Laboratory measurements of the electron impact excitation cross section of Fe XVII x-ray transitions

G. V. Brown* P. Beiersdorfer* K. R. Boyce[†] H. Chen*
M. F. Gu[‡] S. M. Kahn[‡] R. L. Kelley[†]
C. A. Kilbourne[†] F. S. Porter[†] J. H. Scofield*
A. E. Szymkowiak[§]

February 3, 2006

Abstract

We have used a large-area, gain-stabilized microcalorimeter array built by the NASA-Goddard Space Flight Center and operated at Lawrence Livermore National Laboratory's electron beam ion trap to measure the electron-impact excitation cross sections for the dominant x-ray lines in the Fe XVII spectrum as a function of electron impact energy. The results reveal a consistent overestimation by recent calculations of the excitation cross section of the resonance transition, which is shown to be at the root of several long-standing problems associated with modeling solar and astrophysical Fe XVII spectra. These results establish a benchmark for atomic calculations frequently used to analyze high-resolution celestial spectra measured using the Chandra, XMM-Newton, or Suzaku X-ray observatories. Work by the U.C. LLNL was performed under the auspices of the D.o.E. under contract No. W-7405-Eng-48 and supported by NASA APRA grants to LLNL, GSFC, and Stanford University.

^{*}High Energy Density Physics and Astrophysics Division, Lawrence Livermore National Laboratory, Livermore, CA 94551

[†]NASA/Goddard Space Flight Center, Greenbelt, MD 20771

[‡]Department of Physics, Stanford University, Stanford, CA 94305

[§]Department of Physics, Yale University, New Haven, CT 06520