Cirac - Zoller Scheme

Suppose we have cooled the ions situated along the z-axis so that their xy motion is minimized via
Laser cooling. However they are still free to move along the z-axis. Image the set of ions all moving

in unison so that the center of mass undergoes harmonic motion. In the quantum realm the excitations
of this motion are called phonons. For vibrations with lowest energy is called the ground

state and no phonons are present, the next highest energy state has one phonon, and so on. We

can describe this by a ladder like stucture of energy levels

Each phonon has an energy h v

three phonons

two phonons

one phonon

no phonons

The ions are sufficently apart from each other so that they can be addressed by a laser individually.
The laser can excite, or de-excite the ion from its internal ground state |g) to its excited internal
state |e). A laser can also be used to add or emit a phonon. Then the internal ground state

of an ion can have several energy states

|g )I0),  Ground internal state+no phonons Energy = E,
g 1), Ground internal state+1 phonon Energy = E4 + hv
lg >|2), Ground internal state+2 phonons Energy = Eg + 2 hy

le |0),  Excited internal state+no phonons Energy = E; + 1 w
le 1), Excited internal state+1 phonon Energy = E4 + 1 w+ hy
le )|2), Excited internal state+2 phonons Energy =Eg+ fiw+2hy

Note we assume that the internal state energy difference 7 w >> hy

For a given ion m we let | g) represent the Qbit [0) and |e ) the Qbit |1)
so if we have a group of four ions and the first two are in the ground internal state
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and the the last two are in an internal excited state they would represent the
computational basis state

|0011)

For a string of ions lets consider the m'th ion and label its internal states as
|Dm 1€)m (10)m |1)m). Likewise for the n'th ion we use teh notation |g), |e), .

Imagine the system starting out as

|9)mlgdn [0}, total energy 2 E,

Let' shine a laser on ion m with a frequency of w -hv. This frequency is not sufficient
to excite the ion into its excited state |e),, because you need at least an energy 7w to that
so the effect of this laser pulse, which we call shorthand U,,on this state is

Un 9 ml@)n [0, — [9)m|D)n [0,

Likewise

Un|9Yml€)n [0), — [@)ml€)n |0),

However

Un €)ml@)n [0y, — =i [@)mlDn [1)y

That is the if Uy, acts on state |e);;|g), |0), it changes to a new state where the m'th Qubit changes
its value form 1 to 0 while a phonon is created. The energy of the initial configuration
l&Yml9)n [0), is hw + 2E, whereas the energy of

|9mlDn 1), 18 2E4 + hy and so the difference in energy is iw-hv which is exactly the energy

of the laser pulse photon applied on ion m. Thus by energetics alone we see why

Unledml9n 10), — -i |9)mla)n |1), is possible. But what about the -i factor, where does that come from ?
It turns out we can adjust the polarization properties of the laser in order the -i phase factor

appears (Deeper discussion of this requires a better understanding of quantum optics, which is beyond
the scope of this course).

Finally we also have

Unl€ml€)n [0)y, — =i |@)mle)n 1),

In summary, after the first pulse

Umn|@ml@n 10), — [9¥ml9)n [0,
Uml|@ml€)n 10), — [@ml€)n [0,
UmnlemlDn [0, — -1 1@)ml@n [1)y
Unle)mle)n [0), — -1 |@)mlen 1),
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We now conisder a similar laser pulse, which we call V,,;, onion n (this will have diffrenet polarization
properties than the aforementioned pulse). We then have

Vi |9 ml@n 10}, — 19)ml9)n 10),
Vi | mledn 0}, — 19)ml€dn 10),
Vo@D ml@Dn 11y — = 1DmlDn [1),
Vo @ mlen 11, — (D mledn [1)y

For each state in the first collumn the photon does not have enough energy to change the
state of Qbit n.

Now we repeat pulse U, once again so that

Un 19ml@n 10}, — 19)ml9)n 10),
Umn|@ml€)n 10), — [@)ml€)n [0),
Un 1@ml@n 1), — -i 1€)m|F)n [0),
Un 1@ml€n 1)y —  Tle)mle)n [0),

The three-pulses in this sequence W = U,,V,, U,, then lead to the following
transformations

W @ml@)n 10}, — 19¥mlg>n 10,
W [g@)mle)n 10), — |g)mle)n 10),
W [€)mldn 10), — [€)ml9)n 10),
W [€)mld)n 10), — - [€)mle)n |0),

Notice that all states return to their original configuartions, except the last state which
picks up a negative sign.

Consider the superposition

(@)t len
\E(|9> ledn)

According to the above table

w |g>mﬁ< 19t [€0n) | 10 = 19Ym—=(Ig0n %t [€)n) | 10},

V2

W 1e)m—=(12)n £ &)n) | 10}, = |&)m—=(19)n F l€)n) | 10},

V2 V2
So lets define the gate

H, W H, here H, is the Hadamard gate acting on Qbit n. Therefore
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Ha W Hy [@0m 190 10)y = Ho W @) —=( 19V + [€)n) 10}y =
2

Jz

g

Hn m n+ en 0V= m nOV
|9) \E(Ig> l€Yn) 10), = [9)ml9)n [0)
H, W H, |g>m |e>n |0>v =H, W |g>m 1_( |g>n - |e>n) |0>v =
V2
Hn mL n- en Ov: menov
9 \/?(Ig> l€n) 10), = 19)ml € )n [0)
Ho W H, [€)m 190 10), = Hy W [€) —=(|g)n + [€)n) 0), =
J2
Ho 1€)m —=(18)n- 1€)n) 10}y = |€)m| € )n 10,
|>\E(|9> |€)n) 10), = |€)ml € ) [0)

Hy, W H,, |€)m |€)n |0), = Hy W ) 1_( |9)n- |€)n) [0), =

V2

H, [€)m ﬁ( 9%+ 1€)n) 10), = |€)ml g )n 10},

In summary

Hny W Hy 1@)m 19)n 10)y = 19)ml@)n [0),

Hy W Hp, 1@)m 1€)n 10}, = 19)ml € )n 10),
Hy W Hp 1€)m 19)n 10}, = |€)ml € )n 10),
Hy W Hy €)m |€)n 10), = |€)m| g )n [0),

Thus we notice that the sequence of operations
H, W H, is equivalent to a CNOT gate i.e. Qbit n is flipped if Qbit m is in state |e)
but is left alone if Qbit m is in state |g).
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Fig. 1. Level scheme of 4°Cat. The qubit is implemented using the narrow quadrupole
transition. All states split up into the respective Zeeman sublevels.
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