matter
particles is given by

γχ ≡ (1− β2
χ)

−1/2. (14)

It is useful to define the dimensionless quantity

Θχ ≡ 3kBTχ

2mχc2
(15)

such that Eq. (13) becomes γχ = 1 + Θχ and therefore

β2
χ =

Θ2
χ + 2Θχ

(1 + Θχ)2
, (16)

which is friendly to numerical evaluations for all possible physical values of
Θχ. The value of βχ becomes close to unity quite rapidly and for the assumed
freeze-out temperature, βχ ≃ 0.367, i.e. the dark matter particles are mildly
relativistic at freeze-out.

3. Primordial black hole accretion and evaporation

The history of the universe may be divided into redshift regimes to sim-
plify analysis. The relevant physical processes in the very early universe are
distinct from those acting in the current era and thus it is important to sum-
marize the physics in each regime.

Though important to the dynamics of the universe in general, the his-
tory of the very early universe (prior to inflation) is not considered in detail
in this study. The number density of a pre-inflation cosmological relic, e.g.
any pre-inflation PBHs, is negligible after the inflationary epoch. The num-
ber density of a pre-inflation relic depends on the amount of inflation. The
amount of inflation is calculated by finding the number of e-foldings during
the inflationary epoch

N ≡
∫ af

ai

d ln a =

∫ tf

ti

H dt, (17)
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where ti denotes the start of inflation, tf denotes the end of inflation, and H
is the Hubble parameter given in Eq. (3). A successful inflation model re-
quires the number of e-foldings to be at least Nmin ∼ 50 in order to solve the
horizon problem [17]. The number density of a relic which formed prior to
inflation will thus decrease by a factor e3Nmin ∼ e150 ∼ 1065. Thus any PBHs
which formed prior to inflation are unlikely to be located in the observable
universe today.

After inflation, PBHs may form through a variety of mechanisms includ-
ing collapse of primordial inhomogeneities, phase transitions, and cosmic
string or domain wall collisions [2]. If the energy density fluctuations have
a strength δρ/ρ ∼ 1 in a particular spacetime volume, the region will likely
collapse to a black hole. In this study it is assumed that the collapse to a
black hole occurs on a time scale much shorter than the Hubble time so that
the expansion is irrelevant to PBH formation. A black hole forming at a time
t after the Big Bang will have a mass less than or equal to the Hubble mass
at that time, i.e.

MH =
c3t

G
∼ (4.0× 1014 g)t−24, (18)

using the useful notation f = 10nfn. At t = 1.0 s after the Big Bang, the
Hubble mass is MH ∼ 2.0 × 105M⊙. A derivation of Eq. (18) can be found
in Appendix A. Models for the mass function of PBHs are discussed in [2]
with emphasis on the behavior of the mass function near the critical mass
regime.

Particles with spin s between energy E and E + dE are emitted near the
horizon of a Schwarzschild black hole of mass M at a rate [18, 19]

dṄ =
ΓsdE

2π~

[

exp

(

8πGME

~c3

)

− (−1)2s
]−1

, (19)

where Γs is the absorption probability for a mode with spin s [20]. This is
the so-called Hawking radiation which resembles emission from a blackbody
with radius Rs = 2GM/c2 of temperature

kBTBH =
~c3

8πGM
= (10.6 MeV)M−1

15 . (20)

The BH can only radiate when the temperature of the hole is greater than
that of the radiation bath of the early universe. The temperature of radiation

9



in the early universe evolves as Tr ∝ 1 + z and is less than 10.6 MeV when
z < 4.5 × 1010, i.e. when t > 0.01 s. This will have a negligible effect on
the evolution of PBHs near 1015 g. The absorption probability asymptotes
to the geometric optics limit

Γs =
27G2M2E2

~2c6
(21)

when the particle energy is E ≫ kBTBH . The functional form of Γs is much
more complicated for lower energy E ∼ kBTBH interactions as discussed in
[20].

The mass loss rate due to the Hawking emission from a Schwarzschild
black hole of mass M requires a sum over all particle types and an integration
over the particle energies leading to the simple equation

dM15

dt
= (−5.34× 10−5 g s−1)f(M)M−2

15 , (22)

where f(M) is a function [19] allowing for the emission of particles other than
photons and f(M) = 1 for M ≫ 1017 g. The function f(M) increases when
the mass of the PBH crosses a particle mass threshold (see Table 1), after
which the PBH may emit that particle. A good approximation is f(M) ∼
f(Mi) because for the majority of its lifetime the mass of a PBH remains
near its formation mass Mi [20].

For supermassive black holes or stellar mass black holes the evaporation
rate in Eq. (22) is negligibly small. The evaporation rate becomes important
on cosmological time scales for black holes with mass M ∼ 1015 g. This is
seen by integrating Eq. (22) to get the evaporation timescale

tevap = (6.24× 1018 s)f(Mi)
−1M3

i,15. (23)

Assuming tevap = t0 = 13.8 Gyr, the critical formation mass for evaporation
today is

Mcr = 5.1× 1014 g, (24)

where the parameter f for the critical mass is f(Mcr) ∼ 1.9 as assumed in
[2, 19].

In every cosmic era the Hawking evaporation of a near-critical mass PBH
will compete with accretion of the cosmological fluid onto the hole. For the
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PBHs of M ∼ Mcr the accretion turns out to be irrelevant if the hole accretes
the cosmological fluid at spatially-averaged densities. For PBHs much smaller
thanMcr accretion is completely unimportant. For PBHs larger thanMcr the
accretion becomes ever more important and the evaporation rate becomes
ever smaller. Thus it is important to quantify the various accretion rates
at the relevant cosmic epochs. The accretion rates are dependent on the
physical parameters of the cosmological fluid, which change dramatically
with redshift. The full equation to be solved is the first-order nonlinear
ordinary differential equation in M

dM

dt
= Ṁevap(f,M ; z) + Ṁacc(ρ, cs,M ; z), (25)

where Ṁevap is given by Eq. (22) and the mass accretion term Ṁacc will
be calculated in the following sections. The equation is integrated from the
formation time ti to any desired final time (or the evaporation time for small
holes) using Eq. (7), with the concordance cosmological model accounted for
at all times. The Hawking evaporation term has an explicit dependence on
f(M) and the mass M of the hole and an implicit dependence on z (or t).
The accretion term has explicit dependence on ρ, cs, and M and an implicit
dependence on z due to the evolution of those quantities across cosmic time.

The mass accretion term in Eq. (25) is split into its component parts

Ṁacc(ρ, cs,M ; z) = Ṁr + Ṁb + Ṁχ, (26)

where r indicates radiation (γ, ν, and other SM particles), b indicates bary-
onic matter, and χ the dark matter particles. When the universe is cool
enough (i.e. Tr < 0.511 MeV), the radiation term consists only of photons
and neutrinos. At higher redshift, the other SM particles become relativistic
and can be accreted. When the baryonic matter is coupled to the radia-
tion the two accretion rates become coupled and are written Ṁb+r. In the
sections following, the mass accretion term is calculated explicitly for the
different cosmic eras.

3.1. Late universe accretion

In the late universe at z . zth the relevant cosmic scales are set by the for-
mation and evolution of structure, i.e. the distribution of dark and baryonic
matter in the cosmic web. The details of cosmic structure formation are ripe
with rich and complicated physics and are not included in this study; see
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[21, 22].
To set a bound on late universe accretion, all accretion terms here are

set by the spatially-averaged fluid quantities. The PBHs in our universe
will likely form and evolve within overdense regions, so the use of spatially-
averaged quantities gives a good idea what to expect with relatively isolated
holes. The accretion of radiation in this redshift regime is unimportant for
∼ Mcr PBHs because it is a horizon-limited growth given in the approximate
form

Ṁr = 4πR2
Scρr

=
16πG2

c3
ρr,0(1 + z)4M2

= (6.5× 10−48 g s−1)(1 + z)4M2
15, (27)

where ρr is the equivalent mass density in radiation. The accretion rate in
Eq. (27) is comparable to the magnitude of the Hawking evaporation rate
when the mass of the PBH is

M = (6.3× 1025 g)(1 + z)−1. (28)

Thus the accretion of background radiation in this redshift regime is unim-
portant to critical mass holes. A PBH of the mass given in Eq. (28) will not
evaporate until long after the current era.

The accretion of baryonic matter is more complicated as it is governed
by gas dynamics in the vicinity of the PBH. If the PBH is in an ‘average’
region of the universe, i.e. of average baryonic matter density and temper-
ature, the accretion of baryons will be a competition between Bondi and
Eddington-limited accretion [23]. The accretion rate found in this manner
will inform a lower bound for any relevant PBH accretion activity. Below
z ∼ 30 the details of cosmic structure will change this simplified picture, but
it is useful to set a first approximation. A complete picture of the baryonic
accretion has not been properly solved and is the subject of intense study
from both theoretical and observational perspectives. With the complicated
gas dynamics removed from the analysis in this simplified calculation, the
accretion rate can be expressed as

Ṁb = min
(

Ṁb,B, Ṁb,E

)

= min

(

4πλsG
2

c3s,b
ρb,0(1 + z)3M2,

4πGmp

σT c
M

)

. (29)
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where λs = 1/4 for a γ = 5/3 baryonic gas [23], mp is the proton mass, and
σT is the Thomson scattering cross section for electrons. It is clear that the
Eddington limit is redshift-independent and is equal to

ṀE = (7.03× 10−2 g s−1)M15. (30)

The Bondi rate is also redshift-independent in this redshift regime. The
temperature of the baryonic gas in this regime is

Tb =
Tr(1 + z)

1 + zth
=

T0(1 + z)2

1 + zth
, (31)

and therefore the sound speed in the baryonic gas (assuming it is entirely
hydrogen) is

cs,b =

(

5kBTb

3mp

)1/2

= (1 + z)

(

5kBT0

3mp(1 + zth)

)1/2

= (1.5× 103 cm s−1)(1 + z). (32)

Thus the redshift dependence of the Bondi rate goes away and Eq. (29)
becomes

Ṁb = min

[

πG2

(

5kBT0

3mp(1 + zth)

)−3/2

ρb,0M
2,
4πGmp

σT c
M

]

=

{

(1.9× 10−24 g s−1)M2
15, M < Mcr,1

(7.0× 10−2 g s−1)M15, M > Mcr,1

, (33)

where Mcr,1 = 3.8 × 1037 g is the mass of a PBH that gives an equivalence
in the Bondi and Eddington rates in this redshift regime. Comparing Eq.
(33) to Eq. (22) it is clear that an isolated near-critical mass PBH cannot
accrete sufficiently to beat the Hawking evaporation rate. The Bondi rate
is comparable to the magnitude of the Hawking evaporation rate when the
PBH has the characteristic mass

Mch,1 = 7.3× 1019 g. (34)

Any relevant growth of a near-critical mass PBH in this redshift regime
will have to come from enhanced accretion if the hole is located within a sig-
nificant density perturbation such as an individual galaxy or galaxy cluster.
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3.2. Post-recombination accretion

In the post-recombination universe (zth < z < zrec) the matter temperature
is coupled to the radiation temperature via Compton scattering, i.e. Tb =
T0(1 + z). The recombination redshift is listed in [7] as zrec = 1089.90.
Starting 381,000 yr after the Big Bang and until thermal decoupling, the
sound speed in the baryonic gas can be expressed as

cs,b =

(

5kBTb

3mp

)1/2

= (1 + z)1/2
(

5kBT0

3mp

)1/2

= (1.9× 104 cm s−1)(1 + z)1/2. (35)

In this redshift regime, the accretion of radiation is still horizon limited
and given by Eq. (27). The accretion of baryonic matter is the Bondi accre-
tion rate at lower mass and is Eddington-limited growth if the mass is large
enough. Using the same arguments as before

Ṁb = min
(

Ṁb,B, Ṁb,E

)

= min

(

πG2

c3s,b
ρb,0(1 + z)3M2,

4πGmp

σT c
M

)

=

{

(8.1× 10−28 g s−1)(1 + z)3/2M2
15, M < Mcr,2

(7.0× 10−2 g s−1)M15, M > Mcr,2

, (36)

where Mcr,2 = (8.7× 1040 g)(1+ z)−3/2 is the PBH mass that gives an equiv-
alent Bondi and Eddington rate. The Bondi accretion rate in Eq. (36) is
comparable to the magnitude of the Hawking evaporation rate when the PBH
has a characteristic mass

Mch,2 = (5.1× 1020 g)(1 + z)−3/8. (37)

Thus in the post-recombination era until thermal decoupling, the relevant
process for near-critical mass PBHs is Hawking evaporation.

3.3. Pre-recombination accretion

In the pre-recombination era (zrec < z < zmr) after matter-radiation equal-
ity the baryonic matter and radiation are fully coupled and cannot accrete

14



independently. Thus the assumptions present in the Bondi accretion formula
fail [24] and the accretion of the coupled fluid is horizon-limited. The tem-
perature of the baryonic gas is coupled to the radiation temperature and the
sound speed in the fluid can be written (see Appendix B)

c2s =
c2

3

4ρr
4ρr + 3ρb

. (38)

At the matter-radiation equality the sound speed in Eq. (38) is a few percent
below the asymptotic value c/

√
3.

The accretion rate of this coupled fluid onto a PBH is the horizon-limited
rate

Ṁb+r = 4πR2
Scs(ρr + ρb)

=
16πG2

√
3c3

[

4ρr,0(1 + z)4

4ρr,0(1 + z)4 + 3ρb,0(1 + z)3

]1/2

×
[

ρr,0(1 + z)4 + ρb,0(1 + z)3
]

M2. (39)

This rate has a complicated dependence on redshift so it is useful to expand
the right hand side of Eq. (39) near the boundaries of this redshift regime.
Defining the intermediary terms ρ′r ≡ 4ρr,0 and ρ′b ≡ 3ρb,0 near zrec the rate
takes the form

Ṁb+r = (6.8× 10−36 g s−1)

[

0.26ρ′r

(

1 + z

1 + zrec

)4

+ 0.17ρ′b

(

1 + z

1 + zrec

)3
]

M2
15. (40)

The redshift dependence of the sound speed in Eq. (38) is included in the
expansion above and in the expansion that follows. The rate in Eq. (40)
becomes comparable in magnitude to the Hawking evaporation rate when
the PBH has a characteristic mass

Mch,3a ≃ (6.2× 1022 g)

[

0.26ρ′r

(

1 + z

1 + zrec

)4

+ 0.17ρ′b

(

1 + z

1 + zrec

)3
]−1/4

. (41)
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So again the Hawking evaporation is most important for critical mass, i.e.
Eq. (24), PBHs. Closer to zmr the rate in Eq. (39) takes the form

Ṁb+r = (5.5× 10−34 g s−1)

[

0.25ρ′r

(

1 + z

1 + zmr

)4

+ 0.21ρ′b

(

1 + z

1 + zmr

)3
]

M2
15, (42)

so the accretion of the baryonic radiation fluid occurs slowly for near crit-
ical PBHs. This rate becomes comparable in magnitude to the Hawking
evaporation rate when the hole is of characteristic mass

Mch,3b ≃ (2.1× 1022 g)

[

0.25ρ′r

(

1 + z

1 + zmr

)4

+ 0.21ρ′b

(

1 + z

1 + zmr

)3
]−1/4

. (43)

The accretion of dark matter onto a PBH will be horizon-limited and
should be quite small if the spatially-averaged cosmological value for ρχ,0 is
assumed. The dark matter accretion rate is

Ṁχ = 4πR2
Scβχρχ, (44)

where βχ is defined in Eq. (16). The mass density of dark matter evolves
according to ρχ = ρχ,0(1 + z)3 such that Eq. (44) becomes

Ṁχ =
16πG2

c3
(Θ2

χ + 2Θχ)
1/2

1 + Θχ

ρχ,0(1 + z)3M2. (45)

If there is an enhancement of the DM density term ρχ due to the formation
of a DM halo there will be an appropriate enhancement of the DM accretion
rate. Thus Eq. (45) represents a lower limit on the DM accretion rate. For
a treatment of accretion from an enhanced DM halo see [4, 5]. Since the
temperature Tχ of dark matter decoupled from the radiation temperature at
zfr ∼ 2.1 × 1013, the dimensionless quantity Θχ in this redshift regime is
quite small. The expansion of βχ for Θχ ≪ 1 is βχ ≃ (2Θχ)

1/2. Thus Eq.
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(45) becomes

Ṁχ =
16πG2

c3

[

3kBT0

mχc2(1 + zfr)

]1/2

ρχ,0(1 + z)4M2

= (3.4× 10−58 g s−1)(1 + z)4M2
15, (46)

which is about ten orders of magnitude smaller than the accretion rate due
to the baryon-radiation coupled fluid. In this regime the accretion rate of
dark matter onto a PBH becomes similar to the Hawking evaporation rate
when

Mch,3c = (2.3× 1028 g)(1 + z)−1. (47)

The constraints on the accretion rates further strengthens the argument that
accretion onto a critical mass PBH is unimportant and most if not all of the
lifetime of such a PBH is dominated by the Hawking evaporation.

3.4. Post-DM freeze-out accretion

In the post-DM freeze-out (zmr < z < zfr) era the universe is dominated by
radiation. The dark matter, if it comprised of WIMPs, will be non-relativistic
until redshifts higher than zfr [16] and will accrete at a horizon-limited rate.
The accretion of baryonic matter and radiation is horizon-limited as before.
It is convenient to apply ρb ≪ ρr and therefore ignore the baryonic matter
terms and allow cs ∼ c/

√
3. Also in this redshift regime, the effective number

of relativistic degrees of freedom g⋆ begins to increase at higher redshift so it
is important to express the radiation term as in Eq. (9). The accretion rate
is therefore

Ṁb+r = 4πR2
Scs(ρr + ρb)

≃ 8π3G2k4
BT

4
0

15
√
3c8~3

g⋆(1 + z)4M2

= (2.0× 107 g s−1)

(

g⋆
86.25

)(

1 + z

1 + zfr

)4

M2
15. (48)

For a near critical mass PBH this is a large accretion rate compared to the
magnitude of the Hawking rate. Thus the mass of a PBH in this redshift
regime where these two rates balance is

Mch,4 = (1.5× 1012 g)

(

g⋆
86.25

)−1/4(
1 + z

1 + zfr

)−1

. (49)
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The period of enhanced accretion in the early universe is quite short due to
the strong redshift dependence, i.e. Ṁ ∝ (1 + z)4 so no significant accretion
is expected for critical mass PBHs. This is consistent with the findings from
previous studies on PBH accretion, i.e. [24]. At high redshift a critical mass
PBH will not accrete significantly, but massive PBHs can grow by about an
order of magnitude by zmr.

In this redshift regime the accretion of DM onto the PBH is small. It
is increasingly important at higher redshift but is never larger than the ra-
diation accretion rate in Eq. (48). At the DM freeze-out redshift the DM
particles are somewhat relativistic, i.e. Θχ ∼ 0.075, such that the accretion
rate is of the same form as Eq. (46) to a good approximation. In this regime
Eq. (47) also remains valid.

3.5. Pre-DM freeze-out accretion

In this redshift regime the universe undergoes many changes as g⋆ increases
and all particles become relativistic. At high enough redshifts all particles
have the same temperature and follow T = T0(1 + z). The accretion rate
at these high redshifts is therefore the same as Eq. (48). The PBH will not
accrete radiation in the early universe if TBH > Tr, which corresponds to
z < 4.5× 1010 if M = 1015 g. The radiation accretion at these high redshifts
is highly dependent on the particle physics model. This study employs the
Standard Model with all the latest particle masses from [12]. The equivalent
mass density in radiation changes dramatically in the early universe because
of the change in g⋆ as shown in Table 1.

Table 2 summarizes the relevant properties of the universe with reference
to the equations they are first noted. Table 3 summarizes the relevant evap-
oration and accretion rates of PBHs in the relevant redshift regimes with
reference to the equations or sections they are first noted.

4. Results

From the evaporation and accretion expressions in §3 it is possible to con-
struct a rough accretion or evaporation history for any PBH with mass Mi

forming at redshift zi. The critical mass holes with Mi = Mcr ∼ 5.1 × 1014

g will suffer no significant accretion in their entire lifetime if located in a
suitably ‘average’ volume of the universe. They will assume the evaporation
timescale in Eq. (23) and evaporate according to Fig. 2.

If the same PBHs of Fig. 2 happened to form later, say at redshift
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Table 2: Properties of the universe across a large range in redshift.

z Ωr Ωm ΩΛ Tr Tb cs/c

z > zfr Da Nb N ∝ (1 + z) = Tr ∼ 3−1/2

zmr < z < zfr D N N ∝ (1 + z) = Tr ∼ 3−1/2

zrec < z < zmr Ic D N ∝ (1 + z) = Tr Eq. (38)

zth < z < zrec N D N ∝ (1 + z) = Tr Eq. (35)

z . zth N D N ∝ (1 + z) Eq. (31)e Eq. (32)e

z = 0 Nd Id Dd = T0
d Eq. (31)e Eq. (32)e

a Dominant component of energy content.
b Negligible component of energy content.
c Important; non-negligible but non-dominant.
d Ωr,0 ∼ 9 × 10−5, Ωm,0 ∼ 0.3089, ΩΛ,0 ∼ 0.6911, and T0 =
2.72548 K; see [7] and [14].

e Does not account for reionization around z ∼ 9 or effects due
to structure formation.

zi = 108, it would not affect their history due to the small timescales in the
early universe. The accretion rate of the cosmological fluid onto larger PBHs
at high redshift will be more important.

The analysis in §3 can be summarized in a look-up plot of Mf against
Mi. The regime important for Mi ∼ 10−4M⊙ holes is shown in Fig. 3 and
the entire mass regime is shown in Fig. 4. Note the agreement of Fig. 4
in the near-critical mass regime to Figure 2 of [3]. The holes evaporating at
higher redshift must have initial masses slightly lower than Mcr. Note that
no significant accretion occurs across the intermediate mass regime between
Mcr and ∼ 1036 g due to the low accretion rates for BHs of this mass. Isolated
PBHs in this mass regime accreting the spatially-averaged cosmological fluid
do not grow much. This does not account for enhancement of the accretion
rates due to structure formation and thus represents a first approximation.
If the accretion rate is enhanced via Ṁb,B → fbṀb,B where fb = ρenh/ρb is an
enhancement factor and ρenh is the enhanced baryonic matter density, then
a PBH of given initial mass can reach a higher mass for a given final redshift.
This is reflected in the dotted lines of Fig. 3, which show the final mass of
a PBH growing from 1.0 s after the big bang to z = 0.1 given an enhance-
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Table 3: PBH accretion and evaporation properties across a large range in redshift. This
table summarizes the findings of §3. In each redshift regime, the accretion rates change
due to the changes in ρi, Tr, Tb, and cs as in Table 2.

z Ṁevap
a Ṁr Ṁb Ṁχ

b

z > zfr Eq. (22) Eq. (48) —

zmr < z < zfr Eq. (22) Eq. (48) Eq. (46)

zrec < z < zmr Eq. (22) Eq. (39) Eq. (46)

zth < z < zrec Eq. (22) Eq. (27) Eq. (36) Eq. (46)

z . zth Eq. (22) Eq. (27) Eq. (33) Eq. (46)

z = 0 Eq. (22) Eq. (27) Eq. (33) Eq. (46)

a Since the Hawking evaporation rate Ṁevap ∝ M−2, it is
only relevant if M . Mcr. High mass PBHs evaporate
long after z = 0; see Eq. (23)

b Does not account for DM halo formation in the late uni-
verse due to structure formation. Inside a DM halo the
effective mass of the PBH will be enhanced by a poten-
tially large factor M → fhaloM and thus Ṁχ → f 2

haloṀχ.

ment factor fb = 101, 102, 103. Even a small enhancement of the baryonic
matter density leads to a large increase in the possible final mass of the ac-
creting PBH. Since the Bondi accretion rate is proportional to M2, higher
mass PBHs will accrete more than lower mass PBHs and this increase in the
accretion rate is indicated by the increasing Mf in Fig. 3 around M ∼ 1036

g.
In the first few seconds of the universe (z & 109), PBHs approaching the

formation mass limit around 1038 g have a large accretion rate (see Eq. 48).
This large accretion rate, though short-lived, can increase the mass of the
PBH by about an order of magnitude by z = 109. This effect is absent in
lower mass PBHs and thus is visible in Fig. 4 as a small increase beginning
above Mi ∼ 1038 g.

5. Conclusions and Discussion

A comprehensive view of the evolution of PBHs throughout cosmic history
was presented. The accretion and evaporation histories of PBHs with masses

20



in the approximate range 1014 g < M < 2 × 1038 g were calculated. PBHs
with lower masses will have evaporated prior to the current era and are
not considered and PBHs with higher masses are not allowed due to the
Hubble mass constraint of Eq. (18). The accreted fluids were assumed to
have spatially averaged cosmological densities and the details of structure
formation were not included. The important quantities for accretion are the
mass densities of the various cosmological fluids, the sound speed in those
fluids, and the details of their behavior at all relevant redshifts. All of these
details were calculated precisely for the ΛCDM concordance cosmology.

The important findings of this study are the following:

• A PBH with initial mass near Mcr = 5.1 × 1014 g will not accrete
radiation or matter in any significant quantity and will thus evaporate
according to the timescale given in Eq. (23). A PBH with initial mass
less than Mcr will evaporate prior to the current era.

• A PBH with initial mass in the approximate range 1015 g < Mi <
1035 g neither evaporates nor accretes significantly over a Hubble time.
Such a PBH would have to grow by other means, i.e. merging with
other BHs or accreting while in an overdense region of the universe.
Since the Hawking evaporation rate is so small for PBHs in this mass
regime, the lower limit on the final (observed) mass of such PBHs is
thus simply Mf = Mi.

• A PBH with initial mass M < 1038 g will not grow significantly in the
early universe, i.e. within the first few minutes after the Big Bang.
This finding is consistent with other PBH accretion studies, e.g. [24].
The small increase for BHs with Mi ∼ 1038 g seen in Fig. 4 results from
the large accretion rate for high-mass holes in Eq. (48). It represents a
growth of approximately one order of magnitude in the early universe,
consistent with previous studies. There is negligible growth of critical
mass PBHs in the radiation-dominated era.

• A PBH with initial mass in the approximate range 1035 g < Mi <
1037 g can accrete significantly during its lifetime. In the redshift
regime zth < z < zrec, a PBH with M < (8.7 × 1040 g)(1 + z)−3/2

accretes at the Bondi rate and is Eddington-limited above that. In the
redshift regime z ≤ zth, a PBH with M < 3.8 × 1037 g accretes at the
Bondi rate and is Eddington-limited above that. A PBH with such a
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mass that grows at the Bondi rate for its whole lifetime can thus grow
by one or two orders of magnitude.

• When a PBH grows enough to have its baryonic matter accrete at an
Eddington-limited rate, the hole can increase in mass by many orders of
magnitude if evolving into the late universe zf ∼ 0. Since the PBH will
grow by accreting the spatially averaged cosmological gas, this growth
represents how an ‘average’ PBH accretes at the Eddington limit. The
true accretion history of course will be complicated by feedback effects
which were not modeled here. The curves in Fig. 4 thus represent an
‘average’ growth. A true astrophysical hole of this mass may grow at
either a higher or a lower rate.

• A PBH with initial mass in the approximate range 4× 1037 g < Mi <
1038 g will accrete at an Eddington limited rate after zrec and the final
mass of such a hole depends on its observed redshift. At zf = 30, the
hole can only grow to Mf = 1.01Mi. The hole can grow to Mf = 7.7Mi

if zf = 6. The hole can grow to Mf = 6.4 × 1011Mi if zf = 0.1 and to
Mf = 1.1× 1013Mi if zf = 10−4. See Fig. 4 for more details.

The PBH mass histories discussed in this study represent a first approxi-
mation of their cosmic behavior. Several astrophysical applications may be
discussed in the context of the above results:

• It is impossible to explain the large BHs with M ∼ 1010M⊙ observed
[25] at z > 6 via PBHs with Eddington-limited accretion of the ‘av-
erage’ baryonic gas, even with Mi ∼ 105M⊙. These holes must be
explained through multiple massive PBH mergers, mergers with BH
seeds from the first generation of stars, or PBHs in overdense regions
accreting at super-Eddington rates.

• PBHs do not easily grow to 30M⊙ by z ∼ 0.1 through Bondi accretion of
the ‘average’ cosmological fluid. These PBHs cannot easily explain the
binary BH mergers observed by LIGO as the gravitational wave events
GW150914 [26] and GW151226 [27] unless they experience an enhance-
ment of the Bondi rate through various channels. One such channel is
a baryonic matter density enhancement leading to Ṁb,B → fbṀb,B as
discussed in §4. Small enhancement factors allow a lower mass PBH to
reach 30M⊙ compared to those PBHs accreting the average cosmolog-
ical baryonic matter. Another possibility is the LIGO BHs were PBHs
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that formed with an initial mass Mi = Mf , where Mf is their mass at
the merger time. According to [28], the event rate for PBH mergers
would be high enough to explain the GW events if the PBHs consti-
tute a large enough fraction of the dark matter. However, PBHs in the
appropriate mass range to explain these LIGO events are unlikely to
be a large enough fraction of the DM as constrained from CMB mea-
surements discussed in [29], [30], and [31]. Either LIGO has chanced
upon two relatively rare PBH mergers or there is a common stellar
evolution channel that produces BHs of these masses. Both explana-
tions are interesting and more data are needed to distinguish these two
possibilities.

• Searches for PBH bursts [6] are ongoing. Although there are candidates
for such events, no confirmed PBH burst event has been detected. The
spectral properties of such bursts should be distinguishable from the
‘normal’ GRBs. The non-detection of such an event has a few expla-
nations. First, the fraction of PBHs that make up the dark matter
must be quite low for PBHs of the relevant mass scale (see Fig. 9 of
[2]). Thus it is plausible that not enough of these PBHs exist to subse-
quently evaporate and trigger gamma-ray detectors. Second, it might
be possible for the critical mass holes to accrete enough to no longer
evaporate in the current era. However, the accretion rate is too small
and this would not explain the non-detection of PBH bursts. Even
if the accretion rate onto small PBHs happened to be large enough,
there would be smaller PBHs that would accrete enough to reach Mcr

anyway, filling the void of critical mass holes.
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Appendix A. Maximum PBH formation mass

As discussed in §3 the maximum formation mass of a PBH will be the Hubble
mass, i.e. the mass contained within the Hubble volume at a given time. The
Hubble volume is

VH =
4

3
πR3

H , (A.1)

where RH = 2ct is the Hubble radius in the early radiation dominated uni-
verse. The critical density is the Hubble mass in a Hubble volume and thus

MH(t) = ρcrVH

=
3H2

8πG
· 4
3
π(2ct)3

=
4H2c3t3

G
, (A.2)

but in a radiation dominated universe H = 1/(2t) so that

MH =
c3t

G
, (A.3)

which recovers Eq. (18). See [2, 3] for more detailed discussions of the PBH
mass function.

Appendix B. Sound speed in the cosmological fluid

In the late universe at redshifts lower than zth, the temperature of the bary-
onic matter decouples from the CMB photon temperature. Thus the sound
speed in the baryonic fluid is given by Eq. (32)

cs,b = (1.5× 103 cm s−1)(1 + z), (B.1)

where the increase due to reionization around z ∼ 9 is not taken into account.
In the redshift regime zth < z < zrec the redshift dependence changes due
to the temperature coupling between the baryonic matter and the CMB
radiation. Thus the sound speed evolves as Eq. (35)

cs,b = (1.9× 104 cm s−1)(1 + z)1/2. (B.2)
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In the above equations it is assumed that the baryonic matter is composed
entirely of hydrogen; corrections due to the helium and metal content of the
baryonic matter need to be made for a more realistic calculation.

In the early universe at redshifts higher than the recombination redshift
zrec ∼ 1090, the baryonic matter is coupled to the CMB radiation. The
sound speed in such a coupled fluid can be found by calculating

c2s =

(

∂P

∂ρ

)

s

, (B.3)

where the subscript s on the right hand side indicates taking the derivative at
constant entropy. The dominant pressure term is the radiation pressure and
the density is a sum of radiation and baryonic terms ρ = ρr + ρb. The dark
matter does not contribute to the pressure or density terms but has an early
influence when it is relativistic at redshifts greater than zfr ∼ 2.1× 1013.

Rewriting the partial derivatives of Eq. (B.3) in terms of temperature
gives

c2s =
(∂Pr/∂T )s

(∂ρr/∂T )s + (∂ρb/∂T )s
. (B.4)

Recalling Eq. (9) and Pr = ρrc
2/3 the numerator of Eq. (B.4) is

(

∂Pr

∂T

)

s

=
4π2

90
g⋆(T )

k4
BT

3

c3~3
=

4ρrc
2

3T
, (B.5)

ignoring the small ∂g⋆/∂T terms. Similarly, the first term in the denominator
of Eq. (B.4) is

(

∂ρr
∂T

)

s

=
4π2

30
g⋆(T )

k4
BT

3

c5~3
=

4ρr
T

. (B.6)

Recalling at high redshift the radiation and baryonic gas temperatures are
coupled, i.e. Tr = Tb = T and using T = T0(1 + z), the second term in the
denominator of Eq. (B.4) is

(

∂ρb
∂T

)

s

=
∂

∂T

(

ρb,0T
3

T 3
0

)

=
3ρb
T

. (B.7)
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Combining Eq. (B.5–B.7) into Eq. (B.4) gives

c2s =
c2

3

4ρr
4ρr + 3ρb

. (B.8)

It is clear that at redshifts higher than zmr ∼ 3400 the sound speed calculated
using Eq. (B.8) asymptotes to cs ∼ c/

√
3 ∼ 0.577c. The behavior of the

sound speed across all relevant redshifts is plotted in Fig. B.5.
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Figure 2: Waterfall plot of various PBHs forming at z = 1016 with masses near the critical
evaporation mass, Mcr ∼ 5.1× 1014 g. The PBHs near Mcr suffer no significant accretion
during their lifetime. The critical mass PBH evaporates at tevap = 13.8 Gyr after the
Big Bang (indicated by the dashed line). PBHs with M < Mcr evaporate prior to the
current era while those with M > Mcr will evaporate in the future if they do not accrete
significantly.
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Figure 3: Look-up plot of the final mass of PBHs forming at 1.0 s after the Big Bang
and ending at redshifts 30, 6, 0.1, and 10−4. Also shown are three cases of PBHs forming
at 1.0 s after the Big Bang and ending at z = 0.1 if they are located in a region where
fb = 101, 102, and 103. The plot shows the dramatic effects of late-universe accretion
and density enhancement. It is known from SMBH observations that there are BHs with
M ∼ 2.5× 1043 g at z ∼ 6.3 [25]. These holes are not easily explained with our ‘average’
accretion histories; a PBH growing this large would have to be contained in an overdense
region of the universe and supplied with gas for their entire histories. Laser Interferometer
Gravitational-Wave Observatory (LIGO) observations of the gravitational wave events
GW150914 [26] and GW151226 [27] prove the existence of ∼ 6 × 1034 g and ∼ 3 × 1034

g BHs at z ∼ 0.1. These observations are consistent with PBHs inside a regime of higher
than average baryonic matter density that grow by a few orders of magnitude over their
lifetime. The dotted vertical lines indicate the required initial masses that produce a PBH
of 30M⊙ by z = 0.1. Lower initial masses arise from higher density enhancements fb.
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Figure 4: Full look-up plot for all PBHs forming at 1.0 s after the Big Bang and ending
at redshifts 30, 6, 0.1, and 10−4; same color scheme as Fig. 3. The four dashed lines are
Mf = 1.1×1013Mi, Mf = 6.4×1011Mi, Mf = 7.7Mi, and Mf = Mi (top to bottom). The
zf = 30 case asymptotes to Mf = 1.01Mi for Mi > 1035 g. The low-mass regime agrees
with Figure 2 of [3], with the cut-off minimum mass increasing for lower final redshift
(lower mass PBHs would have already evaporated). The increase in Mf for Mi ∼ 1038 g
is due to the large accretion rate of Eq. (48) at high redshift, which is large for only a
short time due to the (1 + z)4 redshift dependence.
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Figure B.5: Plot of sound speed in the baryonic gas against redshift. The sound speed
asymptotes to c/

√
3 ∼ 0.577c quickly after the recombination redshift. The three vertical

dashed lines are (left to right) zth, zrec, and zmr. The large jump at zrec is due to the
decoupling of radiation and matter, which reduces the pressure.
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