Visible to near infrared emission spectra of electron-excited H\textsubscript{2}

Alejandro Aguilar\textasteriskcentered, Geoffrey K. James\textasteriskcentered, Herve Abgrall\textdagger, Evelyne Roueff\textdagger, Joseph M. Ajello\textasteriskcentered

February 3, 2006

Abstract

H\textsubscript{2} is the most abundant molecule in the universe and is an active component of star formation. Inside dense molecular clouds, heating and ionization occur by cosmic rays, X-rays and shock waves, generating energetic electrons. Collisional excitation by electrons is the source of both UV and Visible-optical-IR (VOIR) H\textsubscript{2} fluorescence in the ISM, circumstellar disks and certain classes of stars [1]. The importance of collisional excitation processes has been verified with analysis of HST and IUE observations of Herbig-Haro (HH) Objects, T Tauri stars and reflection nebulae [2,3]. In particular, intense H\textsubscript{2} transitions in the VOIR from various vibrational levels have been observed in highly-collimated jets of matter from young stellar objects [4]. These observed lines trace the colder molecular part of the post-shocked gas [5].

In recent work, we have demonstrated [6] that the gerade series (EF\Sigma\textsubscript{\textit{g}}+, GK\Sigma\textsubscript{\textit{g}}+, H\Sigma\textsubscript{\textit{g}}+, I\Pi\textsubscript{\textit{g}}, J\Delta\textsubscript{\textit{g}}...) makes a significant contribution to the UV spectrum of H\textsubscript{2} via its cascade spectrum in the visible/near IR to the \(n = 2\sigma\pi\) and \(2\rho\pi\) states, the upper states of the Lyman and Werner bands, respectively. Here, we have measured the electron-impact-induced emission spectrum of H\textsubscript{2} in the VOIR wavelength region 700 nm to 950 nm at a spectral resolution of 2 nm (FWHM). A model spectrum of H\textsubscript{2}, based on newly calculated transition probabilities and line positions including rovibrational coupling for the strongest band systems is in excellent agreement with observed intensities.

The VOIR emission spectra of H\textsubscript{2} and HD have never been studied before in optically-thin single-scattering conditions. This work will complete analytic models for use in electron transport codes of the two most fundamental sets of electronic cross sections in UV astronomy: the Lyman and Werner band systems (B\Sigma\textsubscript{\textit{u}}+ 1\sigma2\rho\sigma – X\Sigma\textsubscript{\textit{u}}+ and C\Pi\textsubscript{\textit{u}}+ 1\sigma2\rho\pi – X\Sigma\textsubscript{\textit{u}}+) of H\textsubscript{2} and HD [7].

\textasteriskcentered Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

\textdagger LUTH and UMR 8102 du CNRS, Observatoire de Paris, 92195 Meudon Cedex, France