
DRAFT

Running Jobs in Physics & Astronomy
Jay Nietling

August 26, 2014

This is an outline of the facilities for sharing resources, scheduling possibly
many jobs for future execution, and programming distributed and shared mem-
ory processes on the computers in Physics & Astronomy at UNLV. SLURM
(simple Linux utility for resource management) is the resource management
system installed on the clusters. Programming models available are OpenMPI
(distributed shared memory message passing interface), OpenMP (shared mem-
ory parallel programming), Pthreads (shared memory parallel programming),
and CUDA (graphics processing unit based parallel programming). Program-
ming distributed and shared memory applications is beyond the scope of this
note however, how to compile and run such jobs is outlined.

SLURM (Simple Linux Utility for Resource Management)

Slurm is a light weight system for managing resources (processors, mem-
ory, disk) and many possibly cooperating processes within compute clusters
in Physics and Astronomy.1,2,3,4The processes may be completely indepen- 1 SLURM Nomenclature – Node: the

compute resource in SLURM, consisting
of a single computer that may include
multiple processor sockets, multiple
processor cores per socket, physical
memory, and temporary disk space.
2 Partition: a grouping of nodes into a
logical set. Essentially a job queue with
associated properties such as maximum
job size, time limits, maximum nodes,
and users with access to the queue.
3 Job: a resource allocation assigned to a
user for specified amount of time. Jobs
are allocated nodes within a partition
until the resources within the partition
are exhausted. Once a job is assigned a
set of nodes, the user is able to initiate
parallel work in the form of job steps in
any configuration within the allocation.
For instance, a single job step may be
started that utilizes all nodes allocated
to the job, or several job steps may
independently use a portion of the
allocation.
4 Job step: one of a set of possibly par-
allel tasks launched at the same time
sharing a common communication
mechanism, allocated resources within
a job’s allocation, and steps executing
sequentially or concurrently.

dent sequential processes, distributed shared memory processes, multi-core
shared memory processes, or processes that utilize graphics processing units.
SLURM is simple, open source with a GPL license, portable, fault-tolerant,
secure, easy for system administrators to manage, and scalable. It is used on
some of the largest computing environments as well as our modest facilities.

Physics Compute Facilities

Clusters of computers in Physics & Astronomy are grouped administra-
tively typically according to grants or research groups that funded the pur-
chase of said cluster. Although SLURM refers to clusters in its documentation,
we currently map these administratively/financially defined clusters into
SLURM partitions detailed in Table 1. Access to the partitions is controlled by
the software using Unix group membership. To access the resources in a par-
ticular partition a user will have to be in the Unix group associated with that
partition. Gaining access requires agreement of the manager of the cluster. In
addition, there are SLURM partitions identified by features indicating type of
CPU, availability of GPU or other resources.

DRAFT

running jobs in physics & astronomy 2

SLURM partition description host names manager
cosmo Cosmological studies cosmo-[1-5] Nagamine
ld LD? ld-[1-5] Proga
open Open h-[0-10] Nietling
pes Potential Energy Surface pes-[1-2] Robins
phi Phi phi Pang
rad Nuclear studies rad-[1-8],moly Kim
sn Super Nova sn-[1-11] Bing, Nagamine, Proga
solid HiPSEC cluster solid-[1-27] Chen

Table 1: Compute clusters in Physics &
Astronomy

Getting Started with SLURM

The SLURM system is of classic Unix style design. It is a collection of shell5 5 The Unix command interpreter is
referred to as the shell.commands that each accomplish a single task. Each command typically has

optional features that may be activated with command line arguments. Also
typical of Unix, each command has an associated man page that describes
what the command does and what command-line options and environment
variables effect the behavior of the command.

$ # h-0b is a node in the

$ # open cluster

$ ssh h-0b

$. /share/rc/slurm

$

Figure 1: Setup your shell to use
SLURM. Typically, our rc scripts modify
your shell’s PATH and MANPATH environ-
ment variables.

To get started with SLURM, login to a computer that is a member of one
of the compute clusters. Host names are listed in Table 1. Then setup your
shell’s environment for using SLURM as detailed in Figure 1 . After your
shell’s environment is set up, you’ll have access to manual pages such as the
excerpt for sinfo in Figure 2. All SLURM commands may be run from any
node within a cluster.

$ man sinfo

SINFO(1) Slurm components

NAME

sinfo - view information about SLURM nodes and partitions.

SYNOPSIS

sinfo [OPTIONS...]

DESCRIPTION

sinfo is used to view partition and node information for a

system running SLURM.

.

.

.

$

Figure 2: Viewing the “man page” for
the sinfo command.

$ sinfo --help

Usage: sinfo [OPTIONS]

-a, --all show all partiti...

not accessible)

-b, --bg show bgblocks (o...

-d, --dead show only non-re...

.

.

.

Figure 3: sinfo help output.

On modern open source Unix systems,
running a command with the --help

command line option will cause the
program to list brief descriptions of all
options available with that command.
Indeed this is the case with the SLURM
commands, an example in Figure 3. The
SLURM authors have also consistently
included a --verbose command line
option with the programs that will
cause the programs to be more chatty,
show more detail, and indicate what the
program defaults are.

Create a small shell script as in Figure 4 to submit a job into the SLURM
job queue. The shell script is submitted to SLURM with the sbatch com-
mand as shown in Figure 5. The #SBATCH shell comments are also directives
to sbatch that indicate resource requirements and job steps of the job. These
comment/directives have command line equivalents. --job-name associates

DRAFT

running jobs in physics & astronomy 3

an arbitrary, hopefully meaningful, name with a job. It is listed by squeue

and may be used in commands such as scancel. Still referring to Figure
4, on line 9, the working directory must be readable and searchable by the
user running the job. The output and error arguments direct Unix stdout

and stderr to files. They must be writable by the user running the job. The
directives on lines 15-19 of Figure 4 detail the user’s perceived resource re-
quirements for the job. The numbers are a little outrageous for a job that is
only going to print out a node’s hostname but it illustrates how a job is run
on multiple nodes. While the shell script itself is a job step, job steps are also
created by the srun commands on lines 20 and 21.

1 #!/bin/sh
2 #
3 # hello.sh:
4 #
5 # a little shell script to
6 # illustrate SLURM features.
7 #
8 #SBATCH --job-name=hello
9 #SBATCH --workdir=/homes/bozo/test

10 #SBATCH --output=hello.out
11 #SBATCH --error=hello.err
12 #
13 ## resource requirements:
14 #
15 #SBATCH --partition=open
16 #SBATCH --ntasks=5
17 #SBATCH --nodes=5
18 #SBATCH --time=00:05:00
19 #SBATCH --mem-per-cpu=200mb
20

21 srun hostname
22 srun sleep 60
23

24 exit 0

Figure 4: A simple shell script hello.sh
to try out SLURM.

The script is submitted to SLURM with the sbatch command shown in
Figure 5. If there are no errors in the script the command will print the job
id associated with the job. The job enters the queue in the PENDING state
awaiting the availability of resources requested in the job script. When the
resources become available and the job has the highest priority in the queue,
a job allocation is created for it and it enters the RUNNING state. If the job
completes successfully it will go into the COMPLETED state. If unsuccessful
it will go into the FAILED state.

The state of the job is printed in the ST field in the default output of the
squeue command as shown in Figure 5. Using the --verbose command line
argument of sbatch will print the full English job states.

1 $ sbatch hello.sh
2 Submitted batch job 51
3 $ squeue -j 51
4 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
5 51 open hello bozo R 0:16 5 h-[1-3],h-0a,h-0b
6 $ squeue -j 51
7 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
8 51 open hello bozo CG 1:01 1 h-1
9 $ squeue -j 51

10 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
11 $ cat hello.out
12 h-1
13 h-0b
14 h-3
15 h-0a
16 h-2
17 $

Figure 5: Interaction with SLURM from
the shell.

An OpenMPI Job (Distributed Memory)

1 #!/bin/sh
2 #
3 # hello-mpi.sh:
4 #
5 # a little shell script
6 # to run an OpenMPI job
7 #
8 #SBATCH --job-name=hello-openmpi
9 #SBATCH --workdir=/homes/bozo/test

10 #SBATCH --output=hello-openmpi.out
11 #
12 ## resource requirements:
13 #
14 #SBATCH --partition=open
15 #SBATCH --ntasks=8
16 #SBATCH --time=00:05:00
17 #SBATCH --mem-per-cpu=2000mb
18

19 . /share/rc/openmpi
20 srun hello-openmpi
21

22 exit 0

Figure 6: A shell script to run an
OpenMPI Job.

OpenMPI is an open source implementation of the MPI-2 (message pass-
ing interface version 2) specification that is developed and maintained by a
consortium of academic, research, and industry partners. MPI is a library of
routines and data structures implementing message passing programming on
distributed memory computers. This version of programming parallelism is
so called single program, multiple data (SPMD) a subset of multiple instruction,

DRAFT

running jobs in physics & astronomy 4

multiple data (MIMD). The distributed memory computer in this case, is a col-
lection of independent computers that communicate with one another using
TCP/IP over Ethernet or more exotic hardware. Processes execute simulta-
neously on different processors passing messages to move memory between
processes or synchronize their operations. A simple OpenMPI hello world
program is displayed in Figure 14 at the end of the document.

A SLURM shell script to execute the OpenMPI program on 8 cores is rep-
resented in Figure 6. Note that line 19 asks the shell to run the file

/share/rc/openmpi. Much like the script used above in Figure 1 to setup
up SLURM environment variables, the /share/rc/openmpi script sets up the
shell environment to correctly run OpenMPI programs.

The SLURM managed OpenMPI job generates output in file hello-openmpi.out

that looks something like the output depicted in Figure 7.

1 $. /share/rc/openmpi
2 $ mpicc hello-openmpi.c -o hello-...
3 $ sbatch hello-openmpi.sh
4 Submitted batch job 56
5 $ cat hello-openmpi.out
6 0: We have 8 processors
7 0: Hello 1! Processor 1 reporting...
8 0: Hello 2! Processor 2 reporting...
9 0: Hello 3! Processor 3 reporting...

10 0: Hello 4! Processor 4 reporting...
11 0: Hello 5! Processor 5 reporting...
12 0: Hello 6! Processor 6 reporting...
13 0: Hello 7! Processor 7 reporting...
14 $

Figure 7: Shell interaction to compile
and run Wikipedia OpenMPI hello
world.

A OpenMP Job (Shared Memory)

1 #!/bin/sh
2 #
3 # hello-openmp.sh:
4 #
5 # a little shell script
6 # to run an OPENMP job
7 #
8 #SBATCH --job-name=hello-openmp
9 #SBATCH --workdir=/homes/jay/test

10 #SBATCH --output=hello-openmp.out
11 #
12 #SBATCH --partition=open
13 #SBATCH --ntasks=1
14 #SBATCH --cpus-per-task=4
15 #SBATCH --time=00:05:00
16 #SBATCH --mem-per-cpu=2000mb
17 #
18 export OMP_NUM_THREADS=\
19 $SLURM_CPUS_PER_TASK
20 ./hello-openmp
21 exit 0

Figure 8: A shell script to run an
OpenMP Job. The export of the shell
environment variable is on two lines
purely for readability in this sidebar.

OpenMP is an application programming interface that supports program-
ming shared memory multiprocessors although it apparently can be ex-
tended to non-shared memory systems. This API can be accessed from C,
C++, and FORTRAN using the GCC compiler suite. This model of parallel
programing involves the use of threads of control within a single Unix pro-
cess. That is multiple threads of control (program counter, stack, registers)
can run simultaneously within a process, sharing process memory. Commu-
nication between the threads is through the shared memory of the process.
The thread and synchronization primitives are specified in the code with
compiler directives. Examples of the compiler directives are on lines 7 and
11 of the Wikipedia OpenMP hello world program in Figure 15 at the end
of the document. This is in contrast to a Pthread based program where the
implementation is accessed through library functions and variables.

In this shared memory multi-process(or) type job, it is important to clue SLURM into the organization of processor
cores per task (process) so that resources are allocated correctly. Note on lines 15 and 16 of the sbatch shell script
in Figure 8, SLURM is informed that the OpenMP job is to be a single process essentially with 4 threads, hope-
fully executing on separate processor cores. Lines 20 and 21 communicate the number of threads allowed to the
OpenMP runtime. Note on line 13 of Figure 9 that if we change the number of cpus per task to a number greater
than we happen to know is possible SLURM will reject the job.

DRAFT

running jobs in physics & astronomy 5

1 $ gcc -fopenmp hello-openmp.c -o hello-openmp
2 $ sbatch hello-openmp.sh
3 Submitted batch job 62
4 $ squeue -i 4 --format "%.5i %.9P %.8j %.8u %.2t %.10M %.6D"
5 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
6 62 open hello-op bozo R 0:00 1 h-0a
7 $ cat hello-openmp.out
8 Hello World from thread 0
9 Hello World from thread 1

10 Hello World from thread 3
11 Hello World from thread 2
12 There are 4 threads
13 $ sbatch hello-openmp.sh # change cpus-per-task=5 and re-submit the job
14 sbatch: error: Batch job submission failed: Requested node configuration is not available
15 $

Figure 9: Shell interaction showing
compilation and execution of OpenMP
hello world. Note the -fopenmp com-
mand line option to Gcc.

A Pthread Job (Shared Memory) 1 #!/bin/sh
2 #
3 # hello-pthread.sh:
4 #
5 # a little shell script
6 # to run a pthread job
7 #
8 #SBATCH --job-name=hello-pthread
9 #SBATCH --workdir=/homes/jay/test

10 #SBATCH --output=hello-pthread.out
11 #
12 #SBATCH --partition=open
13 #SBATCH --ntasks=8
14 #SBATCH --time=00:05:00
15 #SBATCH --mem-per-cpu=2000mb
16

17 hostname
18 ./hello-pthread
19 exit 0

Figure 10: A shell script to run an
Pthread job under SLURM.

Posix threads (pthreads) are a standard cross platform implementation
of threads for C-like languages. Threads are an independent flow of program
control within a single process, sharing the address space and other resources
of the process. The overhead of launching a new thread is considerably lower
than starting up a new process. Communication between threads using com-
mon address space can be very efficient. Pthreads provides a fairly low level
programming interface with fine-grained control over thread management
and synchronization. Although Pthread programs can be difficult to man-
age, performance gains can be realized with careful programming of selected
applications.

1 $ gcc -pthread hello-pthread.c -o hello-pthread
2 $ sbatch hello-pthread.sh
3 $ squeue
4 Submitted batch job 60
5 Thu Aug 1 11:40:20 2013
6 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
7 60 open hello-pt bozo R 0:00 2 h-0a,h-0b
8 $ cat hello-pthread.out
9 h-0a

10 In main: creating thread 0
11 In main: creating thread 1
12 In main: creating thread 2
13 Hello World! It’s me, thread 0!
14 In main: creating thread 3
15 In main: creating thread 4
16 Hello World! It’s me, thread 1!
17 Hello World! It’s me, thread 2!
18 Hello World! It’s me, thread 3!
19 Hello World! It’s me, thread 4!
20 In main: creating thread 5
21 In main: creating thread 6
22 In main: creating thread 7
23 Hello World! It’s me, thread 6!
24 Hello World! It’s me, thread 7!
25 Hello World! It’s me, thread 5!

Figure 11: Shell interaction showing
compilation and execution of Pthread
hello world.

DRAFT

running jobs in physics & astronomy 6

An Interactive Job

For long running applications where the executing process is large, it
may be desirable to locate the program on each individual node rather than
a shared file server in order to reduce network traffic, particularly if for some
reason the system is over paging. Sbcast can be used to distribute data files
as well. In this example however, the compiled OpenMP based Wikipedia
hello world program is sent to the nodes to be run interactively within the
SLURM resource allocation. salloc creates a SLURM job allocation on the
requested nodes in the selected partition. Lines 6 and 10 of our example
illustrate that we can now srun commands on each node. On line 14 we
broadcast our hello-openmp executable program to all our allocated nodes.
Then we run the program with srun without creating a shell script to use with
sbatch.

1 $ for i in h-3 h-4 h-5 ; do
2 > ssh $i mkdir /scr1/bozo
3 > done
4 $ salloc -p open -w h-3,h-4,h-5
5 salloc: Granted job allocation 66
6 $ srun hostname
7 h-3
8 h-5
9 h-4

10 $ srun date
11 Mon Aug 5 11:27:48 PDT 2013
12 Mon Aug 5 11:27:48 PDT 2013
13 Mon Aug 5 11:27:48 PDT 2013
14 $ sbcast hello-openmp /scr1/bozo/hello-openmp
15 $ srun /scr1/bozo/hello-openmp
16 Hello World from thread 2
17 Hello World from thread 1
18 Hello World from thread 3
19 Hello World from thread 0
20 There are 4 threads
21 Hello World from thread 1
22 Hello World from thread 0
23 Hello World from thread 3
24 Hello World from thread 2
25 There are 4 threads
26 Hello World from thread 1
27 Hello World from thread 0
28 Hello World from thread 3
29 Hello World from thread 2
30 There are 4 threads
31 $ exit
32 exit
33 salloc: Relinquishing job allocation 66

Figure 12: Interactive allocation of
resources, broadcast of executable, and
execution of a job.

SLURM Multi-Prog

The multi-prog option to srun provides a simple method to specify a
list of programs and command-line arguments to those programs to be run
within a job allocation. In this example, an interactive job allocation will be
requested for 3 nodes. 8 tasks will be run as specified in a file hello-multiprog.conf.

DRAFT

running jobs in physics & astronomy 7

Note that multiple command line arguments may be passed to the com-
mand such as on lines 4, 6, 8 , 10. If the command to be executed is not on
the search path of the shell then a full path name rooted at / should be used.

1 $ cat hello-multiprog.conf
2 #task command command line args
3 0 hostname
4 1 echo task:%t dog
5 2 hostname
6 3 echo task:%t cat
7 4 hostname
8 5 echo task:%t fish
9 6 hostname

10 7 echo task:%t bird
11 $ salloc -p open -w h-3,h-4,h-5
12 salloc: Granted job allocation 70
13 $ srun -n8 --multi-prog hello-multiprog.conf
14 task:1 dog
15 h-3
16 h-3
17 task:7 bird
18 task:3 cat
19 h-5
20 task:5 fish
21 h-4
22 $ exit
23 salloc: Relinquishing job allocation 70
24 salloc: Job allocation 70 has been revoked.
25 $

Figure 13: A sample interaction
with the shell that allocates SLURM
resources and runs a job with a
multiprog configuration.

Compiling and Running CUDA Jobs

Compiling and Running Φ Jobs

References

[1] Blaise Barney. Introduction to parallel computing.
https://computing.llnl.gov/tutorials/parallel_comp/, July 2013.

[2] Blaise Barney. Message passing interface (MPI).
https://computing.llnl.gov/tutorials/mpi/, July 2013.

[3] Blaise Barney. OpenMP. https://computing.llnl.gov/tutorials/openmp,
Jun 2013.

[4] Blaise Barney. Posix threads programming.
https://computing.llnl.gov/tutorials/pthreads/, January 2013.

[5] Consortium des Équipments de Calcul Intensif. http://www.ceci-
hpc.be/slurm_tutorial.html, 2013.

[6] Joe Landman. OpenMP in 30 minutes. Linux Magazine, December 2007.

[7] High Performance Computing Center North. Scripts, job submission files.
https://www.hpc2n.umu.se/batchsystem/slurm-scripts, 2013.

DRAFT

running jobs in physics & astronomy 8

[8] SchedMD Team. SLURM tutorials.
https://www.schedmd.com/slurmdocs/tutorials.html, January
2013.

1 /*
2 "Hello World" MPI Test Program
3 */
4 #include <mpi.h>
5 #include <stdio.h>
6 #include <string.h>
7

8 #define BUFSIZE 128
9 #define TAG 0

10

11 int main(int argc, char *argv[]) {
12 char idstr[32];
13 char buff[BUFSIZE];
14 int numprocs;
15 int myid;
16 int i;
17 MPI_Status stat;
18 /* MPI programs start with MPI_Init; all ’N’ processes exist thereafter */
19 MPI_Init(&argc,&argv);
20 /* find out how big the SPMD world is */
21 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
22 /* and this processes’ rank is */
23 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
24

25 /* At this point, all programs are running equivalently, the rank
26 distinguishes the roles of the programs in the SPMD model, with
27 rank 0 often used specially... */
28 if(myid == 0) {
29 printf("%d: We have %d processors\n", myid, numprocs);
30 for(i=1;i<numprocs;i++) {
31 sprintf(buff, "Hello %d! ", i);
32 MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD);
33 }
34 for(i=1;i<numprocs;i++) {
35 MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD, &stat);
36 printf("%d: %s\n", myid, buff);
37 }
38 } else {
39 /* receive from rank 0: */
40 MPI_Recv(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD, &stat);
41 sprintf(idstr, "Processor %d ", myid);
42 strncat(buff, idstr, BUFSIZE-1);
43 strncat(buff, "reporting for duty\n", BUFSIZE-1);
44 /* send to rank 0: */
45 MPI_Send(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD);
46 }
47

48 /* MPI programs end with MPI Finalize; this is a weak synchronization point */
49 MPI_Finalize();
50 return 0;
51 }

Figure 14: OpenMPI hello world from
Wikipedia.

DRAFT

running jobs in physics & astronomy 9

1 #include <omp.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4

5 int main (int argc, char *argv[]) {
6 int th_id, nthreads;
7 #pragma omp parallel private(th_id)
8 {
9 th_id = omp_get_thread_num();

10 printf("Hello World from thread %d\n", th_id);
11 #pragma omp barrier
12 if (th_id == 0) {
13 nthreads = omp_get_num_threads();
14 printf("There are %d threads\n",nthreads);
15 }
16 }
17 return EXIT_SUCCESS;
18 }

Figure 15: OpenMP hello world.

1 #include <pthread.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <assert.h>
5

6 #define NUM_THREADS 8
7

8 void *TaskCode(void *argument)
9 {

10 int tid;
11

12 tid = *((int *) argument);
13 printf("Hello World! It’s me, thread %d!\n", tid);
14

15 /* optionally: insert more useful stuff here */
16

17 return NULL;
18 }
19

20 int main(void)
21 {
22 pthread_t threads[NUM_THREADS];
23 int thread_args[NUM_THREADS];
24 int rc, i;
25

26 /* create all threads */
27 for (i=0; i<NUM_THREADS; ++i) {
28 thread_args[i] = i;
29 printf("In main: creating thread %d\n", i);
30 rc = pthread_create(&threads[i], NULL, TaskCode, (void *) &thread_args[i]);
31 assert(0 == rc);
32 }
33

34 /* wait for all threads to complete */
35 for (i=0; i<NUM_THREADS; ++i) {
36 rc = pthread_join(threads[i], NULL);
37 assert(0 == rc);
38 }
39

40 exit(EXIT_SUCCESS);
41 }

Figure 16: Pthread hello world from
Wikipedia.

	SLURM (Simple Linux Utility for Resource Management)
	An OpenMPI Job (Distributed Memory)
	A OpenMP Job (Shared Memory)
	A Pthread Job (Shared Memory)
	An Interactive Job
	SLURM Multi-Prog
	Compiling and Running CUDA Jobs
	Compiling and Running Phi Jobs

