Finding Other Earths

Jason H. Steffen
Asset Earth
Waubonsee Community College October 1, 2009

True Earth Analog

Necessities:

1) Main Sequence Star
2) Within the Stellar Habitable Zone
3) Roughly Earth Mass and Size

True Earth Analog

Necessities:

1) Main Sequence Star
2) Within the Stellar Habitable Zone
3) Roughly Earth Mass and Size

Niceties:

1) Nearly Circular Orbit
2) Jupiter-like Planet
3) Large Moon
4) Plate Tectonics
5) Galactic Habitable Zone
6) Single Star

Non-main Sequence Stars

(diameter $\approx 0.01 \mathrm{AU}$)
The Sun as a red giant
(diameter $\approx 2 \mathrm{AU}$)

\square

Giant Stars

White Dwarf Stars

Neutron Stars

Stellar Habitable Zone

Earth Mass and Earth Size Planets

320x Earth mass
11x Earth diameter

15x Earth mass
$4 x$ Earth diameter

0.82x Earth mass

$0.95 x$ Earth diameter
$0.11 x$ Earth mass
$0.53 x$ Earth diameter
0.012x Earth mass

$0.27 x$ Earth diameter

Note: Moons orbiting gas giants in the habitable zone are fair game.

Planetary Orbits

Stars and planets both orbit about their mutual center of mass.

Planetary Orbits

Orbits are elliptical with the center of mass at one focus.

The average distance from the planet to the focus is equal to half of the major axis (semimajor axis).

Planetary Orbits

The eccentricity of an orbit gives the flattening of the ellipse.

Planetary Orbits

PLANET	a	e
Mercury	0.39	0.206
Venus	0.72	0.007
Earth	1.00	0.017
Mars	1.52	0.093
Jupiter	5.20	0.048
Saturn	9.54	0.054
Uranus	19.2	0.047
Neptune	30.1	0.009

Planetary Orbits

PLANET	a	e
Mercury	0.39	0.206
Venus	0.72	0.007
Earth	1.00	0.017
Mars	1.52	0.093
Jupiter	5.20	0.048
Saturn	9.54	0.054
Uranus	19.2	0.047
Neptune	30.1	0.009
51 Peg	0.052	0.01
16 Cyg B	1.68	0.69

Planetary Orbits

PLANET	a	e
Mercury	0.39	0.206
Venus	0.72	0.007
Earth	1.00	0.017
Mars	1.52	0.093
Jupiter	5.20	0.048
Saturn	9.54	0.054
Uranus	19.2	0.047
Neptune	30.1	0.009
51 Peg	0.052	0.01
16 Cyg B	1.68	0.69

Planet Detection Techniques

1) Pulse Timing
2) Gravitational lensing
3) Astrometry
4) Direct Imaging
5) Radial Velocity (Doppler)
6) Transits

Pulse Timing Technique

Pulse Timing Technique

These aren't the planets you're looking for.

Gravitational Lensing Technique

Gravitational Microlensing

Gravitational Lensing Technique

Gravitational Microlensing

Currently, the only way to get a galaxy-wide census of planets.

These are planets that you can't see orbiting stars that you can't see.

Direct Imaging Technique

Fomalhaut HST ACS/HRC

$13^{\prime \prime}$

Direct Imaging Technique

Fomalhaut b
Mass: ~1 Jupiter
Period: ~1000 years Orbit Dist: ~10B miles Ecc: ~0.1

Comparison of Fomalhaut System and Solar System

Direct Imaging Technique

Fomalhaut b
Mass: ~1 Jupiter
Period: ~1000 years
Orbit Dist: ~10B miles
Ecc: ~0.1

Contrast Ratio:
State of the art $=1 \mathrm{e}-5$
1 part per 100,000
To see Earth $=1 \mathrm{e}-11$
1 part per 100,000,000,000
Comparison of Fomalhaut System and Solar System

Astrometric Technique

Astrometric Technique

Astrometric Technique

Astrometric Technique

VB 10b

Mass: ~5 Jupiters
Period: 271 Days Orbit Dist: ~0.36 AU

Astrometric Technique

Radial Velocity Technique

Radial Velocity Technique

Wavelength is compressed: "blueshift"

Wavelength is expanded: "redshift"

Wavelength is unchanged

The Radial Velocity Technique

Spectrum measured in a laboratory

Spectrum of a star

This spectrum has been redshifted.
The star is moving away from the observer

Radial Velocity Technique

Radial Velocity Technique

You can only measure radial velocities along the line of sight.

This system looks identical to this system.

Radial Velocity Technique

HD 80606
Period: 111 days
Eccentricity: 0.934
Recently found to transit

Radial Velocity Technique

GJ 876
Two planets with very Strong mutual interactions

Radial Velocity Technique

55 Cnc

5 planets with orbits between 3 days and 14 years and masses between 10 Earths and 3 Jupiters.

Radial Velocity Technique

GJ 581

Two planets near the habitable zone

JD 2453152.0 (26 May 2004CE, 12:00:00.0 UT)
Each grid square $=0.1 \mathrm{AU} \times 0.1 \mathrm{AU}$
Planets and star not drawn to scale

Radial Velocity Technique

GJ 581

Two planets near the habitable zone

Radial Velocity Technique

Planet Transit Technique

Transit of Venus (courtesy of David Cortner)

Radial Velocity Measurements

Radial Vol-....curements

Keck Telescope Mirror

Planet Transit Technique

Planet Transit Technique

Planet Transit Technique

CoRoT-7b
Period: 0.85 days Mass: ~5 Earths

CoRoT-7c
Period: 4.5 days Mass: 8.4 Earths

Planet Transit Technique

HD 189733b
Period: 2.2 days Mass: 1.1 Jupiters

Phase variations

Planet Transit Technique

Planet Transit Technique

The Rossiter-McLaughlin effect for rotating stars

Planet Transit Technique

The Rossiter-McLaughlin effect for rotating stars

A planet on this side causes an apparent redshift.

A planet on this side causes an apparent blueshift.

Receding side is redshifted

Planet Transit Technique

The Rossiter-McLaughlin effect for rotating stars

Transits along different trajectories give different signatures.

Planet Transit Technique

RM effect for HD 209458

RM effect for WASP 17

Planet Transit Technique

Planet Transit Technique

Jupiter: need 1 part per 1000.

Earth: need 1 part per 100,000.

More on this in a moment.

Census of the Planets

- 374 Total Planets
- 347 from Radial Velocity alone (includes transiting planets)
- 62 known transiting planets
- 39 multiple planet systems
- At least one planet detected from each of the six methods

Census of the Planets

Census of the Planets

Census of the Planets

Census of the Planets

The brown dwarf desert

Finding Other Earths

Jupiter: need 1 part per 1000.

Earth: need 1 part per 100,000.

Finding Other Earths

Finding Other Earths

Finding Other Earths

Finding Other Earths

Kepler mirror: 0.95m

Finding Other Earths

42 CCD chips
95 million pixels
Continuously monitor ~150,000 target stars

Images are de-focused
Only target pixels are sent back to Earth

Finding Other Earths

Delta Launch Vehicle with Kepler Spacecraft

Finding Other Earths

March 6, 2009

Finding Other Earths

Payload Separation
$\mathrm{t}=3,708.8 \mathrm{sec}$
Alt $=389.6 \mathrm{nmi}$
$V_{1}=34,861 \mathrm{fps}$

Finding Other Earths

First light image

Finding Other Earths

View from the ecliptic North Pole

Finding Other Earths

First Kepler science results

Kepler is working as planned.

Kepler Commissioning data (10 days)
W. Borucki et al., 2009

Finding Other Earths

- Kepler is slated to run for 3.5 years with a possible extension to 7 years.
- Kepler is the first instrument capable of detecting a true Earth analog.
- Kepler has met expectations for its performance, expect results soon.

