Introductory Astronomy

Homework 4: The History of Astronomy to Newton: Homeworks and solutions are posted on the course web site. Homeworks are **NOT** handed in and **NOT** marked. But many homework problems (≈ 50–70%) will turn up on tests.

<table>
<thead>
<tr>
<th>Answer Table</th>
<th>Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b c d e</td>
<td>a b c d e</td>
</tr>
<tr>
<td>1. O O O O O</td>
<td>37. O O O O O</td>
</tr>
<tr>
<td>2. O O O O O</td>
<td>38. O O O O O</td>
</tr>
<tr>
<td>4. O O O O O</td>
<td>40. O O O O O</td>
</tr>
<tr>
<td>5. O O O O O</td>
<td>41. O O O O O</td>
</tr>
<tr>
<td>6. O O O O O</td>
<td>42. O O O O O</td>
</tr>
<tr>
<td>7. O O O O O</td>
<td>43. O O O O O</td>
</tr>
<tr>
<td>8. O O O O O</td>
<td>44. O O O O O</td>
</tr>
<tr>
<td>9. O O O O O</td>
<td>45. O O O O O</td>
</tr>
<tr>
<td>10. O O O O O</td>
<td>46. O O O O O</td>
</tr>
<tr>
<td>11. O O O O O</td>
<td>47. O O O O O</td>
</tr>
<tr>
<td>13. O O O O O</td>
<td>49. O O O O O</td>
</tr>
<tr>
<td>15. O O O O O</td>
<td>51. O O O O O</td>
</tr>
<tr>
<td>16. O O O O O</td>
<td>52. O O O O O</td>
</tr>
<tr>
<td>17. O O O O O</td>
<td>53. O O O O O</td>
</tr>
<tr>
<td>18. O O O O O</td>
<td>54. O O O O O</td>
</tr>
<tr>
<td>19. O O O O O</td>
<td>55. O O O O O</td>
</tr>
<tr>
<td>20. O O O O O</td>
<td>56. O O O O O</td>
</tr>
<tr>
<td>21. O O O O O</td>
<td>57. O O O O O</td>
</tr>
<tr>
<td>22. O O O O O</td>
<td>58. O O O O O</td>
</tr>
<tr>
<td>23. O O O O O</td>
<td>59. O O O O O</td>
</tr>
<tr>
<td>24. O O O O O</td>
<td>60. O O O O O</td>
</tr>
<tr>
<td>25. O O O O O</td>
<td>61. O O O O O</td>
</tr>
<tr>
<td>27. O O O O O</td>
<td>63. O O O O O</td>
</tr>
<tr>
<td>28. O O O O O</td>
<td>64. O O O O O</td>
</tr>
<tr>
<td>29. O O O O O</td>
<td>65. O O O O O</td>
</tr>
<tr>
<td>30. O O O O O</td>
<td>66. O O O O O</td>
</tr>
<tr>
<td>32. O O O O O</td>
<td>68. O O O O O</td>
</tr>
<tr>
<td>33. O O O O O</td>
<td>69. O O O O O</td>
</tr>
<tr>
<td>34. O O O O O</td>
<td>70. O O O O O</td>
</tr>
<tr>
<td>35. O O O O O</td>
<td>71. O O O O O</td>
</tr>
<tr>
<td>36. O O O O O</td>
<td>72. O O O O O</td>
</tr>
</tbody>
</table>
1. Did you complete reading the Introductory Astronomy Lecture before the **SECOND DAY** on which the lecture was lectured on in class?

 a) YYYessss! b) Jawohl! c) Da! d) Sí, sí. e) OMG no!

SUGGESTED ANSWER: (a), (b), (c), (d)

Wrong answers:

 e) As Lurch would say AAAARGH.

Redaction: Jeffery, 2008jan01

2. Astronomy is often cited as the:

 a) oldest exact, empirical science. b) youngest exact, empirical science. c) oldest inexact, empirical science. d) youngest, inexact, colonial science. e) oldest form of folklore.

SUGGESTED ANSWER: (a)

Calling astronomy this actual requires careful definition of terms to be exactly right—but who cares about being exactly right: the way we usually talk, it is more right than saying anything else.

Wrong answers:

 b) Never ever.
 e) I’m just not accepting this answer.

Redaction: Jeffery, 2001jan01

3. Moon-shaped cut marks on bones in groupings of order 30 from neolithic times (as long ago as 36,000 BCE) suggest that people then were doing astronomy by:

 a) whiling away the time. b) counting sheep. c) whittling. d) counting fingers and toes. e) counting days of the lunar month.

SUGGESTED ANSWER: (e) See No-xxiv and Cox-16.

Wrong answers:

 a) As Lurch would say: “Aaaarh.”

Redaction: Jeffery, 2001jan01

4. “Let’s play *Jeopardy!* For $100, the answer is: Stonehenge and many other prehistoric monuments suggest that the makers were doing this.”

 What is/are __________, Alex?

 a) special relativity calculations b) orbital physics c) simple alignment astronomy d) casting horoscopes e) receiving alien visitors from outer space

SUGGESTED ANSWER: (c)

Wrong answers:

 e) As Lurch would say: “Aaaarhhh.”

Redaction: Jeffery, 2001jan01

5. Stonehenge demonstrates that some prehistoric people:

 a) could predict eclipses.
 b) knew the northernmost rising location of the Sun.
 c) knew nothing of astronomy.
 d) knew more than the ancient Greeks about the universe.

Redaction: Jeffery, 2001jan01
e) suffered from back pain.

SUGGESTED ANSWER: (b) The answer can be confined by minimal knowledge.

Wrong answers:

a) Not the best answer since the theory that Stonehengers could predict eclipses is very unlikely to be true.

c) Most people know now of the Stonehenge-astronomy connection.

d) Not likely after all one can say about Greek astronomy

e) A nonsense answer although probably true of some of them—maybe all of them some of the time.

Redaction: Jeffery, 2001jan01

6. Sexagesimal angular units were introduced in astronomy insofar as we know by:

- a) the Mayans.
- b) the Pueblo Indians.
- c) Isaac Newton (1642/3–1727).
- d) Renaissance astronomers.
- e) the ancient Babylonians.

SUGGESTED ANSWER: (e)

I believe this is correct. The Babylonians used degrees (i.e., 360 degrees in a circle) (No-39) which are at least sort of sexagesimal. They certainly had sexagesimal arithmetic and Neugebauer (Ne-17) confirms they used sexagesimal math in astronomy. But did they use arcminutes and arcseconds? Everything implies that they did at least in computation. I think that the use of degrees suffices to make the question correct, but I wish someone would confirm if they had or had not arcminutes and arcseconds as explicit units.

The Sumerians invented sexagesimal in the 3rd millennium BCE, but I don’t think there is any evidence that they used it in astronomy. Wikipedia: Sexagesimal fails to elucidate this fine point, but relying on my fading memory of Neugebauer, I the Babylonians are the first recorded astronomers to use it in astronomy.

Wrong answers:

- a) Sexagesimal angular units were used in the Old World long before the New was contacted.
- b) It doesn’t seem likely.
- c) They are older than him.
- d) Could be plausible.

Redaction: Jeffery, 2001jan01

7. The ancient Babylonians were using a sexagesimal (number) system as early as circa 1800 BCE. We do not know why, but it may well have been to save labor in division. The many whole number factors of 60 (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60 for a total of 12 factors) simplifies many division problems. The sexagesimal system seems to have been used consistently only for mathematical and astronomical purposes. For everyday use, the Babylonians often or maybe mainly used other systems including the ubiquitous decimal system: counting on fingers is as old as the hills so to say. In the last centuries BCE the sexagesimal system was taken over into astronomy. Using a large base number with a lot of factors has advantages. But one needs a lot of symbols for all the numerals unless one uses some subsidiary base which is what the Babylonians did: 10. In any case 10 as a base has nothing very special to recommend it, except for the old (very old) finger exercise.

As a non-finger exercise, subtract 61°43′14″ from 120°41′03″. Recall that ′ stands for arcminutes and ″ for arcseconds. **HINT:** If sexagesimal subtraction seems too tricky, you can try sexagesimal addition to recover 120°41′03″.

- a) 182°24′17″.
- b) 58°57′49″.
- c) 58°31′14″.
- d) 59°51′49″.
- e) 58°51′14″.

SUGGESTED ANSWER: (b)

Recall single prime is for arcminutes; double prime is for arcseconds. The sexagesimal arithmetic is:

120 41 03 which changes to 119 100 63
Wrong answers:
a) This subtraction wouldn’t lead to a bigger number.

Redaction: Jeffery, 2001jan01

004 qmult 00500 2 4 4 easy deducto-memory: 3 early Greeks
8. The earliest 6th century BCE names in ancient Greek science include:

SUGGESTED ANSWER: (d)

Wrong answers:
a) Copernicus was not an ancient Greek.
b) Caesar important for his calendar, but definitely a Roman of the 1st century BCE.
c) Kepler, nope.
e) Tricky, but Aristotle and Ptolemy came later.

Redaction: Jeffery, 2001jan01

004 qmult 00600 1 4 5 easy deducto-memory: Parmenides round Earth
9. The spherical Earth theory may have been first proposed by Parmenides of Elea. Parmenides was:
 a) Mayan, but he lived in southern California. b) Babylonian, but he lived in Ur. c) Roman, but he lived in Alexandria. d) Icelandic. e) Greek, but he lived in what is now Italy.

SUGGESTED ANSWER: (e)

The students know the spherical Earth theory came from the Greeks: elimination allows them to reach the answer.

Wrong answers:
a) The Mayans were good, but not that good.
d) Oh, c’mon.

Redaction: Jeffery, 2001jan01

004 qmult 00610 3 4 5 tough deducto-memory: round Earth reasons
10. The ancient Greek Presocratic philosophers:
 a) may have hypothesized a spherical Earth in order to explain the daily rotation of the celestial sphere. But it is equally likely that they thought that a spherical Earth was proven by the axioms of geometry.
 b) may have hypothesized a spherical Earth in order to explain the daily rotation of the celestial sphere. Thales of Miletus then used the spherical Earth theory to predict a solar eclipse.
 c) may have hypothesized a spherical Earth because they thought the Earth needed to be spherical in order to be in balance at the center of the cosmos. Aristotle (384–322) later summarized empirical arguments for the spherical Earth. These included the varying celestial locations of the stars and planets relative to the horizon as one moved north-south and the fact that the Earth’s shadow on the Moon in a lunar eclipse was always round. However, ARISTOTLE went on to affirm that Greece must be on top of the spherical Earth because the ground in Greece was nearly level.
 d) may have hypothesized a spherical Earth because they thought the Earth needed to be spherical in order to be in balance at the center of the cosmos. Aristotle (384–322) later summarized empirical arguments for the spherical Earth. These included the varying celestial locations of the stars and planets relative to the horizon as one moved north-south and the fact that the Earth’s shadow on the Moon in a lunar eclipse was always round. However, PTOLEMY went on to affirm that Greece must be on top of the spherical Earth because the ground in Greece was nearly level.
e) may have hypothesized a spherical Earth because they thought the Earth needed to be spherical in order to be in balance at the center of the cosmos. Aristotle (384–322) later summarized empirical arguments for the spherical Earth. These included the varying celestial locations of the stars and planets relative to the horizon as one moved north-south and the fact that the Earth’s shadow on the Moon in a lunar eclipse was always round.

SUGGESTED ANSWER: (e)

According to Wik: Spherical Earth, Aristotle did not get the ship-at-sea argument. That was added later by Strabo.

Wrong answers:

a) One doesn’t need a spherical Earth in order to have a rotating celestial sphere. Also pure geometry has no necessary connection to the actual physical world.

b) Thales did not use the spherical world theory for this and he did not think the world was round. He hypothesized that it was a disk.

c) If the Greeks moved north and south far enough to know the altitudes of stars, etc. varied then they knew that down was always to the center of the Earth, and thus ground is approximately “level” everywhere on Earth.

d) Same as (c).

Redaction: Jeffery, 2001jan01

11. A determination of the radius of the Earth was:

 a) made by **ERATOSTHENES** in the **15TH CENTURY CE**. This measurement proved the Earth was spherical and was the inspiration for Columbus’s voyage.

 b) made by **ARISTOTLE** in the **15TH CENTURY CE**. This measurement proved the Earth was spherical and was the inspiration for Columbus’s voyage.

 c) made by **ERATOSTHENES** in the **3rd CENTURY BCE**. This measurement was based on the assumption that the Earth was **SPHERICAL** and the Sun was very distant from the Earth. If the Earth was not spherical, the measurement would have required the **SAME** interpretation.

 d) made by **ERATOSTHENES** in the **3rd CENTURY BCE**. This measurement was based on the assumption that the Earth was **SPHERICAL** and the Sun was very distant from the Earth. If the Earth was not spherical, the measurement would have required a **DIFFERENT** interpretation.

 e) made by **ERATOSTHENES** in the **3rd CENTURY BCE**. This measurement was based on the assumption that the Earth was an **OVAL SHAPE**. When the result came out spherical, Eratosthenes was surprised.

SUGGESTED ANSWER: (d)

Wrong answers:

a) As Lurch would say: “Aaaaah.”

Redaction: Jeffery, 2001jan01

12. A major obstacle that ancient Greek astronomers had in trying to determine the nature of the solar system was:

 a) the eastward motion of the planets.

 b) the inability to measure any distances beyond Pluto.

 c) the inability to measure any distances beyond the Moon.

 d) the lack of all theoretical biases.

 e) the lack of geometrical skills.

SUGGESTED ANSWER: (c)

Wrong answers:

a) It was the westward retrograde motions that were hard to explain. Even I had said westward, the lack of ability to measure distances (other than to the Moon) is the more fundamental problem.
b) If they could have measured to Pluto (of which they had never heard), they would have known the basic structure of the solar system.

d) They certainly didn’t lack theoretical biases. The lack of biases is often an aid rather than an obstacle and in more than this.

e) Everyone one knows the Greeks were geometers down to their toes.

Redaction: Jeffery, 2001jan01

004 qmult 00800 1 4 3 easy deducto-memory: time sequence Greek astronomers

13. Which of the following sequences is correctly ordered in time?

- c) Thales, Aristotle, Ptolemy, Copernicus, Galileo.
- d) Ptolemy, Aristotle, Thales, Copernicus, Galileo.

SUGGESTED ANSWER: (c) Thales and maybe Ptolemy could be hard to recognize.

Wrong answers:
- e) Kepler before Aristotle!

Redaction: Jeffery, 2001jan01

004 qmult 00910 3 5 5 tough thinking: days of the week

14. The ancient Babylonians of the 5th century BCE probably invented horoscopic astronomy (No-41), but its main structure as passed down to the present probably evolved in the Greco-Roman world from the 2nd century BCE onward (Ne-170–171).

This Greco-Roman astrology has left some unusual imprints on modern conventions. For example, each hour of the 24-hour day—which itself came from the ancient Egyptians of the 2nd millennium BCE by no very logical process (Ne-86)—has a ruler (Ne169). The rulers are the seven moving stars which are ordered in decreasing order by their sidereal periods: Saturn, Jupiter, Mars, Sun, Venus, Mercury, and Moon. The Greco-Roman astronomers (including Ptolemy) believed this was the order of decreasing distance from the Earth: actually it is the order of decreasing distance from the Sun if Earth replaces Sun in the list and you eliminate the Moon.

The rulers of each hour are assigned using the ordered sequence of moving stars. The assignment of rulers starts with the 1st hour of Saturday being Saturn. The next hour is assigned Jupiter as its ruler and so on. When one completes assigning the sequence of 7 stars, then one starts the sequence over again.

Each day of the week has a ruler too: its ruler is the ruler of that day’s first hour. A little calculation—or knowing that Jupiter’s day got assigned to Thor in English—shows that the day rulers starting from Saturday’s ruler Saturn are:

- a) Saturn, Sun, Moon, Mars, Saturn, Sun, and Moon.
- b) Saturn, Saturn, Saturn, Saturn, Saturn, Saturn, and Saturn.
- c) Saturn, Sun, Saturn, Mars, Saturn, Mercury, and Saturn.
- d) Saturn, Sun, Moon, Mars, Jupiter, Mercury, and Venus.
- e) Saturn, Sun, Moon, Mars, Mercury, Jupiter, and Venus.

SUGGESTED ANSWER: (e)

You probably guessed the answer without doing the calculation. The resulting rulers are the moving stars (or gods) who provide the names of the week days. Of course, in English the guessed solution is a bit obscured by the fact that all but one of the Latin day names got replaced by Germanic/Norse god derived names. Sun and Moon replaced the Latin Sol and Luna. The not-very-well remembered Germanic/Norse god Tiw replaced Mars; Woden replaced Mercury; Thor replaced Jupiter; and the old English goddess Frige (equivalent to Norse goddess Frigg) replaced Venus. Saturday is the only Latin-derived name that made it into English.

In Spanish things are at bit clearer: sabados, domingo, lunes, martes, miericoles, juebes, vernes.
Of course, one should do the calculation to confirm your guess. If you are math-minded, the following formula comes to mind after some thought:

\[J = \text{mod}[24 \times (I - 1), 7] + 1, \]

where \(I \) is the day number assigning 1 to Saturday, 2 to Sunday, 3 to Monday, etc., \(J \) is the ruler number assigning 1 to Saturn, 2 to Jupiter, 3 to Mars, etc., and mod is the modulus function. Using the function one finds arrives at the following table.

<table>
<thead>
<tr>
<th>Day</th>
<th>I</th>
<th>J</th>
<th>Ruler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturday</td>
<td>1</td>
<td>1</td>
<td>Saturn</td>
</tr>
<tr>
<td>Sunday</td>
<td>2</td>
<td>4</td>
<td>Sun</td>
</tr>
<tr>
<td>Monday</td>
<td>3</td>
<td>7</td>
<td>Moon</td>
</tr>
<tr>
<td>Tuesday</td>
<td>4</td>
<td>3</td>
<td>Mars</td>
</tr>
<tr>
<td>Wednesday</td>
<td>5</td>
<td>6</td>
<td>Mercury</td>
</tr>
<tr>
<td>Thursday</td>
<td>6</td>
<td>2</td>
<td>Jupiter</td>
</tr>
<tr>
<td>Friday</td>
<td>7</td>
<td>5</td>
<td>Venus</td>
</tr>
</tbody>
</table>

Well after all this you can see why we’ve given up on astrology. It’s not that it’s not true: it’s just too tricky.

Wrong answers:
- b) Not very likely.

Redaction: Jeffery, 2001jan01

15. Aristotelian cosmology:

a) consisted of perfect eternal cubes rotating about the Earth.

b) put the Earth at the center of the cosmos. The planets and fixed stars were located on sets of solid spheres that rotated about the Earth. The celestial phenomena were eternal exactly repeating motions. Beyond the sphere of the fixed stars was a CHAOS of primordial material in which were embedded other finite cosmoses.

c) put the Earth at the center of the cosmos. The planets and fixed stars were located on sets of solid spheres that rotated about the Earth. The celestial phenomena were eternal exactly repeating motions. Beyond the sphere of the fixed stars was NOTHING, not even empty space. The universe was finite.

d) was DISCARDED by everyone in the medieval Islamic period. It put the Earth at the center of the cosmos. The planets and fixed stars were located on sets of solid spheres that rotated about the Earth. The celestial phenomena were eternal exactly repeating motions. Beyond the sphere of the fixed stars was NOTHING, not even empty space. The universe was finite.

e) was never seriously considered again after Ptolemy’s time.

SUGGESTED ANSWER: (c)

Wrong answers:
- a) Cubes?

Redaction: Jeffery, 2001jan01

16. Stellar parallax is:

a) the westward motion of the planets.

b) the daily westward motion of the fixed stars.

c) an optical illusion.

Extra keywords: the other definition is in ch-38
d) the change in angular position of a star relative to background stars due to the Earth’s yearly
motion around the Sun.
e) the change in magnitude of a star due to the Earth’s year motion around the Sun.

SUGGESTED ANSWER: (d)

Wrong answers:

a) That’s retrograde motion.

Redaction: Jeffery, 2001jan01
a) Democritean cosmology
b) Newtonian cosmology
c) big bang cosmology
d) inflation cosmology
e) Aristotelian cosmology

SUGGESTED ANSWER: (e)

Wrong answers:
a) Democritus (c. 460–c. 370 BCE) had interesting atomist cosmology that unfortunately was still flat-Earth.

Redaction: Jeffery, 2001jan01

19. In modern times (which here we mean to be after circa 1450), who first proposed the heliocentric theory of the solar system?
 a) Nicolaus Copernicus (1473–1543).
b) Thomas Digges (c. 1546–1595).
c) Tycho Brahe (1546–1601).
d) Galileo Galilei (1564–1642).
e) Isaac Newton (1643–1727).

SUGGESTED ANSWER: (a)

Wrong answers:
c) Tycho proposed the Tychonic system which was geocentric, but with the Sun as a secondary center.
e) Newton was born 1642 Dec25 on the Julian calendar used in England all of this life. This 1643 Jan04 on the modern Gregorian calendar that was used in most of the rest of Europe at that time.

Redaction: Jeffery, 2001jan01

20. The Aristotelian and Ptolemaic cosmologies were:
a) mutually COMPLETELY CONSISTENT. Together they gave a reasonable explanation of celestial phenomena. In the Medieval Islamic and European cultures, they were regarded as totally satisfactory. The heliocentric model of Copernicus was introduce only due to Copernicus’ personal eccentricity. He merely made a lucky guess.
b) ABANDONED almost as soon as they were proposed. In the Medieval Islamic and European cultures, no theoretical interpretation was put on celestial phenomena at all. The prediction of celestial events was done entirely using Babylonian cycles.
c) were largely accepted during in the Medieval Islamic and European cultures despite their PARTIAL INCONSISTENCY and their lack of any definite size scale or ordering for the planets. Occasional attempts to improve these cosmologies came to little. The Copernican theory was a RADICAL ALTERNATIVE.
d) were largely accepted during in the Medieval Islamic and European cultures despite their PARTIAL INCONSISTENCY and their lack of any definite size scale or ordering for the planets. Occasional attempts to improve these cosmologies came to little. The Copernican theory was NOT A RADICAL ALTERNATIVE. It was completely consistent with Aristotelean physics and even kept epicycles.
e) were largely accepted during in the Medieval Islamic and European cultures despite their PARTIAL INCONSISTENCY and their lack of any definite size scale or ordering for the planets. Occasional attempts to improve these cosmologies ALWAYS SUCCEEDED in making their quantitative predictions much more accurate. The Copernican theory was only the lucky last of these attempts. Sheer bias kept the Aristotelean and Ptolemaic cosmologies dominant until then.

SUGGESTED ANSWER: (c)

Wrong answers:
e) Well no: they could be made a little more accurate than Ptolemy but not much more accurate. In fact, they were usually less accurate I believe.

Redaction: Jeffery, 2001jan01
21. A key reason (perhaps the most important reason) that led Copernicus to propose the heliocentric solar system was to:

- a) get rid of uniform circular motion.
- b) appease the Sun god.
- c) answer Galileo's insult.
- d) get a prediction of the relative positions of the planets.
- e) prove that the universe was infinite.

SUGGESTED ANSWER: (d)

Wrong answers:
- a) Ah, but he kept uniform circular motion.
- b) C'mon.
- c) Copernicus lived before Galileo and the answer sounds nonsensical anyway.
- e) Actually, he was sort of against the infinite universe, but he was forced to conclude it was very big.

Redaction: Jeffery, 2001jan01

22. Apparent retrograde motion is:

- a) the *westward* motion of a *star* on the sky.
- b) the *westward* motion of a *planet* on the sky.
- c) the *eastward* motion of a *planet* on the sky.
- d) the *eastward* motion of a *star* on the sky.
- e) the result of an inter-planetary collision.

SUGGESTED ANSWER: (b) Of course, retrograde motion applies to planets, not stars and eastward motion is the usual motion of solar system objects relative to the fixed stars, therefore (b) follows by elimination.

Wrong answers:
- e) This is a red herring.

Redaction: Jeffery, 2001jan01

23. “Let’s play Jeopardy! For $100, the answer is: He/she discovered that the planets orbited the Sun in elliptical orbits.”

Who is __________, Alex?

- a) Apollonios of Perga (circa 3rd century BCE)
- b) Nicolaus Copernicus (1473–1543)
- c) Johannes Kepler (1571–1630)
- d) Galileo Galilei (1564–1642)
- e) Caroline Herschel (1750–1848)

SUGGESTED ANSWER: (c)

Wrong answers:
- a) Ah, the irony. Apollonios was the one who apparently first proposed epicycle models for the planets. But he was also the great ancient expert on ellipses. Of course, he would have had to adopt a heliocentric or Tychonic system of the solar system in order to really suggest ellipses as good for orbits. That is not impossible given that he was a near contemporary at least of Aristarchos of Samos, the first proposer of the heliocentric model. True with the inferior data available to Apollonios, epicyclic models would have given probably equally good fits and would have been simpler to employ.
- b) Famously, Copernicus stuck with epicycle models for his heliocentric system.
- d) Famously, Galileo never appreciated Kepler’s epicycle models though he had heard of them.
e) She was the sister of the William Herschel, the greatest observational astronomer of the 18th century. She was a significant astronomer in her own right. She was also a professional singer—a soprano.

Redaction: Jeffery, 2001jan01

24. Kepler’s three laws of planetary motion:
 a) **PROVED** the Copernican theory. But this was not immediately realized because it was difficult to master the mathematical techniques and data needed to verify the three laws.
 b) were partially empirical discoveries made by analyzing Tycho’s data. The laws were inconsistent with the Tychonic model, and hence **PROVED** the Copernican model.
 c) were partially empirical discoveries made by analyzing Tycho’s data. The laws were consistent geometrically with both the Tychonic and Copernican theories. Thus they were **INSUFFICIENT** by themselves to prove the Copernican theory. Nevertheless, since the Earth fit so well as a planet obeying the three laws and was so exceptional as the center of the solar system (given the three laws), an unbiased person might well have said that the three laws strongly favored the Copernican theory.
 d) were partially empirical discoveries made by analyzing Tycho’s data. The laws were consistent geometrically with both the Tychonic and Copernican theories. Thus they were **SUFFICIENT** by themselves to prove the Copernican theory.
 e) were partially empirical discoveries made by analyzing Tycho’s data. The laws were consistent geometrically with both the Tychonic and Copernican theories. Thus they were **SUFFICIENT** by themselves to prove the Copernican theory. Realizing this Kepler **SUPPRESSED** them for the term of his life.

SUGGESTED ANSWER: (c)

Note that “partially empirical”. Kepler had a strong theoretical principle guiding his search for the laws of planetary motion. That principle was that the Sun-Planet distance was a key variable in determining planetary motion.

Wrong answers:
 e) There is a logical error here.

Redaction: Jeffery, 2001jan01

25. According to Kepler’s 3rd law, the orbital period of a planet (i.e., the planet’s year) depends on planet:
 a) mass. b) diameter. c) distance from Sun. d) color. e) axis tilt.

SUGGESTED ANSWER: (c)

Wrong answers:
 d) As Lurch would say: “Aaaarh.”

Redaction: Jeffery, 2001jan01

26. Kepler’s 3rd law for the solar system planets can be conveniently written

\[P_{\text{year}} = A_{\text{AU}}^{3/2} \quad \text{or, less conveniently,} \quad P_{\text{year}}^2 = A_{\text{AU}}^3, \]

where \(P_{\text{year}} \) is the orbital period in Earth years and \(A_{\text{AU}} \) is the mean Sun-planet distance in astronomical units (AU) (i.e., in mean Sun-Earth distances). If an asteroid is 9 AU from the Sun, what is its orbital period in years?

 a) 9. b) 3. c) 27. d) 729. e) 1.

SUGGESTED ANSWER: (c)
Wrong answers:
e) This would mean the asteroid was in the Earth’s orbital location.

Redaction: Jeffery, 2001jan01

004 qmult 02210 3 3 5 hard math: Kepler’s 3rd law calculation 2
27. If a planet has a mean distance from the Sun of 9 astronomical units, what is its orbital period in years?
 a) 28 years. b) 3 years. c) 9 years. d) 81 years. e) 27 years.

SUGGESTED ANSWER: (e)

The student must know Kepler’s 3rd law in the reduced form:

\[p = \frac{a^{3/2}}{2}, \]

where \(p \) is in years and \(a \) is astronomical units. and know how to use it. In this case,

\[9^{3/2} = 9 \times \sqrt{9} = 9 \times 3 = 27. \]

Wrong answers:
a) Close.

Redaction: Jeffery, 2001jan01

004 qmult 02420 1 4 3 easy deducto-memory: Galileo, phases of Venus
28. Galileo’s discovered that Venus showed a full set of phases like the Moon. But it was already known since Antiquity that Venus is never opposite the Sun on the sky and in fact is never further than 46° degrees from the Sun. Thus, Galileo’s discovery proved:
 a) Venus orbited the Earth.
 b) Venus orbited the Moon.
 c) Venus orbited the Sun.
 d) Venus executed an orbit about an empty point in space that always lies between the Earth and Sun on the Sun-Earth line.
 e) Venus is falling into the Sun perpetually.

SUGGESTED ANSWER: (c) Venus does orbit the Sun and if Galileo’s proof was valid, then it must be the right answer. A little thought shows his answer is right.

Wrong answers:
a) It would show full phases if it orbited the Earth, but then it would also move far from the Sun and have oppositions.
 d) This is the Ptolemaic model which Galileo disproved.

Redaction: Jeffery, 2001jan01

004 qmult 02430 2 4 3 moderate deducto-memory: Galileo’s discoveries
29. Galileo did NOT discover:
 a) the four largest moons of Jupiter. b) the phases of Venus. c) the moons of Mars.
 d) sunspots. e) the mountainous surface of the Moon.

SUGGESTED ANSWER: (c) See Se-65. The answer can be deduced from what Galileo could have seen with a small telescope. This is a combination Chapter 4 and 23 question, but mostly 4.

Wrong answers:
e) All things are wrong.

Redaction: Jeffery, 2001jan01

004 qmult 02440 2 5 5 moderate thinking: Galileo, moons of Jupiter
30. Galileo’s discovery of the moons of Jupiter:
 a) had no bearing on the debate over the Copernican theory.
b) meant that the Earth was the center of Jupiter’s orbit.
c) explained the phases of Venus.
d) meant that the Earth was not the physical center of all motion in the solar system, and that Earth could have a moon and still be on an EPICYCLE.
e) meant that the Earth was not the physical center of all motion in the solar system, and that Earth could have a moon and still be a PLANET.

SUGGESTED ANSWER: (e) A moderate thinking question although it could be just a fact one for some. If one understood the nature of the Copernican debate, (e) seems best.

Wrong answers:

a) A very implausible opinion.
b) A false conclusion.
c) A red herring.
d) The first part is a true conclusion and the second is true (in the context of the Copernican debate), but is not a conclusion from the moons of Jupiter.

Redaction: Jeffery, 2001jan01

31. From his observations of Saturn in 1610, Galileo’s discovered:

a) that Saturn had an obvious ring.
b) that Saturn had odd protuberances, but he couldn’t make out what they were. Christiaan Huygens later in the 17TH CENTURY concluded that Saturn had a ring.
c) that Saturn had odd protuberances, but he couldn’t make out what they were. Christiaan Huygens later in the 20TH CENTURY concluded that Saturn had a ring.
d) that Saturn had 3 obvious rings that he labeled A, B, and C.
e) that Saturn’s rings, which are visible to the naked eye were green.

SUGGESTED ANSWER: (b) See No-335,344.

Wrong answers:

c) The 20th century is pretty late for this fairly easy telescopic discovery.
d) Saturn does have 3 main rings labeled A, B, and C, but did discover or label them.

Redaction: Jeffery, 2001jan01

32. Galileo’s telescopic discoveries:

a) PROVED Copernicanism absolutely. Resistance to this proof was simply irrational.
b) proved that the ancients had been wrong about the cosmos and that they had not had all the evidence. But Kepler’s laws had already PROVEN Copernicanism to all the mathematically-minded including Galileo. Not everyone had accepted these proofs, of course. Soon—but not soon enough for Galileo—they would.
c) proved that the ancients had been wrong about the cosmos and that they had not had all the evidence. Now Tycho’s demonstrations that the heavens were mutable and the crystalline spheres had no existence in a strong sense had already proved some of the ancient beliefs wrong. And Kepler’s first two laws, published 1609 just a year before the telescopic discoveries were published in 1610, were so much better descriptions—that is they were more accurate, more unique, and simpler (with a certain interpretation of “simpler” of course)—that they made the ancient descriptions seem implausible. But Tycho’s work and Kepler’s work (at least prior to the publication of the *Rudolphine Tables* [1627]) was NOT EASILY VERIFIABLE by anyone else. The telescopic discoveries could be verified fairly easily (some very easily) by anyone and no expertise with mathematical astronomy was needed. Thus, the telescopic discoveries tore the mask from the cosmos (well a bit anyway) and opened minds to new ideas, even Copernicanism.
d) proved that the ancients had been wrong about the cosmos and that they had not had all the evidence. Now Tycho’s demonstrations that the heavens were mutable and the crystalline spheres had no existence in a strong sense had already proved some of the ancient beliefs wrong. And Kepler’s first two laws, published 1609 just a year before the telescopic discoveries were published in 1610, were so much better descriptions—that is they were more accurate, more unique, and simpler
(with a certain interpretation of “simpler” of course)—that they made the ancient descriptions seem implausible. But Tycho’s work and Kepler’s work had been mostly ignored because they were BOTH COPERNICANS when Copernicanism was still considered to be COMPLETELY DISCREDITING. The telescopic discoveries, on the other hand had been made by a Copernican whose Copernicanism was still secret (a closet Copernican), and therefore were generally taken as being well founded. Thus, the telescopic discoveries tore the mask from the cosmos (well a bit anyway) and opened minds to new ideas, even Copernicanism.

e) were completely irrelevant to the debate over Copernicanism. The fact that they were made at about the same time that Copernicanism became a hot topic is a historical coincidence.

SUGGESTED ANSWER: (c) Ah poor old mathematical astronomy—a bizarre endeavor tolerated for its utility in astrology one supposes.

Wrong answers:

 e) C’mon.

Redaction: Jeffery, 2001jan01

004 qmult 03000 1 4 2 easy deducto-memory: unified terrestrial/celestial

33. Newtonian physics unified:

 a) thermodynamics and special relativity. b) terrestrial and celestial physics. c) terrestrial and substantial physics. d) terrestrial and Martian physics. e) talking and walking physics.

SUGGESTED ANSWER: (b)

Wrong answers:

 e) As Lurch would say: “Aaaarh.”

Redaction: Jeffery, 2001jan01