Quantum Mechanics

Homework 9: Time-Independent Perturbation Theory

017 qfull 00200330 tough math: time dependent perturbation, square well
Extra keywords: (MEL-141:5.3), time dependent perturbation, infinite square well

1. At time $t=0$, an electron of charge \tilde{e} is in the n eigenstate of an infinite square well with potential

$$
V(x)= \begin{cases}0, & x \in[0, a] \\ \infty & x>a\end{cases}
$$

At that time, a constant electric field \tilde{E} pointed in the positive x direction is suddenly applied. (Note the tildes on charge and electric field are to distinguish these quantities from the natural log base and energy.) NOTE: The 1-d infinite square-well eigenfunctions and eigen-energies are, respectively

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right) \quad \text { and } \quad E_{n}=\frac{\hbar^{2} k^{2}}{2 m}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi}{a}\right)^{2} n^{2}
$$

where $n=1,2,3, \ldots$ The sinusoidal eigenfunctions can be expressed as exponentials: let $z=\pi x / a$, and then

$$
\sin (n z)=\frac{e^{i n z}-e^{-i n z}}{2 i}
$$

a) Use 1st order time-dependent perturbation theory to calculate the transition probabilities to all OTHER states m as a function of time. You should evaluate the matrix elements as explicitly: this is where all the work is naturally.
b) How do the transition probabilities vary with the energy separation between states n and m ?
c) Now what is the 1 st order probability of staying in the same state n ?

SUGGESTED ANSWER:

a) In this case the perturbation potential is given by

$$
\begin{equation*}
H^{(1)}=(-\tilde{e})(-\tilde{E}) x=\tilde{e} \tilde{E} x \tag{1}
\end{equation*}
$$

The first order perturbation expression for the coefficent $a_{m}(m \neq n)$ is then

$$
\begin{align*}
a_{m} & =\frac{1}{i \hbar} \int_{0}^{t} e^{i \omega_{m n} t^{\prime}} H_{m n}^{(1)}\left(t^{\prime}\right) d t^{\prime} \\
& =\frac{1}{i \hbar} e^{i \omega_{m n} t / 2} \frac{\sin \left(\omega_{m n} t / 2\right)}{\left(\omega_{m n} / 2\right)} \tilde{e} \tilde{E}\left\langle\psi_{m}\right| x\left|\psi_{n}\right\rangle \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
\omega_{m n} \equiv \frac{E_{m}-E_{n}}{\hbar} \tag{3}
\end{equation*}
$$

The transition probability is

$$
\begin{equation*}
\left.P_{n \text { to } m}(t)=\left|a_{m}\right|^{2}=\frac{1}{\hbar^{2}} \frac{\sin ^{2}\left(\omega_{m n} t / 2\right)}{\left(\omega_{m n} / 2\right)^{2}}|\tilde{e} \tilde{E}|^{2}\left|\left\langle\psi_{m}\right| x\right| \psi_{n}\right\rangle\left.\right|^{2} \tag{4}
\end{equation*}
$$

At time zero, the transition probabilities grow everywhere as t^{2} as can be seen by a 1 st order expansion of the sine function about zero. As time passes, the probabilities begin to oscillate in time. Non-monotonic behavior (which we can call the beginning of oscillation) sets in for state m when

$$
\begin{equation*}
\frac{\pi}{2}<\frac{\omega_{m n} t}{2} \tag{5}
\end{equation*}
$$

holds for that state. The probability would continue to grow as t^{2} only for states degenerate with state n : i.e., for cases with $\omega_{m n}=0$. But there are no degenerate states for 1-dimensional infinite square well.

One must recall that 1 st order theory can not be valid for long times: i.e., for P_{n} to $m(t)$ growing significantly close to 1 .

The remaining problem is just to evaluate and simplify the expression for the matrix element:

$$
\begin{align*}
\left\langle\psi_{m}\right| x\left|\psi_{n}\right\rangle & =\frac{2}{a} \int_{0}^{a} \sin \left(\frac{m \pi}{a} x\right) x \sin \left(\frac{n \pi}{a} x\right) d x \\
& =\frac{2}{a} \frac{1}{(-4)}\left(\frac{a}{\pi}\right)^{2} \int_{0}^{\pi}\left(e^{i m z}-e^{-i m z}\right) z\left(e^{i n z}-e^{-i n z}\right) d z \\
& =\frac{2 a}{\pi^{2}} \frac{1}{(-4)} \int_{0}^{\pi} z\left(e^{i(m+n) z}+e^{-i(m+n) z}-e^{i(m-n) z}-e^{-i(m-n) z}\right) d z \tag{6}
\end{align*}
$$

where we have used the transformation $z=\pi x / a$. Here we note that

$$
\begin{equation*}
\int_{0}^{\pi} z e^{i \ell z} d z=\frac{\pi}{i \ell}(-1)^{\ell}+\frac{(-1)^{\ell}-1}{\ell^{2}} \tag{7}
\end{equation*}
$$

where ℓ is an integer. The first terms from right-hand side of equation (7) that appear in integral of equation (6) all cancel out in fact. The second terms from right-hand side of equation (7) that appear in integral of equation (6) yield the factor

$$
\begin{equation*}
2 \frac{\left[(-1)^{m-n}-1\right]}{(m+n)^{2}}+2 \frac{\left[(-1)^{m-n}-1\right]}{(m-n)^{2}}=\frac{-8 m n}{\left(m^{2}-n^{2}\right)^{2}}\left[(-1)^{m-n}-1\right] \tag{8}
\end{equation*}
$$

where we have use the fact that if $m+n$ is even then $m-n$ is even too, and so $(-1)^{m+n}=$ $(-1)^{m-n}$. The final results are

$$
\begin{equation*}
\left\langle\psi_{m}\right| x\left|\psi_{n}\right\rangle=\frac{8 a}{\pi^{2}} \frac{m n}{\left(m^{2}-n^{2}\right)^{2}}\left\{\frac{\left[(-1)^{m-n}-1\right]}{2}\right\} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left|\left\langle\psi_{m}\right| x\right| \psi_{n}\right\rangle\left.\right|^{2}=\frac{64 a^{2}}{\pi^{4}} \frac{m^{2} n^{2}}{\left(m^{2}-n^{2}\right)^{4}}\left\{\frac{\left[(-1)^{m-n}-1\right]}{2}\right\}^{2} \tag{10}
\end{equation*}
$$

We can see from the matrix element that all even transitions (i.e., those with $m-n$ even) vanish in 1st order theory.
b) How does energy separation of states m and n affect the matrix elements? Recall from equation E_{n} is proportional n^{2} and is always greater than zero. Consider the function

$$
\begin{equation*}
f(r)=\frac{r b}{(r-b)^{4}} \tag{11}
\end{equation*}
$$

The derivative is

$$
\begin{equation*}
\frac{d f(r)}{d r}=-\frac{b(b+3 r)}{(r-b)^{5}} \tag{12}
\end{equation*}
$$

Evidently, the function $f(r)$ for $r>0$ and $b>0$ decreases with r for $r>b$ and increases with r for $r<b$. Thus $f(r)$ decreases always as $\mid r-b$ increases. In our case $r=m^{2}$ and $b=n^{2}$. We can see that the squared modulus of the odd matrix element decreases with increasing energy separation. Thus the transition probabilities decrease with increasing energy separation between states n and m.
c) The first order amplitude for staying in the same state is

$$
\begin{align*}
a_{m} & =\frac{1}{i \hbar} \int_{0}^{t} H_{n n}^{(1)}\left(t^{\prime}\right) d t^{\prime} \\
& =\frac{1}{i \hbar} t \tilde{e} \tilde{E}\left\langle\psi_{n}\right| x\left|\psi_{n}\right\rangle . \tag{13}
\end{align*}
$$

Now

$$
\begin{align*}
\left\langle\psi_{n}\right| x\left|\psi_{n}\right\rangle & =\frac{2}{a} \int_{0}^{a} x \sin ^{2}\left(\frac{n \pi}{a} x\right) d x=\frac{2}{a}\left(\frac{a}{n \pi}\right)^{2} \int_{0}^{n \pi} z \sin ^{2}(z) d z \\
& =\frac{2}{a}\left(\frac{a}{n \pi}\right)^{2}\left\{\left.\frac{z}{2}\left[z-\frac{\sin (2 z)}{2}\right]\right|_{0} ^{n \pi}-\int_{0}^{n \pi} \frac{1}{2}\left[z-\frac{\sin (2 z)}{2}\right] d z\right\} \\
& =\frac{2}{a}\left(\frac{a}{n \pi}\right)^{2}\left\{\frac{(n \pi)^{2}}{2}-\left.\frac{1}{2}\left[\frac{z^{2}}{2}+\frac{\cos (2 z)}{4}\right]\right|_{0} ^{n \pi}\right\} \\
& =\frac{2}{a}\left(\frac{a}{n \pi}\right)^{2} \frac{(n \pi)^{2}}{4} \\
& =\frac{a}{2} \tag{14}
\end{align*}
$$

Then we find

$$
\begin{equation*}
P(t)=\frac{t^{2}}{\hbar^{2}}|\tilde{e} \tilde{E}|^{2} \frac{a^{2}}{4} \tag{15}
\end{equation*}
$$

The 1st order probability of no transition increases quadratically with time. Note a 1 st order calculation for no transition is probably not that great. One should probably do a 2 nd order calculation.

Redaction: Jeffery, 2001jan01
024 qmult 01600144 easy deducto-memory: Einstein stimulated em.
2. "Let's play Jeopardy! For $\$ 100$, the answer is: An effect discovered by Einstein by means of a thermodynamic equilibrium detailed balance argument."

What is \qquad , Alex?
a) spontaneous emission
b) special relativity
c) the photoelectric effect
d) stimulated emission
e) spontaneous omission

SUGGESTED ANSWER: (d)

Wrong answers:
e) I'm subject to this effect myself.

Redaction: Jeffery, 2001jan01
024 qmult 01900112 easy memory: electric dipole transitions
3. Typically, strong atomic and molecular transitions are \qquad transitions.
a) electric quadrupole
b) electric dipole
c) magnetic dipole
d) electric monopole
e) magnetic metropole

SUGGESTED ANSWER: (b)

Wrong Answers:
e) Metropole is not in my dictionary, but I think it is a word meaning metropolis. If I recall correctly, Wallace Stevens uses metropole in cute poem.
Redaction: Jeffery, 2001jan01
024 qfull 00300250 moderate thinking: classical EM scattering
Extra keywords: reference Mi-83
4. Say we had a classical simple harmonic oscillator (SHO) consisting of a particle with mass m and charge e and a restoring force $m \omega_{0}^{2}$ where ω_{0} is the simple harmonic oscillator frequency. This SHO is subject to driving force caused by traveling electromagnetic field (i.e., light):

$$
\vec{F}_{\text {drive }}=e \vec{E}_{0} e^{i \omega t}
$$

where \vec{E}_{0} is the amplitude, ω is the driving frequency, and we have used the complex exponential form for mathematical convenience: the real part of this force is the real force. The magnetic force can be neglected for non-relativistic velocities. The Lorentz force is

$$
\vec{F}=e\left(\vec{E}+\frac{\vec{v}}{c} \times \vec{B}\right)
$$

(Ja-238) and \vec{E} and \vec{B} are comparable in size for electromagnetic radiation, and so the magnetic force is of order v / c smaller than the electric force. (See also MEL-130.) An oscillating charge is an accelerating charge and will radiate electromagnetic radiation. The power radiated classically is

$$
P=\frac{2 e^{2} a^{2}}{3 c^{3}}
$$

where \vec{a} is the charge acceleration. This radiation causes an effective damping force given approximately by

$$
\vec{F}_{\mathrm{damp}}=-m \gamma \vec{v}
$$

where

$$
\gamma=\frac{2 e^{2} \omega_{0}^{2}}{3 m c^{3}}
$$

The full classical equation of motion of the particle is

$$
m \vec{a}=-m \omega_{0}^{2} \vec{r}+e \vec{E}_{0} e^{i \omega t}-m \gamma \vec{v} .
$$

a) Solve the equation of motion for \vec{r} and \vec{a}. HINTS: The old trial solution approach works. Don't forget to take the real parts although no need to work out the real part explicitly: i.e., Re[solution] is good enough for the moment.
b) Now solve for the time average of the power radiated by the particle. HINT: You will need the explicit real acceleration now.
c) The average power radiated must equal the average power absorbed. Let's say that the particle is in radiation flux from a single direction with specific intensity

$$
I_{0}=\frac{c E_{0}^{2}}{8 \pi}
$$

(Mi-9), where time averaging is assumed como usual. The power absorbed from this flux is $\sigma(\omega) I_{0}$, where $\sigma(\omega)$ is the cross section for energy removed. Solve for $\sigma(\omega)$ and then find show that it can be approximated by a Lorentzian function of ω with a coefficient $\pi e^{2} /(m c)$. HINT: It is convenient to absorb some of the annoying constants into another factor of γ.
d) Now rewrite the cross section as a function of $\nu=\omega /(2 \pi)$ (i.e., the ordinary frequency) and then integrate over ν to get the frequency integrated cross section $\sigma_{\nu \text { int }}$ of the system. What is the remarkable thing about $\sigma_{\nu \text { int }}$? Think about how it relates to the system from which we derived it. Evaluate this frequency integrated cross section for an electron. HINT: The following constants might be useful

$$
\alpha=\frac{e^{2}}{\hbar c}=\frac{1}{137.036}, \quad \hbar=1.05457 \times 10^{-27} \mathrm{erg} \mathrm{~s}, \quad \text { and } \quad m_{e}=9.10939 \times 10^{-28} \mathrm{~g}
$$

SUGGESTED ANSWER:

a) Let $\vec{r}=\vec{r}_{0} e^{i \omega t}$ and substitute this into the equation of motion and cancel out the exponential factor:

$$
-\omega^{2} m \vec{r}_{0}=-m \omega_{0}^{2} \vec{r}_{0}+e \vec{E}_{0}-i \omega m \gamma \vec{r}_{0}
$$

Well we find

$$
\vec{r}_{0}=\frac{(e / m) \vec{E}_{0}}{\omega_{0}^{2}-\omega^{2}+i \gamma \omega}
$$

and so

$$
\vec{r}=\operatorname{Re}\left[\frac{(e / m) \vec{E}_{0} e^{i \omega t}}{\omega_{0}^{2}-\omega^{2}+i \gamma \omega}\right]
$$

and

$$
\vec{a}=\operatorname{Re}\left[\frac{-\omega^{2}(e / m) \vec{E}_{0} e^{i \omega t}}{\omega_{0}^{2}-\omega^{2}+i \gamma \omega}\right]
$$

b) Behold:

$$
\vec{a}=-\omega^{2}(e / m) \vec{E}_{0} \frac{\left(\omega_{0}^{2}-\omega^{2}\right) \cos (\omega t)+\gamma \omega \sin (\omega t)}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}}
$$

The time average of the square of the magnitude of \vec{a} is

$$
\left\langle a^{2}\right\rangle=\left[\omega^{2}(e / m) \vec{E}_{0}\right]^{2} \frac{1}{2} \frac{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}}{\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}\right]^{2}}=\left[\omega^{2}(e / m) \vec{E}_{0}\right]^{2} \frac{1}{2} \frac{1}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}},
$$

where we have used the facts that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin ^{2}(x) d x=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos ^{2}(x) d x=\frac{1}{2} \quad \text { and } \quad \frac{1}{2 \pi} \int_{0}^{2 \pi} \sin (x) \cos (x) d x=0
$$

The time-averaged power is then

$$
\langle P\rangle=\frac{e^{4} \omega^{2} E_{0}^{2}}{3 m^{2} c^{3}} \frac{1}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}}
$$

c) Behold:

$$
\sigma(\omega)=\frac{\langle P\rangle}{I_{0}}=\frac{8 \pi e^{4} \omega^{4}}{3 m^{2} c^{4}} \frac{1}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}}
$$

Given the denominator, $\sigma(\omega)$ may well be sharply peaked about the SHO frequency ω_{0}. Thus only the strongest variation on ω needs to be retained. One can approximate ω elsewhere by ω_{0}. Well the big trick, and I admit to never having thought of it myself, is to make the following approximation

$$
\omega_{0}^{2}-\omega^{2}=\left(\omega_{0}+\omega\right)\left(\omega_{0}-\omega\right) \approx 2 \omega_{0}\left(\omega_{0}-\omega\right)
$$

One then approximates the ω^{4} by ω_{0}^{4}, divides numerator and denomitor by $4 \omega_{0}^{2}$, and absorbs some constants into another γ factor to get

$$
\sigma(\omega)=\frac{\pi e^{2}}{m c} \frac{\gamma}{\left(\omega_{0}-\omega\right)^{2}+(\gamma / 2)^{2}} .
$$

d) Well

$$
\sigma(\nu)=\frac{\pi e^{2}}{m c} \frac{1}{\pi} \frac{\gamma /(4 \pi)}{\left(\nu_{0}-\nu\right)^{2}+(\gamma / 4 \pi)^{2}} .
$$

The normalized Lorentzian is

$$
L(x)=\frac{1}{\pi} \frac{\Gamma / 2}{(x-\bar{x})^{2}+(\Gamma / 2)^{2}},
$$

where Γ is the FWHM (i.e., full-width at half maximum) and \bar{x} is the mean value of the distribution. It follows that

$$
\sigma_{\nu \mathrm{int}}=\frac{\pi e^{2}}{m c}
$$

The remarkable thing about this frequency integrated cross section is that it is independent of the restoring force of the simple harmonic oscillator. It is sort of a universal result. Now microscopic systems are not classical nor often exactly simple harmonic oscillators, and thus one does not expect $\sigma_{\nu \text { int }}$ to apply. However, $\sigma_{\nu \text { int }}$ evaluated for an electron is frequently used as a unit of frequency integrated cross sections. Atomic frequency integrated cross sections can be written out

$$
\sigma_{\nu \text { int atomic }}=\frac{\pi e^{2}}{m c} f_{i j}
$$

where $f_{i j}$ is a dimensionaless quantity called the oscillator strength of the transition from lower level i to upper level j. Only for the strongest atomic transitions does ${ }_{i j}$ approach unity (Mi-84).

For an electron, we find

$$
\sigma_{\nu \mathrm{int}}=\frac{\pi e^{2}}{m c}=\frac{\pi \hbar \alpha}{m}=0.02654 \mathrm{~cm}^{2} / \mathrm{s}
$$

We note that the units are area per time. The per time is there because we integrated over frequency.
Fortran Code

```
print*
pi=acos(-1.)
finestr=1./137.036
hbar=1.05457e-27
emass=9.10939e-28
oscon=(pi*hbar*finestr/emass)
print*,'The classical frequency integrated cross section is'
    print*,'oscon=',oscon ! 0.0265400279
```

Redaction: Jeffery, 2001jan01

