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ABSTRACT

Bayesian analysis (or Bayesian inference if you prefer) is a quantified theory of

learning and the scientific method. In this note, we prove that Bayesian analysis

is a true theory in an ideal limit that can be approached sufficiently closely

for Bayesian analysis to be useful. In fact, we posit without proof that any

useful theory should be true in an ideal limit that can be approached sufficiently

closely to be, as said, useful. Some ancillary results for Bayesian analysis are also

presented.

Subject headings: supernovae: cosmology: theory — cosmological parameters —

dark energy

1. INTRODUCTION

The schematic scientific method is a cycle of theorizing and observation (which often

includes experimentation or computer simulation). In the cycle, wrong theories and wrong

observations are ideally eliminated and if you have access to all possible relevant theories

and observations ideally you eventually arrive at true about whatever aspect of reality you

are studying.

However, a complication is that often theories cannot be ruled in or out by a new

set of observations. Rather their probabilities goes up or down depending new set. Very

often these probabilities are judged ver qualitative: e.g., “after data X, theory Y is now

very likely/unlikely.” In fact, the procedure of updating from prior probabilities (priors) to

posterior probabilities (posteriors) has always gone on in everyday life. For example, say

you are going to a job interview. You have prior expectations about things will go. After

the interview update your expectations based on your experience. This is all done usually

qualitatively although sometimes the posteriors have gone to flat zero: e.g., you expect to

get the job and you don’t.
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Bayesian analysis quantitifies the cycle of updating priors to posteriors, and thus quan-

tifies the scientific method. The ideal Bayesian analysis with access to all possible relevant

theories and observations can be proven to lead to truth: i.e., the true theory of the aspect

of reality you are studying. We give the proof in § 4. Note the word “ideal.” Practicable

Bayesian analyses cannot guarantee arrival at truth. However, practicable Bayesian anal-

yses can approach the ideal Bayesian analysis closely enough that Bayesian analysis has

become highly useful in certain fields of research in which the theories themselves predict

probabilities: e.g., cosmology, sociology, psychology, epidemiology, and economics.

Why if Bayesian analysis is useful was not used much until the 1990s (depending on how

one counts things). It’s useful when you have large data sets and enormous computer power

to analyze them. Such data sets and computer power have grown together since the 1950s

gradually making Bayesian analysis more and more practicable in nontrivial applications.

Now the basic element of Bayesian analysis is Bayes’ theorem which was discover by

Thomas Bayes in 1763 and independently by Pierre-Simon Laplace in 1774 (Wikipedia:

Bayes’ theorem). It is an extremely simple theorem and is simply proven which we do in § 2.

Bayesian analysis itself is application of Bayes’ theorem to the analysis of data. The very

basic ideas of Bayesian analysis are very simple as we will show in § 4. The developments

beyond the basic ideas and the applications of Bayesian analysis are immense fields that

we do not go into in this note. Much of the pioneering development of Bayesian analysis

was done by Harold Jeffreys (1891–1989) (Wikipedia: Harold Jeffreys; Jeffreys 1961)—no

relation though he manages to look like my father anyway.

The contents of this note are as following. In § 2, we prove Bayes’ theorem as aforesaid.

§ 4 § 5 § 6 § 7 § 8 § 9

2. BAYES’ THEOREM

Here we prove Bayes’ theorem which is the basic theorem of Bayesian analysis. Consider

three general events A, B, and K. The event K is not necessary to the proof, but it is useful

to include it for proving Bayesian analysis itself. When we get to that proof, K will stand for

background knowledge. The joint probability for A, B, and K is P (ABK), where here we

use the “product” to stand for intersection of events. We factorize the probability P (ABK):

P (ABK) = P (A|BK)P (BK) = P (A|BK)P (B|K)P (K) , (1)

where P (U |V ) means is the conditional probability of U given V . Similarly,

P (ABK) = P (B|AK)P (AK) = P (B|AK)P (A|K)P (K) . (2)
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Equating the last two results gives Bayes’ theorem in symmetrical and unsymmetrical forms:

P (A|BK)P (B|K) = P (B|AK)P (A|K) (3)

P (A|BK) =
P (B|AK)P (A|K)

P (B|K)
P (B|AK) =

P (A|BK)P (B|K)

P (A|K)
. (4)

If we suppress the K as unnecessary, we get usual expressions for Bayes’ theorem in sym-

metrical and unsymmetrical forms:

P (A|B)P (B) = P (B|A)P (A) (5)

P (A|B) =
P (B|A)P (A)

P (B)
P (B|A) =

P (A|B)P (B)

P (A)
. (6)

3. MEANING OF PROBABILITIES

I believe that the meaning of probability is always the ratio of some events/outcomes

to some number of trials for the events/outcomes in the limit of infinite trials. This is the

frequentist definition of probability (e.g., Trotta 2017, p. 5). A Bayesian perspective on

probability is that probability can also measure just degree of belief, and so can deal with

unique events and so is more general than the frequentist definition (e.g., Trotta 2017, p. 5).

However, this Bayesian perspective seems lacking meaning to me although you can develop

much probability formalism without the frequentist definition.

Rather than argue my position in general, I will just take consider a case that occurs

in the next section, § 4, and which I think generalizes easily to complete generality. Say

initially we have a set of theories {Ti} about some aspect of reality based on background

knowledge K0 relevant to the set of theories. Only one theory at most can be true logically:

the others are false. How can we assign probabilities to the theories (i.e., P (Ti|K0)) with only

one trial reality? Well we can imagine an infinite number of possible realities in which one

obtains K0, but where the other aspects of the realities cover all possibilies and can be quite

different. Those imagined realities imply that the probabilities P (Ti|K0) do exist. Can we

know them? Well if theory Tj is ruled out or in by K0, then we know already P (Tj|K0) = 0

or P (Tj|K0) = 1 even with only having one reality that leads to K0. In the ruled-in case,

we even know P (Ti6=j|K0) = 0. What if no theory is ruled in, but some are possible by K0.

(Hereafter, I only refer to the set of possible theories {Ti}.) There may be some way we can

know exact probabilities of {Ti} in special cases: e.g., we know them by definition in the toy

case in § 6. But in most realistic cases, we will not know exactly the nonzero P (Ti|K0). But

I emphasize they do exist and we can estimate them by some piece of information included
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in K0. The estimation may be based how similar cases work have worked out in the past. If

nothing else and we deem all of set {Ti} plausible, there is the principle of indifference: just

assign them all equal probability. (e.g., Wikipedia: Principle of indifference).

Now one might argue for the Bayesian perspective of degree of belief by saying the

estimation of the P (Ti|K0) is the degree of belief. However, I think one still needs the

argument of the last paragraph to give meaning to “degree of belief,” and so one is basing

“degree of belief” on a frequentist definition of probability ultimately.

The frequentist definition of probability implies that joint probabilities can always be

factorized. For proof:

P (AB) = lim
N→∞

NAB

N
= lim

N→∞

NAB

NB

NB

N
= P (A|B)P (B) ,

where A and B are general events, NAB is the number of joint AB events, NB is the number

of B events, and N is the number of trials. We used the factorization of probabilities in the

proof of Bayes’ theorem in § 2.

Note that Bayes’ theorem itself demonstrates that there are other ways of expanding

probabilities besides factorization.

4. PROOF OF BAYESIAN ANALYSIS

In this section, we prove that Bayesian analysis in the ideal limit (i.e., that ideal Bayesian

analysis) leads to a true theory a general phenomenon X. Note that ideal Bayesian analysis

is an iterative procedure.

For general iteration step ℓ, we have knowledge Kℓ about X which includes a set of

possible theories {Ti}. We also know the theory probabilities P (Ti|Kℓ) for step ℓ. The

initial knowledge is K0 and the initial possible theory probabilities are P (Ti|K0). The initial

probabilities in most realistic cases will be estimates and not exactly known values, but

those are all we need for the ideal Bayesian analysis. See the discussion of estimated theory

probabilities in § 3. The initial probabilities are our initial prior probabilities or initial priors.

Note that knowledge Kℓ may not include all possible theories consistent with Kℓ and

one of the not included ones may even be the true theory. This all right. The procedure

corrects for this deficiency. However, in order expand in the P (Ti|Kℓ) (which we must do:

see below), we need to treat the known set {Ti} as being be exhaustive for Kℓ even if it is

actually not. Again the procedure corrects for this deficiency. Because the known set {Ti}

is being treated as exhaustive, the probabilities P (Ti|Kℓ) can be normalized and, also for



– 5 –

expansion, we require that we have normalized the probabilities: i.e., we have

1 =
∑

i

P (Ti|Kℓ) . (7)

The iteration procedure consists in aquiring new data sets Dℓ: i.e., D1, D2, . . .DL. Every

iteration, we update our knowledge: Kℓ = Kℓ−1Dℓ, where again the “product” stands for

intersection of events. Note that one might usually think of Kℓ as a union of Kℓ−1 and Dℓ.

However, if we think of Kℓ−1 and Dℓ as events, then having them both is an intersection.

We define DL to be when we have enough knowledge that P (Ti|KL) = 1 for the true theory

Ti and all the other probabilities are zero. Note endpoint L could be finite or infinite.

Clearly, we have to introduce new theories suggested by the Dℓ if the initial set {Ti}

did not include the true theory. New theories might be introduced even if the initial set

did include the true theory since since we do not know the true theory before the endpoint.

We must estimate new probabilities for newly introduced theories and renormalize the set

of probabilities.

For iteration ℓ, we have posterior probabilities

P (Ti|Kℓ) = P (Ti|Kℓ−1Dℓ) =
P (Dℓ|TiKℓ−1)P (Ti|Kℓ−1)

P (Dℓ|Kℓ−1)
, (8)

where we have used Bayes’ theorem equation (4) changing the variables names, mutatis

mutandis. As we from equation (8) that the prior for theory Ti at iteration ℓ gets updated

to the posterior by the use of Bayes’ theorem.

The quantity P (Dℓ|TiKℓ−1) is the likelihood (e.g., Wikipedia: Likelihood function),

but it cannot be varied by varying free parameters since there are none for our theories

Ti. Note that the Kℓ−1 in P (Dℓ|TiKℓ−1) cannot be suppressed as irrelevant since obser-

vational/experimental setup giving Dℓ goes into the calculation of P (Dℓ|TiKℓ−1) which we

assume that we can do in the ideal Bayesian analysis.

Now note that we have the data set Dℓ in hand, and so we have the absolute probability

P (Dℓ) = 1. So what is P (Dℓ|Kℓ−1) actually? It’s the probability of obtaining Dℓ given our

knowledge Kℓ−1. Since our set of theories is exhaustive, we can expand P (Dℓ|Kℓ−1) in those

theories:

P (Dℓ|Kℓ−1) =
∑

i

P (Dℓ|TiKℓ−1)P (Ti|Kℓ−1) = 〈P (Dℓ|TiKℓ−1)〉 (9)

where the second expression just recognizes that the sum gives us the mean likelihood for iter-

ation ℓ given the priors are normalized. Note P (TiKℓ−1) = P (Ti|Kℓ−1)P (Kℓ−1) = P (Ti|Kℓ−1)

since P (Kℓ−1) = 1 since we do, in fact, have Kℓ−1 in hand.
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We can now rewrite equation (8) for the posterior probabilities as

P (Ti|Kℓ) =
P (Dℓ|TiKℓ−1)

〈P (Dℓ|TiKℓ−1)〉
P (Ti|Kℓ−1) . (10)

So if P (Dℓ|TiKℓ−1) greater/lesser than the mean likelihood, theory Ti gains/loses in prob-

ability in the ℓth iteration step. Now the ideal Bayesian analysis proceed iteration step by

iteration step using equation (10). Some theories gain probability, some lose, some go to

zero probability and are discarded, and sometimes new theories are introduced. There may

steps where all theories have zero probability, but we can keep collecting new data Dℓ and

inventing new theories.

How do we know when the endpoint has been reached? Let’s enumerate some cases:

1. In some cases, we might know by logical necessity. These might often be toy cases

(e.g., see § 6) or, at least, contrived cases. But there are important cases there are

true theories by logical necessity. A prime example example is the theory of evolution

by natural selection. As a mechanism, it is can be proven to work on the computer.

The DNA hardware in biota is there to implement it in nature, and so it must hold in

nature—as a vast amount of observational data shows too.

2. In some cases, by pure exhaustion: you knowledge KL is exhaustive about the phe-

nomenon X. If we have one nonzero probability theory left at exhaustion, it must be

true. If we have multiple nonzero probability theories left at exhaustion, they must all

be true and somehow equivalent. What if you have no theory at exhaustion? Then

KL itself constitutes a theory though not a very elegant one.

3. We may become exhausted when we reach step ℓ and have a vast knowledge Kℓ for X

and a theory Ti completely adequate for X. We can then define ℓ to be step L. In this

case, we can say we have an adequate theory for X relative to KL. If we have multiple

theories all adequate for KL, then they are equivalent in some sense at least for KL.

An important special case of this case is when theory Ti is a special case of a much

broader theory which is adequate for a vast realm of phenomena beyond X. All that

vast realm then verifies theory Ti for its much smaller realm. For example, Newtonian

physics is adequate for all motion in the classical limit (i.e., much larger than atoms,

much slower than the vacuum light speed, much weaker gravity than black holes) and

it follows as limiting form of quantum mechanics (so it is thought), special relativity,

and general relativity which theories are adequate for much broader realms. Newtonian

physics is thus a highly adequate theory and one can just say it is true in the classical

limit since wherever it fails is not sufficiently close to the classical limit.
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4. Maybe the endpoint is out of reach in practice. Consider the random number generator

the Mersenne Twister (Wikipedia: Mersenne Twister). It has a repeat period of ∼

106622 and passes many standard tests for randomness. Say we can only do those

standard tests and do not know the source of the random numbers. Given an exascale

computer (Wikipedia: Exascale computing), how long would it take to exhaust the

period and know all the numbers were determined completely deterministically and

not completely randomly? Of order

t ≈
106622

1018 s−1
= 106596 Julian years . (11)

In this Mersenne-Twister case, we would spend long ages without being able to de-

cide definitely or even probably whether the numbers were generated randomly or

completely deterministically. In practice, Bayesian analysis fails.

Actually, the idea of a nearly perfect deterministic random number generator raises

an interesting philosophical point. There are two theories about reality: 1) it is a

combination of deterministic and intrinsic quantum mechanical randomness; 2) it is

completely deterministic with quantum mechanics being actually completely determin-

istic as in some unconventional quantum mechanics theories. But if the events can be

completely deterministic as to source, but completely random as to receiver, how could

one ever tell which theory about reality is true? And even if one could tell, would it

matter very much to reality. Reality determined by either theory might be much the

same, and so the distinction between them may not be as important as one might

think.

Does one ever do ideal Bayesian analysis? Probably only for toy cases as we do in § 6.

In fact, overwhelmingly most scientific advance has never used Bayes’ theorem nor thought

of itself as a Bayesian analysis. However, in the scientific method the updating from priors to

posteriors goes on all the time qualitatively without being classified as qualitative Bayesian

anslysis which is what it is. How could this informal qualitative Bayesian analysis work. Well,

there is an aphorism attributed to Ernest Rutherford (1871–1937): “If you need statistics,

you did the wrong experiment” (e.g., Trotta 2017, p. 4). The essense of this aphorism is that

decisive experiments/observations rule theories out (i.e., their posteriors go to zero), and so

accelerate the iteration to a true theory without needing to calculate nonzero probabilities.

Certainly in formal Bayesian analysis, it makes sense to accelerate the iteration by choosing

to obtain the most decisive set of data Dℓ you can find.

Given the last paragraph, why does one need (formal) Bayesian analysis at all? When

dealing with theories that give only statistical predictions and differ in their predictions not
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vastly, Bayesian analysis is the best tool for proceeding to the best theory. Such theories

turn up in, as mentioned in the § 1 in, e.g., cosmology, sociology, psychology, epidemiology,

and economics. Bayesian analysis though known to some degree for a long time (with much

pioneering development already done by 1961: Jeffreys 1961), only became relatively impor-

tant in research the later 20th century when vast computing power and powerful numerical

techniques became available to make it practicable.

In fact in practice, Bayesian analysis is often only one iteration and just uses ratios of

posteriors to rank theories two at time. Say we have theories Ti and Tj and we obtain data

D1. Then using equation (10), we can write

Rpo(ij) =
P (Ti|K1)

P (Tj|K1)
=

P (D1|TiK0)

P (D1|TjK0)

P (Ti|K0)

P (Tj|K0)
= BijRpr(ij) , (12)

where Rpr(ij) is called the prior odds ratio, Rpo(ij) is called the posterior odds ratio, and Bij

is called the Bayes factor (e.g., Kass & Raftery 1995, p. 776). If the priors are estimated by

the principle of indifference (e.g., Wikipedia: Principle of indifference), the prior odds ratio

is 1 and the posterior odds ratio equals Bayes factor: i.e., Rpo(ij) = Bij.

In fact, the usual practice seems to be to a not-ideal Bayesian analysis with an informal

iteration where the prior odds ratio set to 1 at every step. The theories in this procedure

are given more study depending on how they are ranked by the posterior odds ratios: if

highly, then a lot; if lowly, then little or none; if in between then in between study. After

more study, the more favored theories from the first analysis are ranked again, and so on.

Note the iterations are often carried out by different researchers and are not thought of as

iteration.

Why do such not-ideal Bayesian analyses rather than something much more formal?

Very probably because there are usually only very crude estimates of prior probabilities and,

in most cases, crude estimated ranges for the free parameters (see § 7). This means that

a more formal Bayesian analysis will give false precision, and so is pointless. Proof of this

statement is that the Bayesian analyses of a phenomenon by different researchers often comes

to very different posterior odds ratios.

A consequence of the lack of precision of Bayesian analysis in practice is that Bayes

factors of order a few are not considered significant in most cases in ruling out theories.

Kass & Raftery (1995, p. 777) has given a table rating Bayes factor evidence against a

theory based on general expectations as they see them. We give their table in Table 1 below

with the reasonable generalization to Bayes factor Bij or posterior odds ratio Rpo(ij) evidence

against theory Tj . We call this general ratio Rij . As Table 1 shows, a theory Tj would have

to have a very high ratio Rij against to overcome the uncertainty in estimated priors before

one could even provisionally discard it from consideration.
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Table 1. Bayes factor or posterior odds ratio evidence Rij against theory Tj

2 ln(Rij) Rij Evidence against j

0 to 2 1 to 3 Not worth more than a bare mention

2 to 6 3 to 20 Positive

6 to 10 20 to 150 Strong

> 10 > 150 Very strong
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5. THE MULTINOMIAL DISTRIBUTION

In order to give our toy case of Bayesian analysis in § 6, we need to use the multino-

mial distribution AKA the multinomial probability distribution (Wikipedia: Multinomial

distribution). So we introduce it here.

Say we have a set of I possible events:

1, 2, 3, . . . , I with individual probabilities P1, P2, P3, . . . , PI with
∑

i

Pi = 1 (13)

We now take a sample of N events and obtain

i, j, k, ℓ, . . . , m with joint probability PiPjPk . . . Pm . (14)

The distinct permutations of the events are different samples which have their own joint

probability equal to the one shown. The indistinct permutations of events is just the same

sample. To count up the probability for the set of disinction permutations note

N ! = C({ni})Πini! , (15)

where N ! is the number of permutation of events, the number of identical events of type i

is ni, {ni} is the set of identical events in the sample, and C({ni}) is the number of distinct

permutations for set of identical events {ni}. Solving for C({ni}) gives

C({ni}) =
N !

Πini!
(16)

Thus, the collective probability for the set of disinction permutations is

P ({ni}) = C({ni})ΠiP
ni

i =
N !

Πini!
ΠiP

ni

i = N !Πi

(

P ni

i

ni!

)

(17)

which is, in fact, the multinomial distribution.

The sum of the P ({ni}) for samples of size N should be 1. What else could it be? But

if we need a proof to satisfy paranoia, behold:

1 =
∑

i

Pi =

(

∑

i

Pi

)N

= (P1 + P2 + . . . + PI)
N =

∑

i

P ({ni}) (18)

where expanding the third member of the equation via the fourth member to get the fifth

member is isomorphic to construction of the P ({ni}) in the paragraph above when you think

about it really hard.
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As pointless digression, let’s consider the special case of the binomial distribution where

there are only two events which we assign probabilities p and q with p + q = 1, of course.

Starting from equation (18), we see that

1 = (p + q)N =
N
∑

k=0

(

N

k

)

pkqN−k , (19)

where the binomial distribution is

P (N, k) =

(

N

k

)

pkqN−k (20)

and binomial coefficients follow from equation (16):
(

N

k

)

=
N !

k!(N − k)!
. (21)

The moments of the binomial distribution follow from the old trick of replacing p by variable

x in the normalization equation (i.e., eq. (19), differentiating ℓ times by ln(x), and evaluating

the ℓth derivative with x = p times for the ℓth moment. Behold:

f(x) =
N
∑

k=0

(

N

k

)

xkqN−k = (x + q)N (22)

Mℓ =

[

(

d

d ln(x)

)ℓ N
∑

k=0

(

N

k

)

ek ln(x)qN−k

]

∣

∣

∣

∣

x=p

=

N
∑

k=0

kℓ

(

N

k

)

pkqN−k

=

[

(

d

d ln(x)

)ℓ

(eln(x) + q)N

]

∣

∣

∣

∣

x=p

(23)

M0 = 1 (24)

M1 =
[

N(eln(x) + q)N−1eln(x)
]

∣

∣

∣

x=p
= Np (25)

M2 =
[

N(N − 1)(eln(x) + q)N−1e2 ln(x) + N(eln(x) + q)N−1eln(x)
]

∣

∣

∣

x=p

= N(N − 1)p2 + Np (26)

σ2 = Np(1 − p) (27)

which results are confirmed by, e.g., Bevington (1969, p. 53)

6. A TOY CASE OF BAYESIAN ANALYSIS

For a toy case of Bayesian analysis using the procedure and results of § 4, say we have

a standard die (singular of dice): i.e., a cube with i dots on a side: i ranges from 1 to 6 and
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the total number of possible events on a trial (i.e., a throw of the die) is I = 6. We are given

two a priori theories of the probability distribution that determines the up-side of throw:

Theory T1: Pi =
1

6
for all i (28)

Theory T2: Pi =
2 − mod(i, 2)

9
=















1

9
for i odd;

2

9
for i even.

(29)

Note function mod(a, n) is remainder of a divided by n, where the remainder is not divided

by n: the function is vocalized a modulo (or mod) n. The basic knowledge about the die and

the two theories are out initial knowledge K0 Using the principle of indifference, we assign

prior proabilities

P (T1|K0) = P (T2|K0) =
1

2
(30)

which gives a prior odds ratio of 1.

We start the Bayesian analysis iteration by accumlating data set 1 which consists of 10

throws of the die with results as follows:

throw count 1 2 3 4 5 6 7 8 9 10

dots on up-side 1 5 1 1 2 5 2 6 3 4 .

The likelihoods for the data set for the two theories are computed using the multinomial

distribtution equation (17) introduced in § 5 with N = 10, n1 = 3, n2 = 2, n3 = 1, n4 = 1,

n5 = 2, n6 = 1:

P (D1|T1K0) =
10!

(3!)(2!)(1!)(1!)(2!)(1!)

(

1

6

)10

= 2.50057 . . .× 10−3 (31)

P (D2|T1K0) =
10!

(3!)(2!)(1!)(1!)(2!)(1!)

(

1

9

)10

× 16 × 24 = 6.9238 . . . × 10−4 (32)

which yield the posterior odds ratio and Bayes factor as shown in the following equation

P (T1|K1)

P (T2|K1)
=

P (D1|T1K0)

P (D1|T2K0)
× 1 = Bij = 3.604 . . . . (33)

Taking Table 1 at face value, the Bayes factor Rij is positive evidence against theory T2, but

is far from being strong evidence against.

We will now do a second iteration of the Bayesian analysis in which the posterior prob-

abilities of the first iteration

P (T1|K1) = 0.7828006 . . . and P (T2|K1) = 0.217199 . . . (34)
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are the prior probabilities of the second. We obtain data set 2 which also consists of 10

throws of the die with results as follows:

throw count 1 2 3 4 5 6 7 8 9 10

dots on up-side 6 1 3 6 6 2 1 5 3 5 .

Again the likelihoods for the data set for the two theories are computed using the multinomial

distribtution equation (17) introduced in § 5 with N = 10, n1 = 2, n2 = 1, n3 = 2, n4 = 0,

n5 = 2, n6 = 3:

P (D1|T1K1) =
10!

(2!)(1!)(2!)(0!)(2!)(3!)

(

1

6

)10

= 1.250 . . .× 10−3 (35)

P (D2|T1K1) =
10!

(2!)(1!)(2!)(0!)(2!)(3!)

(

1

9

)10

× 16 × 24 = 3.469 . . .× 10−4 (36)

which yield the posterior odds ratio and Bayes factor as shown in the following equation

P (T1|K2)

P (T2|K2)
=

P (D1|T1K1)

P (D1|T2K1)

P (T1|K1)

P (T2|K1)
= Bij

P (T1|K1)

P (T2|K1)
= (3.604 . . .)×(3.604 . . .) = 12.989 . . . .

(37)

It seems perfectly reasonable

7. FREE-PARAMETER THEORIES, MARGINALIZATION, AND

OCCAM’S RAZOR

8. AIC AND BIC

9. CONCLUSIONS

Conclusions are in the abstract and Introduction (i.e., § 1).
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