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Quantum Mechanics NAME:

Homework 5: Multiple-Particle Systems, Identical Particles, and The Symmetrization
Principle

011 qmult 00100 1 4 3 easy deducto-memory: central force
1. A central force is one which always points radially inward or outward from a fixed point which is the

center of the central force. The magnitude of central force depends only on:

a) the angle of the particle.
b) the vector ~r from the center to the particle.
c) the radial distance r from the center to the particle.
d) the magnetic quantum number of the particle.
e) the uncertainty principle.

SUGGESTED ANSWER: (c)

Wikipedia confirms this definition of a central force. Mathemetically, one can write the force

~F (~r ) = F (r)r̂ .

But what would a force like
~F (~r ) = F (~r )r̂

be called. It’s not officially a central force since the magnitude depends on direction. But its torque
about the center is also zero, and so it conserves angular momentum. Perhaps, such forces are rare,
and therefore not much studied.

Wrong Answers:
a) Nah.
b) Exactly wrong.

Redaction: Jeffery, 2001jan01

011 qmult 00210 1 1 3 easy memory: separation of variables 2
2. Say you have a differential equation of two independent variables x and y and you want to look for

solutions that can be factorized thusly f(x, y) = g(x)h(y). Say then it is possible to reorder equation
into the form

LHS(x) = RHS(y) ,

where LHS stands for left-hand side and RHS for right-hand side. Well LHS is explicitly independent
of y and implicitly independent of x:

∂LHS

∂y
= 0 and

∂LHS

∂x
=
∂RHS

∂x
= 0 .

Thus, LHS is equal to a constant C and necessarily RHS is equal to the same constant C which is called
the constant of separation (e.g., Arf-383). The solutions for g(x) and h(y) can be found separately
and are related to each other through C. The solutions for f(x, y) that cannot be factorized are not
obtained, of course, by the described procedured. However, if one obtains complete sets of g(x) and h(y)
solutions for the x-y region of interest, then any solution f(x, y) can be constructed at least to within
some approximation (Arf-443). Thus, the generalization of the described procedure is very general and
powerful. It is called:

a) separation of the left- and right-hand sides. b) partitioning.
c) separation of the variables. d) solution factorization. e) the King Lear method.

SUGGESTED ANSWER: (c)

In quantum mechanics, it is a postulate that a complete set of eigenstates exists for any
observable and that any physical state defined for the same space as the observable can be expanded
exactly in those eigenstates in principle. The whole paradigm of quantum mechanics relies on this
postulate—and quantum mechanics has never failed.

Wrong answers:
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d) Seems reasonable.
e) Metaphorical names due turn up in physics like the Monte Carlo method (named after a

famous casino in Monaco) and the Urca process (named after a casino in Rio de Janeiro). One
sometimes gets the feeling that theoretical physicists spend a lot of time in casinos. I used to
wander through them all the time in my Vegas years.

Redaction: Jeffery, 2008jan01

011 qmult 00300 1 4 2 easy deducto-memory: relative/cm reduction
3. “Let’s play Jeopardy! For $100, the answer is: By writing the two-body Schrödinger equation in

relative/center-of-mass coordinates.”

How do you , Alex?

a) reduce a ONE-BODY problem to a TWO-BODY problem
b) reduce a TWO-BODY problem to a ONE-BODY problem
c) solve a one-dimensional infinite square well problem
d) solve for the simple harmonic oscillator eigenvalues
e) reduce a TWO-BODY problem to a TWO-BODY problem

SUGGESTED ANSWER: (b)

Wrong answers:
e) Seems a bit pointless.

Redaction: Jeffery, 2001jan01

011 qmult 00310 1 4 4 easy deducto-memory: reduced mass
4. The formula for the reduced mass m for two-body system (with bodies labeled 1 and 2) is:

a) m = m1m2. b) m =
1

m1m2
. c) m =

m1 +m2

m1m2
. d) m =

m1m2

m1 +m2
. e) m =

1

m1
.

SUGGESTED ANSWER: (d)

Wrong Answers:
a) Dimensionally wrong.
b) Dimensionally wrong.
c) Dimensionally wrong.
e) Dimensionally wrong and it only refers to one mass.

Redaction: Jeffery, 2001jan01

011 qmult 00400 1 4 2 easy deducto memory: spherical harmonics 1
5. The eigensolutions of the angular part of the Hamiltonian for the central force problem are the:

a) linear harmonics. b) spherical harmonics. c) square harmonics.
d) Pythagorean harmonics. e) Galilean harmonics.

SUGGESTED ANSWER: (b)

Wrong Answers:
d) Legend has it that Pythagoras discovered the harmonic properties of strings.
e) Vincenzo Galileo, father of the other Galileo, was a scientist too and studied music

scientifically.

Redaction: Jeffery, 2001jan01

011 qmult 00420 1 4 3 easy deducto memory: spherical harmonic Y00
6. Just about the only spherical harmonic that people remember—and they really should remember it

too—is Y00 =:

a) eimφ. b) r2. c)
1√
4π

. d) θ2. e) 2a−3/2e−r/a.

SUGGESTED ANSWER: (c)
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Wrong Answers:
a) This is the general azimuthal component of the spherical harmonics: m =

0,±1,±2, . . . ,±ℓ.
b) This is radial and it’s not normalizable.
d) Except for Y00 itself, the spherical harmonics are all combinations of sinusoidal functions

of the θ and φ.
e) This is the R10 hydrogenic radial wave function where a is the scale radius

a = a0
me

m

1

Z
,

where me is the electron mass, m is the reduced mass, Z is the number of unit charges
of the central particle, and a0 is the Bohr radius (Gr2005-137). The Bohr radius in MKS
units is given by

a0 =
h−2

me[e2/(4πε0)]
=
λC

2π

1

α
= 0.52917720859(36) Å ,

where e is the elementary charge, λC = h−/(mec) is the Compton wavelength, and α ≈ /137
is the fine structure constant.

Redaction: Jeffery, 2001jan01

011 qmult 00500 1 4 2 easy deducto-memory: spdf designations
7. Conventionally, the spherical harmonic eigenstates for angular momentum quantum numbers

ℓ = 0, 1, 2, 3, 4, ...

are designated by:

a) a, b, c, d, e, etc.
b) s, p, d, f , and then alphabetically following f : i.e., g, h, etc.
c) x, y, z, xx, yy, zz, xxx, etc.
d) A, C, B, D, E, etc.
e) $@%&*!!

SUGGESTED ANSWER: (b)

Wrong Answers:
a) This is the way it should be, not the way it is.
e) Only in Tasmanian devilish.

Redaction: Jeffery, 2001jan01

011 qfull 00100 2 5 0 moderate thinking: 2-body reduced to 1-body problem
Extra keywords: (Gr-178:5.1)

8. The 2-body time-independent Schrödinger equation is

− h−2

2m1
∇2

1ψ − h−2

2m2
∇2

2ψ + V ψ = Etotalψ .

If the V depends only on ~r = ~r2 − r1 (the relative vector), then the problem can be separated into
two problems: a relative problem 1-body equivalent problem and a center-of-mass 1-body equivalent
problem. The center of mass vector is

~R =
m1~r1 +m2~r2

M
,

where M = m1 +m2.

a) Determine the expressions for ~r1 and ~r2 in terms of ~R and ~r.
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b) Determine the expressions for ∇2
1 and ∇2

2 in terms of ∇2
cm (the center-of-mass Laplacian operator)

and ∇2 (the relative Laplacian operator). Then re-express the kinetic operator

− h−2

2m1
∇2

1 −
h−2

2m2
∇2

2

in terms of ∇2
cm and ∇2. HINTS: The x, y, and z direction components of vectors can all be

treated separately and identically since x components of ~R and ~r) (i.e., X and x) depend only on
x1 and x2, etc. You can introduce a reduced mass to make the transformed kinetic energy operator
simpler.

c) Now separate the 2-body Schrödinger equation assuming V = V (~r ) + Vcm(~R ). What are the

solutions of the center-of-mass problem if Vcm(~R) = 0? How would you interpret the solutions of
the relative problem? HINT: I’m only looking for a short answer to the interpretation question.

SUGGESTED ANSWER:

a) Well substituting for ~r2 using expression ~r2 = ~r + ~r1 gives

~R =
m1~r1 +m2~r2

M
=
m1~r1 +m2(~r + ~r1)

M
= ~r1 +

m2

M
~r = ~r1 +

m2

M
~r .

Thus we find

~r1 = ~R− m2

M
~r

and

~r2 = ~r + ~r1 = ~r + ~R− m2

M
~r = ~R+

(

1 − m2

M

)

~r = ~R +
m1

M
~r .

b) Well
∂

∂xi
=
∂X

∂xi

∂

∂X
+
∂x

∂xi

∂

∂x
=
mi

M

∂

∂X
∓ ∂

∂x
.

Thus
∂2

∂x2
i

=
[mi

M

]2 ∂2

∂X2
+

∂2

∂x2
∓ 2

mi)

M

∂

∂X

∂

∂x
,

where i = 1 for the upper case and i = 2 for the lower case. The other coordinate directions
are treated identically mutatis mutandis. We then find that

− h−2

2m1
∇2

1 −
h−2

2m2
∇2

2 = − h−2

M
∇2

cm − h−2

2

(

1

m1
+

1

m2

)

∇2 = − h−2

2M
∇2

cm − h−2

2m
∇2 ,

where define the reduced mass by

1

m
=

1

m1
+

1

m2
or m =

m1m2

m1 +m2
.

The symbol µ is often used for reduced mass, but µ has other uses as well (e.g., the magnetic
moment). There are more quantities than symbols and at some point one has to start recycling.

Note
1

m
≥ 1

mi
,

where i stands for 1 or 2 and equality only holds if the dropped mass is infinite. Thus

m ≤ mi or m ≤ min(m1,m2) .

If m1 = m2, then

m =
m1

2
.
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If m1/m2 < 1, then one can expand the reduced mass expression in the power series (e.g.,
Ar-238)

m =
m1

1 +m1/m2
= m1

∑

k

(−1)k

(

m1

m2

)k

≈ m1

(

1 − m1

m2

)

,

where the last expression holds for m1/m2 << 1.

c) We make the anzatz that we can set

ψtotal(~r1, ~r 2) = ψcm(~R )ψ(~r) .

The Schrödinger equation can then be written at once as

− h−2

2M

∇2
cmψcm(~R )

ψ(~R )
− h−2

2m

∇2ψ(~r )

ψ(~r )
+ V (~r ) + Vcm(~R ) = Etotal .

For the differential equation to hold for all ~R and ~r, we must have

− h−2

2M

∇2
cmψcm(~R )

ψ(~R )
+ Vcm(~R ) = Ecm and − h−2

2m

∇2ψ(~r )

ψ(~r )
+ V (~r ) = E ,

where Ecm and E are constants of separation that sum to Etotal. We then have two 1-body
Schrödinger equation problems:

h−2

2M
∇2

cmψcm(~R ) + Vcm(~R )ψ(~R ) = Ecmψ(~R )

and

− h−2

2m
∇2ψ(~r ) + V (~r )ψ(~r ) = Eψ(~r ) .

The center-of-mass problem is just the free particle Schrödinger equation if Vcm(~R ) = 0.
In practice, it is probably impossible to have a potential that depends exactly on the center
of mass. So Vcm(~R ) is likely only for the case, where the particles experience a slowly varying

external potential Vext(~r1, ~r 2) that can be approximated by Vext(~R, ~R ) = Vcm(~R).
The relative problem is just the central force Schrödinger equation. The wave functions

that solve the relative problem give the position of particle 2 relative to particle 1:

ψ(~r ) = ψ21(~r2 − ~r1) .

Of course, one can get the wave function of particle 1 from particle 2 by using reversing the
relative vector:

ψ(~r ) = ψ21(~r2 − ~r 1) = ψ21[−(~r1 − ~r 2)] = ψ12(~r1 − veccr2)

or

ψ12(~r1 − veccr2) = ψ21[−(~r1 − ~r 2)] .

The relative problem is not in an inertial frame, but it can be treated as if it were because it is
a lawful equation derived from the Schrödinger equation. I always think that the reduced mass
must account for the non-inertiality, but no textbook I know of spits out that notion directly.

The classical 2-body problem with only a central force separates in analogous way to the
quantum 2-body problem. For example, the identical formula of the reduced mass appears.

Redaction: Jeffery, 2001jan01

011 qfull 00200 2 3 0 moderate math: central-force azimuthal component solution
Extra keywords: solving the azimuthal component of the central force problem
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9. In the central force problem, the separated azimuthal part of the Schrödinger equation is:

d2Φ

dφ2
= κ2Φ ,

where κ2 is the constant of separation for the azimuthal part. The constant has been parameterized in
terms of κ2 because clairvoyance tells this is the good way.

a) Since the differential equation is second order, there should should be two independent solutions for
each value of κ2: i.e., the eigenvalue problem has degeneracy of 2 for the eigenvalue. Solve for the
general solution Φ for each κ2: i.e., the solution that is a linear combination of the two independent
solutions with undetermined coefficients. Note that writing the separation constant as κ2 is so far
just a parameterization and nothing yet demands that κ2 be greater than zero: it could be zero
or less than zero. HINT: Use an exponential trial function. But do not forget the special case of
κ2 = 0.

b) Quantum mechanics that wave functions and their derivatives be continuous, except that
discontinuities in derivatives are allowed when a potential goes to infinity which is just unreachable
ideal limit. For our system, we are not allowing any infinite potentials. Our solutions and all order
of derivatives are, in fact, continuous.

The space for azimuthal part is, in fact, finite, but unbounded. The coordinate φ = 0 runs
from 0 to 2π, but when you move 2π you are back where you started. So in a sense there are no
boundary conditions. But quantum mechanics also demands that wave functions be single-valued.
Since we have no interpretation for multi-valuedness, we micropostulate that it doesn’t happen.
The single-valuedness condition replaces the boundary conditions for the azimuthal part. Impose
the single-valuedness condition on the general solution obtained in the part (a) answer and its
derivative, and so that this leads to κ (not κ2 note) must be an integer times the imaginary unit i.
Remember to consider the special case where κ2 = 0?

c) Writing im for κ where m is any integer, write down a general formula solution of the azimuthal
part for a single m value. The solutions for m and −|m| are the degenerate solutions for κ2.
By convention, no normalization constant is applied to the azimuthal part solutionsd: i.e., the
coefficient of the special function that is the solution is left as just 1. The normalization is applied
to the entire angular solutions which are the spherical harmonics. HINT: This is easy.

d) The orbital angular momentum z-component observable

Lz =
h−
i

∂

∂φ
.

To be Hermitian this operator, the only allowed solutions must satisfy certain boundary conditions
which for the interval [0, 2π]. The single-valuedness condition tells us these boundary conditions
must be periodic boundary conditions. What are the eigen states for this observable that satisfy
the periodic boundary conditions? Are the eigenvalues pure real as they should be? What is the
relationship between these eigen states and thos of the azimuthal angle part we found in the part (c)
answer?

e) Normalize the allowed eigensolutions of Lz Note these solutions are, in fact, conventionally left
unnormalized: i.e., the coefficient of the special function that is the solution is left as just 1.
Normalization is conventionally imposed on the total orbital angular momentum solutions, spherical
harmonics.

SUGGESTED ANSWER:

a) The trial solution

Φ = e±κφ

obviously satisfies the differential equation. The general solution for a given κ2 is then

Φ = Aeκφ +Be−κφ ,

where A and B are undetermined constants.
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We can see the value of parameterizing the constant of separation as κ2 since it makes the
solutions look nice.

In the special case of κ2 = 0, we have

Φ = Aφ+B ,

where A and B are undetermined constants.
Note that a 2nd order linear differential equation has only two independent solutions. So

we have found all the linearly independent solutions for each κ2.

b) Well from the general solution for κ 6= 0, we get

Aeκ(φ+2π) +Be−κ(φ+2π) = Aeκφ +Be−κφ

and from its derivative,

κAeκ(φ+2π) − κBe−κ(φ+2π) = κAeκφ − κBe−κφ .

These equations can be rearranged to get

Aeκφ(e2πκ − 1) = −Be−κφ(e−2πκ − 1)

and
κAeκφ(e2πκ − 1) = κBe−κφ(e−2πκ − 1)

or
Aeκφ(e2πκ) − 1) = Beκφ(e2πκ) − 1)

since κ 6= 0.
We now see that

Aeκφ(e2πκ − 1) = −Aeκφ(e2πκ − 1)

and
Beκφ(e2πκ − 1) = −Beκφ(e2πκ − 1) .

Since a number can only equal its additive inverse if it is zero, both of the last equations are
0 = 0 equations. Say either of A or B is not zero, then we require

e2πκ = 1 .

If both A and B are zero, there is no restriction on κ, but the solution is then not normalizable,
and so not physical.

Say κ = a+ ib, where a and b are pure real. Then

e2πa[cos(2πb) + i sin(2πb)] = 1 ,

where we have used Euler’s formula. We see that b must be an integer for the left-hand side
to be pure real and positive. We then see that a = 0 for the equality to hold.

The conclusion is that κ must be an integer times i for a valid solution for κ 6= 0.
What if κ = 0? In this case, single-valuedness requires that B = 0. So

Φ = A .

is the only valid solution for κ = 0.

c) Behold:
Φ = eimφ ,

where m = 0,±1,±2, . . . .

d) Well the eigenproblem is
LzΦ = λΦ
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which is satisfied for solutions of the form

Φ = eκφ

with

λ =
h−
i
κ .

Now the boundary conditions (imposed by the single-valuedness condition) require that κ = im,
where m is an integer. We know this from the part (b) answer. So the eigen states are

Φ = eimφ

and the eigenvalues are
λ = mh− ,

where m = 0,±1,±2, . . . . The eigenvalues are pure real as required for those of an observable.
The eigen states for Lz are exactly the solutions to the azimuthal part of the Schrödinger

equation that we obtained in the part (c) solution. We can now see that this is no surpize. If
we operate on

LzΦ = mh−Φ

with Lz, we get

L2
zΦ = m2h−2

Φ

h−2

−1

d2Φ

dφ2
= m2h−2

Φ

d2Φ

dφ2
= −m2Φ

which is just the the azimuthal angle part all over again. So the solutions to the eigenproblem
for the z-component of angular momentum are the solutions to the azimuthal part. The
azimuthal part is the really the eigenproblem

L2
zΦ = m2h−2

Φ

slightly disguised.
The m parameteris the z-component angular momentum quantum number or magnetic

quantum number (MEL-59; ER-240). The latter name arises since the z-components of the
angular momentum manifest themselves most noticeably in magnetic field phenomena.

e) By inspection, all the allowed normalized solutions are given by

Φ =
1√
2π
eimφ .

In actual fact, one seldom normalizes the z-component of angular momentum solutions (AKA
the azimuthal part solutions) when they stand alone. One normalizes the total angular squared
solutions which are the spherical harmonics.

Redaction: Jeffery, 2001jan01

019 qmult 00100 1 4 5 easy deducto-memory: symmetrization principle
10. “Let’s play Jeopardy! For $100, the answer is: It is the quantum mechanics POSTULATE that the

state for identical fundamental particles must be symmetrized: i.e., must be symmetric or antisymmetric
under the exchange of any two particles in the state expression. Bosons have symmetric state and
fermions antisymmetric states. A second part of the postulate is that integer spin particles are bosons
and half-integer spin particles are fermions. The postulate evolved in the 1920s from the work of Pauli,
Fierz, Weisskopf, Heisenberg, Dirac, and others: there seems to be no one discoverer. An immediate
corollary of the postulate is that composite particles with identical constituent elementary particles
obey the postulates too even though the composite particles are not identical in their states because
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of excitations and perturbations. The composite particles are identical in their properties (though not
their state), and so are called identical too. A composite particle is boson if it contains an even number
of fermions and a fermion if it contains an odd number of fermions.

Actually one needs to define exchange. A general definition is too much for here. For simplicity,
we will only consider two particles whose state is given in the spatial representation: i.e., by a wave
function. The formalism (justifed by it working) is to give each particle its own spatial coordinate and
spin coordinate. Particle 1 has coordinate set ~r1m1 and particle 2 has coordinate set ~r2m2. The state
of the system is the wave function

ψ(~r1m1, ~r2m2) .

In general, the function will have a different dependence on the two coordinate sets. If we exchange we
get the new state

ψnew(~r1m1, ~r2m2) = ψ(~r2m2, ~r1m1) .

In quatnum mechancis jargon, the coordinate set exchange is called exchanging the particles. The new
state is clearly in general a different mathematical state of the formal coordinate sets. The new state
will be the same mathematically as the old state only if it is symmetric: i.e., only if

ψ(~r2m2, ~r1m1) = ψ(~r1m1, ~r2m2)

for all values of the coordinate sets.
If the particles are physically distinct, we create in general a different state by particle exchange.

This is because the new state will evolve differently in time in general because the distinct particles are
affected by different potentials in general. Note that the two particles do have to have the same spin
for the exchange to be mathematically and physically consistent. The only way the new state could be
the same physical state as the original state is if

ψ(~r2m2, ~r1m1) = eiφψ(~r1m1, ~r2m2) ,

where φ is a constant phase factor. A constant phase factor does not change the physical state though,
of course, it changes the mathematical state.

If the two particles are identical, then particle exchange creates clearly does not create a different
physical state even though it creates a different mathematical state. But this causes a paradox which
is called the exchange paradox. A linear combination state

ψcom(~r1m1, ~r2m2) = ciψ(~r1m1, ~r2m2) + cjψ(~r2m2, ~r1m1)

is mathematically and, a priori, physically distince from ψ(~r1m1, ~r2m2). The coefficients ci and cj are
only constrained, a priori, by the requirement that ψcom(~r1m1, ~r2m2) be normalized. In quantum
mechanics, ψcom(~r1m1, ~r2m2) describes the system in a superposition of states ψ(~r1m1, ~r2m2) and
ψ(~r2m2, ~r1m1). But how can an infinite continuum of distinct states be created by the superposition
of a state with itself. The paradox has no derivable solution. It is resolved by the postulate we are
describing.

To see the resolution, say that state ψ(~r1m1, ~r2m2) has the general exchange property that

ψ(~r2, ~r1) = eiφψ(~r1, ~r2) .

Now the linear combination state

ψcom(~r1m1, ~r2m2) = ciψ(~r1m1, ~r2m2)+cjψ(~r2m2, ~r1m1) = ciψ(~r1m1, ~r2m2)+cje
iφψ(~r1m1, ~r2m2) = (ci+cje

iφ)ψ(~r1m1, ~r2

which is physically the same state as before: mathematically it differs by a constant phase factor.
The general exchange property resolves the exchange paradox. But what sets the phase factor eiφ.
Arguments we will not go into here suggest that only eiφ = ±1 are reasonable phase factor values.
Observation tells us that eiφ = 1 holds for integer spin particles and eiφ = −1 holds for half-integer spin
particles. This observation becomes part of the postulate we are describing. Actually, the spin-statistics
theorem proves the spin rule, but that theorem itself depends on hypotheses which may not be true
(CT-1387). Also actually quasiparticles called anyons that exist in two-dimensional systems have the
general exchange property rather than just the eiφ = ±1 possibilities.

What is , Alex?
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a) Born’s hypothesis b) Schrödinger’s dilemma c) Dirac’s paradox
d) Wigner’s last stand e) the symmetrization principle or postulate

SUGGESTED ANSWER: (e)

Longwinded, but the symmetrization principle really can’t be fully described by a single
sentence.

Wrong answers:
d) Wigner’s last stand?

Redaction: Jeffery, 2001jan01

019 qfull 00100 2 5 0 moderate thinking: permutation operator
11. The permutation operator P for functions of two variables has the seemingly arbitrary, but well defined,

property that
Pf(x1, x2) = f(x2, x1) ,

where f(x1, x2) is a general complex function of two real number variables or, one could say, coordinates.
Note that an operator is formally a mathematical entity that changes a function into another function or,
in a more general context, changes a generalized vector into another generalized vector. Thus Pf(x1, x2)
is NOT f(x1, x2) evaluated with exchanged argument values, but a new function of coordinates x1 and
x2 that has values equal to f(x2, x1). Of course, if one views x1 and x2 as just particular values and
not coordinates, then one can view Pf(x1, x2) just as f(x1, x2) evaluated with exchanged argument
values—but that’s not the way we view things in this question.

a) Say x1 and x2 are orthogonal coordinates with the x2 counterclockwise from the x1. Describe
Pf(x1, x2) in comparison to f(x1, x2). HINT: It might be helpful to consider specific points in the
x1-x2 plane (a, b) and (b, a) which are obviously mirror reflection positions relative to each other
about the x1 = x2 line.

b) Prove that P is a linear operator: i.e., that

P [f(x1, x2) + g(x1, x2)] = Pf(x1, x2) + Pg(x1, x2)] .

HINT: Define
h(x1, x2) = f(x1, x2) + g(x1, x2) .

c) What is

P

[

∂f(x1, x2)

∂x1

]

equal to. HINT: You might consider a specific example first, e.g., one with

f(x1, x2) = x3
1x2 .

But for a general proof, recall the definition of the derivative

df(x)

dx
= lim

h→0

f(x+ h) − f(x)

h
.

d) Show that the permutation operation and the complex conjugation operation commute: i.e., show
that

[Pf(x1, x2)]
∗ = P [f(x1, x2)

∗] .

HINT: Decompose f(x1, x2) into real and imaginary parts.

e) Show from the definition of the Hermitian conjugate,

〈φ|Q|ψ〉 = 〈ψ|Q†|φ〉∗

(where Q is any operator), that P is a Hermitian operator: i.e., that P = P †. HINT: Recall that
for two spatial dimensions

〈φ|Q|ψ〉 =

∫

1

∫

2

φ(x1, x2)
∗Qψ(x1, x2) dx1 dx2 .
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f) Solve for ALL the eigenvalues of P .

g) Show that any function f(x1, x2) can be expanded in eigenfunctions of P , and thus the
eigenfunctions of P form a complete set for the space of functions of two coordinates including wave
function spaces of two coordinates. Show explicitly that the eigenfunctions of different eigenvalues
are orthogonal. Since P is Hermitian and has a complete set of eigenfunctions for any wave function
space of two arguments, it is formally a quantum mechanical observable.

h) Given that A(x1, x2) is an operator, show that

PA(x1, x2)f(x1, x2) = A(x2, x1)Pf(x1, x2) ,

where A(x2, x1) could be a function operator, a differentiating operator or both. Recall that
operators act on everything to the right—except, of course, when they don’t: but that situation is
usually (but not always) made explicit with brackets. Do P and A commute in general? When do
they commute?

i) Show that P and the Hamiltonian for identical particles,

H = − h−2

2m

∂2

∂x2
1

− h−2

2m

∂2

∂x2
2

+ V (x1, x2) ,

commute. Show that if ψ(x1, x2) is an eigenstate of the Hamiltonian, then Pψ(x1, x2) is an
eigenstate. If ψ(x1, x2) is non-degenerate in energy, is Pψ(x1, x2) a physically distinct state? Show
that there are only two possibilities for what Pψ(x1, x2) is?

j) Given that P and H commute, show that P is a constant of the motion as far as Schrödinger
equation evolution goes.

SUGGESTED ANSWER:

a) Say we evaluated f(x1, x2) at specific point (a, b). We’d get f(a, b). Now

Pf(a, b) = f(b, a) .

So Pf(x1, x2) has the same value at (a, b) that f(x1, x2) as at (b, a). A vector to (a, b) is
mirrored in the x1 = x2 line by a vector to (b, a). So we see that Pf(x1, x2) is the mirror
image of f(x1, x2) in the x1 = x2 line.

b) Well a proof by inspection enough—except for the paranoid, but anyway

P [f(x1, x2) + g(x1, x2)] = Ph(x1, x2) = h(x2, x1) = f(x2, x1) + g(x2, x1) = Pf(x1, x2) + Pg(x1, x2)] ,

and thus

P [f(x1, x2) + g(x1, x2)] = Pf(x1, x2) + Pg(x1, x2)] .

So P is indeed a linear operator.

c) Well if

f(x1, x2) = x3
1x2 ,

then
∂f(x1, x2)

∂x1
= 3x2

1x2

and

P

(

∂f(x1, x2)

∂x1

)

= P (3x2
1x2) = 3x2

2x1 =
∂f(x2, x1)

∂x2
.

But to be general

P

[

∂f(x1, x2)

∂x1

]

= P

[

lim
h→0

f(x1 + h, x2) − f(x1, x2)

h

]

= lim
h→0

f(x2 + h, x1) − f(x2, x1)

h
=
∂f(x2, x1)

∂x2
,
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where we have assumed by all that is righteous that we can commute P and the limit
operation—all math would be absurd if we couldn’t—and therefore we can. So, in general,

P

[

∂f(x1, x2)

∂x1

]

=
∂f(x2, x1)

∂x2
.

This result generalizes to all other permutation operators acting on functions with
differentiating operators obviously.

d) Behold:

[Pf(x1, x2)]
∗ = f(x2, x1)

∗ = fRe(x2, x1) − ifIm(x2, x1)

= PfRe(x1, x2) − iPfIm(x1, x2) = P [fRe(x1, x2) − ifIm(x1, x2)]

= P [f(x1, x2)
∗]

which completes the proof.
Note we used the fact that the permutation operator is linear: i.e., that it distributes over

addition. We proved this in the part (b) answer.

e) Behold:

〈φ|P |ψ〉 =

∫

1

∫

2

φ(x1, x2)
∗Pψ(x1, x2) dx2 dx1 =

∫

1

∫

2

φ(x1, x2)
∗ψ(x2, x1) dx2 dx1

=

∫

2

∫

1

φ(x2, x1)
∗ψ(x1, x2) dx1 dx2 =

∫

1

∫

2

φ(x2, x1)
∗ψ(x1, x2) dx2 dx1

=

[
∫

1

∫

2

φ(x2, x1)ψ(x1, x2)
∗ dx2 dx1

]∗

=

[
∫

1

∫

2

ψ(x1, x2)
∗Pφ(x1, x2) dx2 dx1

]∗

= 〈ψ|P |φ〉∗ ,

where we have used a transformation of the dummy variables and re-ordered the integrations.
We see that P = P † from the definition of a Hermitian conjugate. Thus P is guaranteed
to have real eigenvalues and eigenfunctions that are orthogonal when there eigenvalues are
distinct.

f) Assume f(x1, x2) is an eigenfunction of P and λ is an eigenvalue which a priori could be
complex. Then we find that

f(x1, x2) = P 2f(x1, x2) = λ2f(x1, x2) .

Thus, λ2 = 1. Thus, the only two eigenvalues are ±1. Note that they are real values as we
knew from the part (e) answer.

Just to be tedious we can prove directly that λ = ±1 only. Note absolutely, positively,
that λ2 = 1, NOT |λ|2 = 1 is the condition on λ. Let λ = a+ ib. Now

λ2 = a2 − b2 + 2iab = 1 .

Thus a = 0 or b = 0: they cannot both be zero and satisfy the equation. If a = 0, then we have
a negative number equal to 1: this is a contradiction. Thus, we must have b = 0 and a2 = 1.
Since a is pure real by assumption a = ±1. Since b = 0, λ = ±1.

We could prove the result another way simpler way. Since λ2 = 1 and we initially allow it
to be complex, we must have

λ =
√

1 =
√

ei(φ+2πn) ,

where φ = tan−1(y/x) (y is imaginary part and x is the real part) and n is any integer (Arf-
300). The φ for 1 is zero. When we take the square root of ei(φ+2πn), the only distinct values
we get are for n = 0 and n = 1. Thus, we only get λ = ±1 and λ is pure real.

g) Well given f(x1, x2), we can always form a function f(x2, x1), and then the symmetrized
functions

f±(x1, x2) =
1

2
[f(x1, x2) ± f(x2, x1)] ,
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where the upper case is symmetric and the lower case antisymmetric. The symmetrized
functions are obviously eigenfunctions of the permutation operator: the symmetric one has
eigenvalue 1 and the antisymmetric one has eigenvalue −1. Now

f(x1, x2) = f+(x1, x2) + f−(x1, x2) .

Thus, any function f(x1, x2) can be expanded in eigenfunctions of the permutation operator.
Thus, the eigenfunctions of the permutation operator constitute a complete set. A complete
set with an uncountably infinite degeneracy since there are only two eigenvalues ±1. Since
the permutation operator has a complete set for all functions, it has a complete for any two
spatial dimension wave function space. Thus the permutation operator is formally a quantum
mechanical observable for functions that are wave functions. Although, how one “observes”
permutation is another story.

We can easily prove that a general symmetric and a general antisymmetric function are
orthogonal. Orthogonality is, in fact, proven by the fact that these functions are eigen functions
of the permutation operator and have distinct eigenvalues. But to be explicit, consider the
inner product

〈f+|f−〉 =

∫ ∫

f+(x1, x2)
∗f−(x1, x2) dx1 dx2 = −

∫ ∫

f+(x2, x1)
∗f−(x2, x1) dx1 dx2

= −
∫ ∫

f+(x1, x2)
∗f−(x1, x2) dx1 dx2

= −〈f+|f−〉 ,

where we have used the symmetry properties and done a relabeling of the dummy indexes.
We see that the inner product equals its own additive inverse, and therefore must be zero. So
explicitly a general symmetric and a general antisymmetric function are orthogonal.

h) Well

PA(x1, x2)f(x1, x2) = A(x2, x1)f(x2, x1) = A(x2, x1)Pf(x1, x2)

if one can believe it. Since A(x1, x2) 6= A(x2, x1) in general, P and A(x1, x2) do not in general
commute: i.e.,

[P,A(x1, x2)] 6= 0

in general. If A(x2, x1) = A(x1, x2) (i.e., if A(x1, x2) is symmetric), then P and A(x1, x2) do
commute: i.e.,

[P,A(x1, x2)] 6= 0

i) Since the particles are identical,

PH = P

[

− h−2

2m

∂2

∂x2
1

− h−2

2m

∂2

∂x2
2

+ V (x1, x2)

]

=

[

− h−2

2m

∂2

∂x2
2

− h−2

2m

∂2

∂x2
1

+ V (x2, x1)

]

P

=

[

− h−2

2m

∂2

∂x2
1

− h−2

2m

∂2

∂x2
2

+ V (x1, x2)

]

P = HP ,

where we have used the fact that identical particles have identical mass and the fact that for
identical particals V (x2, x1) = V (x1, x2). So we have proven that P and H communte: i.e.,
that

[H,P ] = 0 .

Given

Hψ(x1, x2) = Eψ(x1, x2) ,

it follows that

PHψ(x1, x2) = HPψ(x1, x2) = EPψ(x1, x2) .

Thus Pψ(x1, x2) is also an eigenstate of the Hamiltonian with the same energy as ψ(x1, x2).
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If ψ(x1, x2) is not degenerate, then Pψ(x1, x2) cannot be a physically distinct state: it
can differ only by a global phase factor from ψ(x1, x2). Thus

Pψ(x1, x2) = ψ(x2, x1) = eiζψ(x1, x2) ,

where ζ is any phase. If we act with P again, we get

ψ(x1, x2) = e2iζψ(x1, x2) .

This implies that e2iζ = 1, and thus that the only allowed phases are 0 and π and the only
allowed phase factors are ±1. Thus, non-energy-degenerate states are eigenstates of P as well
as of H . This property often turns out to be useful in analyzing the possible wave functions
of complex systems like molecules.

Note to be clear, a single non-degenerate state is either symmetric or antisymmetric. There
are not two states of the same energy, one symmetric and one antisymmetric. If it were, it
would violate our hypothesis of non-degeneracy in energy.

j) From the general time evolution formula

d〈P 〉
dt

=

〈

∂P

∂t

〉

+
1

h−
〈i[H,P ]〉 = 0

since P has no explicit time dependence and commutes with H . Thus, P is a quantum
mechanical constant of the motion as far as Schrödinger equation evolution goes. Therefore,
states of definite symmetry retain that symmetry for all time as far far as Schrödinger equation
evolution goes.

But note if there is a perturbation Hamiltonian that does not commute with P , then
symmetry can be lost or changed. Note also that I’m not sure what happens on wave function
collapse which is a violation of Schrödinger equation evolution.

Redaction: Jeffery, 2001jan01

019 qfull 00200 1 3 0 easy math: symmetrization principle
12. Consider the general normalized wave function for two particles

Ψ(~r1m1, ~r2m2)

where ~r is the spatial coordinate, m is the spin coordinate, and the labels 1 and 2 are formally assigned
to particles 1 and 2.

a) First, let’s assume that the two particles are physically distinct. This means that under some
circumstances, but not all in general, they we behave differently. Say we now act on the state with
the permutation operator P2,1 and obtain

P2,1Ψ(~r1m1, ~r2m2) = Ψ(~r2m2, ~r1m1) = ±Ψ(~r1m1, ~r2m2) ,

where we recall that the two-particle permutation operator is Hermitian and only has eigenvalues
±1. Have we created a new physical state? Explain. Say we now act on the state with the
permutation operator P2,1

P2,1Ψ(~r1m1, ~r2m2) = Ψ(~r2m2, ~r1m1) 6= ±Ψ(~r1m1, ~r2m2) .

Have we created a new physical state? Explain.

b) Now let’s say that the two particles are identical and

P2,1Ψ(~r1m1, ~r2m2) = Ψ(~r2m2, ~r1m1) 6= ±Ψ(~r1m1, ~r2m2) ,

where we recall that the two-particle permutation operator is Hermitian and only has eigenvalues
±1. Have we created a physically distinct state? Explain. (For the moment, we are not assuming
the symmetrization principle.)
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c) Carrying over the assumptions of part (b), consider the mixed state

Ψmixed = ciΨ(~r1m1, ~r2m2) + cjΨ(~r2m2, ~r1m1) ,

where the only constraint on coefficients ci and cj is the the normalization constraint coefficients
ci and cj

|ci|1 + |cj |2 + Re[cicj〈Ψ(~r1m1, ~r2m2)|Ψ(~r2m2, ~r1m1)〉] = 1 .

Note we are not assuming Ψ(~r1m1, ~r2m2) and P21Ψ(~r1m1, ~r2m2) are orthogonal.
Argue that Ψmixed is physically distinct from Ψ(~r1m1, ~r2m2) and P21Ψ(~r1m1, ~r2m2)?
Actually, there is a continuum infinity of possible Ψmixed which is only constrained by the

normalization constraint. This infinity of states that can be constructed from Ψ(~r1m1, ~r2m2) and
P21Ψ(~r1m1, ~r2m2) is called the exchange degeneracy (CT-1375).

Given the widely, but not universally, accepted quantum mechanical interpretation, that a
linear combination of states constitutes a particle or a set of particles in a superposition of those
states argue that the exchange degeneracy creates a paradox.

d) The paradox of part (c) is eliminated by invoking the symmetrization principle that states that the
only physically allowed state for a set of identical particles is one that is symmetrized: i.e., is one that
is symmetric (i.e., an eigenstate of the permutation operator with eigenvalue 1) or antisymmetric
(i.e., an eigenstate of the permutation operator with eigenvalue -1) under the exchange of any pair
of particles. Note identical particles of one type can have only one kind of symmetrized wave
functions: i.e., they must either have only symmetric ones in all cases (in which case they are called
bosons) or only antisymmetric ones in all cases (in which case they are called fermions). A separate
postulate or if one prefers an extra part of the symmetrization principle is that integer-spin particles
are bosons and half-integer-spin particles are fermions. Explain how the symmetrization principle
eliminated the paradox.

e) The Hamiltonian for a set of identical particles is necessarily symmetric. What does this imply for
the symmetrization state of the state as time passes?

f) Say that you had a set of non-identical particles that in a certain system had a symmetric
Hamiltonian. Say the particles were put into a symmetrized state. Would the state stay
symmetrized as time passes?

g) The symmetrization principle can be taken as stated for fundamental particles only. But it applies
as an immediate corollary to identical composite particles where whether particle is boson or fermion
depends on whether it contains an even or odd number of fermions. Prove the corollary.

h) The Pauli exclusion principle is actually a corollary of the symmetrization principle. One version
is that the probability amplitude and therefore probability of density for two identical fundamental
fermions at the spatial coordinate and spin coordinate is zero. Prove this.

SUGGESTED ANSWER:

a) In the first case, we have not obtained a new physical state. There is no physical distinction
between wave functions that differ by a global phase factor.

In the second case, we have created a new physical state. The state P2,1Ψ(~r1m1, ~r2m2) is
not the same as Ψ(~r1m1, ~r2m2) and, to be clear, it will not evolve in general in the same way
as Ψ(~r1m1, ~r2m2) when subject to the same conditions. For example, say

Ψ(x1, x2) = Ce−x2

1
/(2σ2

a)e−x2

2
/(2σ2

b ) ,

where the wave function is a 1-dimensional Gaussian for both particles. If σa 6= σb, then clearly

P21Ψ(x1, x2) = Ce−x2

2
/(2σ2

a)e−x2

1
/(2σ2

b )

is physically distinct from Ψ(x1, x2).

b) We have not created a physically distinct state. There is no way to tell P21Ψ(~r1m1, ~r2m2)
from Ψ(~r1m1, ~r2m2). Furthermore both states will evolve identically when subject to the same
conditions.
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Note that for identical particles, the labels 1 and 2 are a formalism that works—well
when the symmetrization principle is invoked. There is no way to actually distinguish the
particles intrinsically. We can distinguish them dynamically if there spatial wave functions do
not overlap or if they do overlap if they have non-overlapping spin states.

Mathematically the two state are different distinct, of course, treating the coordinates as
mathematically distinct dimensions. But this mathematical distinction can have no physical
meaning.

c) In general,
Ψmixed = ciΨ(~r1m1, ~r2m2) + cjΨ(~r2m2, ~r1m1)

is clearly mathematically distinct from both Ψ(~r1m1, ~r2m2) and P21Ψ(~r1m1, ~r2m2).
Given our assumptions, it is also physically distinct in general from Ψ(~r1m1, ~r2m2) and

P21Ψ(~r1m1, ~r2m2) which are physically indistinct as we argued in the part (b) answer. For
example, for Ψmixed the probability density for particle 1 is

ρ(~r1m1) =
∑

m2

∫

|Ψmixed|2 d~r2

= |ci|2
∑

m2

∫

|Ψ(~r1m1, ~r2m2)|2 d~r2

+ |cj |2
∑

m2

∫

|Ψ(~r2m2, ~r1m1)|2 d~r2

+ 2Re[cic
∗
j

∑

m2

∫

Ψ(~r1m1, ~r2m2)Ψ(~r2m2, ~r1m1)
∗ d~r2

is clearly different in general from the particle 1 probability density for Ψ(~r1m1, ~r2m2): i.e.,
from

ρ(~r1m1) =
∑

m2

∫

|Ψ(~r1m1, ~r2m2)|2 d~r2 .

Note that we have made use above of the identity

|a+ b|2 = |a|2 + |b|2 + Re(ab∗)

which is proven by

|a+ b|2 = |a|2 + |b|2 + a∗b+ ab∗ = |a|2 + |b|2 + (ab∗)∗ + ab∗ = |a|2 + |b|2 + Re(ab∗) .

The paradox of the degeneracy principle given the superposition interpretation of quantum
mechanics is how can one created new physical states from a superposition of identical states.
There are other paradoxes associated with the degeneracy principle (CT-1375–1377), but they
seem a bit unfathomable to yours truly.

d) With only symmetrized states for identical particles (with only one kind of symmetrization
for each type of identical particles), one cannot create physically distinct states by the linear
combinations of versions of a symmetrized state with with exchanges of any pair of particles.
Note each of these versions is physically identical since the particles are identical and also
mathematically identical (except for a change of sign in the case of antisymmetric states). One
can choose one version to be the fiducial version arbitrarily. A linear combination is also now
physically identically to the all the versions. One can see this by exchange pairs of particles
(i.e., particle coordinates) in all terms in the linear combination until all particles are in same
slots in the wave function as in the fiducial version. Nothing happens on the exchanges if
the particles are bosons and only sign changes happen on the exchanges if the particles are
fermions. The linear combination then turns out to be just the fiducial version times a a global
phase factor which is physically meaningless.

To give an example consider the symmetrized state Ψ(x1, x2, x3). We now construct the
linear combination

Ψmixed = ciΨ(x1, x2, x3) + cjΨ(x2, x1, x3) + ckΨ(x2, x3, x1) .
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By exchanges, we find

Ψmixed = ciΨ(x1, x2, x3) + cjΨ(x2, x1, x3) + ckΨ(x2, x3, x1)

= ciΨ(x1, x2, x3) ± cjΨ(x1, x2, x3) + (±1)2ckΨ(x1, x2, x3)

= (ci ± cj + ck)Ψ(x1, x2, x3) .

Why can’t we have the same type of particle having symmetric and antisymmetric states
alternatively. Well then superposition of symmetric and antisymmetric states would be possible
by ordinary quantum mechanics and those superpositions would not be symmetrized and we
get the exchange degeneracy paradox all over again.

By the way the fact that integer-spin particles are bosons and half-integer-spin particles
are fermions is proven by the spin-statistic theorem of quantum field theory. But this prove
relies on hypotheses that themselves cannot be proven and may be wrong (CT-1387)—unless
they have been proven since 1977. So taking nteger-spin particles are bosons and half-integer-
spin particles are fermions can be regarded as an extra postulale or an extra part of the
symmetrization principle.

e) If the Hamiltonian is symmetric for the particles, then [H,Pij ] = 0 where i and j label any
pair of the particles. From the general time evolution equation

d〈Q〉
dt

=

〈

∂Q

∂t

〉

+
1

h−
〈i[H,Q]〉

(where Q is a general observable or actually an operator), we see that

d〈Pij〉
dt

= 0

since the permutation operator has no intrinsic time dependence. In quantum mechancis
jargon, the permutation operator is a constant of the motion. If a state starts out in an
eigenstate of Pij then it has 〈Pij〉 = ±1 initially and it will always have that eigenvalue. Thus,
a state that starts out symmetric or antisymmetric stays that way as long as Schrödinger
equation evolution occurs. This is consistent with the symmetrization principle. In fact, one
could view it as a proof of the symmetrization principle if one takes it as an initial condition of
the universe (in or out of time) that all identical particles type started out with symmetrized
states.

However, this argument is invalid if wave function collapse actually happens since that
violates Schrödinger equation evolution. Of course, wave function collapse doesn’t happen in
the many-worlds interpretation. It may be that if wave function collapse actually happens that
the process (which we don’t have a consensus theory) also conserves symmetrization.

f) Yes, by the argument given above. But there is no rule that non-indetical particles have to
be in a symmetrized state. And if they are and an non-symmetric force starts to act then
symmetrization will in general be lost.

If the Hamiltonian is symmetric, a common basis of energy eigenstates and symmetrized
states can be found. But the basis states can be symmetric or antisymmetric and nothing
forbids the state from being a mixed state that is not symmetrized.

An example, of non-identical particle system with a symmetric Hamiltonian is positronium
neglecting any non-symmetry of the weak force of which I know nothing. Neglecting spin and
other complications, the energy-eigenstates states (i.e., stationary states) are just those of the
hydrogenic atom and are symmetrized. We find then

P2,1ψnℓm(~r2 − ~r 1) = P2,1ψnℓm(r, θ, φ) = ψnℓm(r, π − θ, φ+ π) = (−1)ℓψnℓm(r, θ, φ) .

So both symmetric (even ℓ) and antisymmetric (odd ℓ) states occur. Thus, mixed states will
in general not have definite symmetry.

g) Say we have a state for a set of composite particles

Ψ(. . . , {~rimi}, . . . , {~rjmj}, . . .) ,
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where {rimi} is the set of coordinates for composite particle i’s constituent particles (which
may be either fundamental or composites themselves) {rjmj} is the set of coordinates for
composite particle j’s constituent particles (which may be either fundamental or composites
themselves). The state is symmetrized for the exhange of the constituent particles. and so is
symmetric under the exchange of boson constituents and antisymmetric under the exchange of
fermion constituents. Say we exchange composite particles i and j to create

Ψ(. . . , {~rjmj} . . . {~rimi} . . .) = (−1)nΨ(. . . , {~rimi} . . . {~rjmj} . . .) ,

where we have made use of the symmetrization and where n is number of fermions in a
composite particle.

We see that the state is symmetrized for the exchange of composite particles. The
composite particles are bosons if n is even and fermions if n is odd.

If the constituent particles are fundamental, we have proven the symmetrization principle
for composite particles of fundamental particles. If the constituent particles are composites,
we have proven the symmetrization principle for composite particles of composite particles.

h) Well for fermion state, we have

Ψ(. . . , ~rimi, . . . , ~rjmj , . . .) ,

where the coordinates of particle i and j are label. If we try to create an new state by particle
exchange, we find that

Ψ(. . . , ~rjmj , . . . , ~rimi, . . .) = −Ψ(. . . , ~rimi, . . . , ~rjmj , . . .)

since the original state was symmetrized. So the echange does not create a new state. But
because the state is symmetrized, if ~rimi = ~rjmj = ~rpecmpec (where “pec” stands for peculiar
value),

Ψ(. . . , ~rjmj = ~rpecmpec, . . . , ~rimi = ~rpecmpec, . . .)

= −Ψ(. . . , ~rimi = ~rpecmpec, . . . , ~rjmj = ~rpecmpec, . . .) ,

The only way number can equal its own additive inverse is if the number is zero. So a properly
symmetrized wave function for fundamental fermions gives zero probability amplitude for two
particles at the same space coordinate and same spin coordinate.

Because the wave function is continuous in reality, we expect relatively low probability
amplitude for two particles near the same space coordinate and at the same spin coordinate.

What if the fermions are composites is there still a spatial-spin Pauli exclusion principle?
This seems to be an unspeakable in quantum mechanics—an obvious point that no one
discusses. But I imagine yes. Say two composite fermions . . . .

Redaction: Jeffery, 2008jan01

019 qfull 02000 2 5 0 moderate thinking: symmetrization of 4 orthonormal single-particle states
13. Say |ai〉 and |bi〉 are ORTHONORMAL single-particle states, where i is a particle label. The label

can be thought of as labeling the coordinates to be integrated or summed over in an inner product: see
below. The symbolic combination of such states for two particles, one in a and one in b is

|12〉 = |a1〉|b2〉 ,

where 1 and 2 are particle labels. This combination is actually a tensor product, but let’s not worry
about that now. The inner product of such a combined state is written

〈12|12〉 = 〈a1|a1〉〈b2|b2〉 .

If one expanded the inner product in the position and spinor representation assuming the wave function
and spinor parts can be separated (which in general is not the case),

〈12|12〉 =

[
∫

ψa(x1)
∗ψa(x1) dx1 ( c∗a+ c∗a− )1

(

ca+

ca−

)

1

]

×
[
∫

ψb(x2)
∗ψb(x2) dx2 ( c∗b+ c∗b− )2

(

cb+
cb−

)

2

]

.
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A lot of conventions go into the last expression: don’t worry too much about them.

a) Let particles 1 and 2 be distinct particles. What are the two simplest and most obvious normalized
2-particle states that can be constructed from states a and b? What happens if a = b (i.e., the two
single-particle states are only one state actually)?

b) Say particles 1 and 2 are identical bosons or identical fermions. What is the only normalized physical
2-particle state that can be constructed in either case allowing for the possibility that a = b (i.e., the
two single-particle states are only one state actually)? What happens if a = b for fermions?

SUGGESTED ANSWER:

a) Behold:
|12〉 = |a1〉|b2〉 and |21〉 = |a2〉|b1〉

which are just the allowed product states. More complicated states can be constructed if the
particles are in mixtures of the two states just given. If a = b, then one can construct only one
state

|12〉 = |a1〉|a2〉 .

b) Behold:

|12〉 =
1

√

2(1 + δab)
(|a1〉|b2〉 ± |a2〉|b1〉) ,

where the upper case is for bosons and the lower case is for fermions.
I don’t think there are any other possible physical states that can be constructed. There

are only two possible product states. And only a symmetrized mixed state is allowed.
The Kronecker delta allows for the case that a = b for bosons. Obviously, we never had

to symmetrize at all for bosons if a = b. If a = b for fermions, the state is null, and thus no
physical state can be constructed in this case. The nullness is a manifestation of the Pauli
exclusion principle (a corollary of the symmetrization postulate): two fermions cannot be in
found in the same single-particle state (as specified by a C.S.C.O.: i.e., a complete set of
commuting observables (CT-143)). “Cannot be found” has to be interpreted as the probability
for two fermions in the same single-particle state is zero or that the probability of collapsing
the wave function to having two fermions in the same single-particle state is zero. So if a = b
for fermions, then a physical symmetrized state cannot be created from product states.

Redaction: Jeffery, 2001jan01

019 qfull 02100 1 5 0 easy thinking: slater determinant, triplet singlet
Extra keywords: (Gr-181:5.3)

14. Say that we have obtained four distinct orthonormal single-particle eigenstates for identical spin 1/2
particles:

ψa(~r )χ+ , ψa(~r )χ− , ψb(~r )χ+ , ψb(~r )χ− ,

where the spinors are

χ+ =

(

1
0

)

and χ− =

(

0
1

)

.

To label a state for a particular particle i, we can write for example

ψa(~r i)χ+,i .

a) How many distinct two-particle product states can be constructed for identical particles 1 and 2
that are consistent with the Pauli exclusion principle? There is no distinction between which factor
state you give to which particle: i.e.,

ψa(~r 1)χ+,1ψa(~r 2)χ−,1 and ψa(~r 2)χ+,2ψa(~r 1)χ−,2

are the same product state for identical particles. Write down the product states. Are the
product states orthornormal? If the particles were distinct, how many distinct two-particle product
states could be constructed? How many distinct linearly-independent symmetrized states can be
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constructed from the two-particle product states? HINT: The first part is a problem of choosing
k objects from n objects with no replacement and no distinction on ordering of choices.

b) Are the linearly-independent symmetrized states created from orthonormal product states of single
particles always orthonormal? Prove your answer. HINT: The proof takes a bit of thinking.

c) Using the Slater determinant formalism construct from the part (a) product states all the
symmetrized states in which the only one kind of single-particle spatial state occurs. Remember to
normalize the symmetrized states. What kind of states are these in spin description?

d) Using the Slater determinant formalism construct from the part (a) product states all the
symmetrized states in which two distinct single-particle spatial states occur. Remember to
normalize the symmetrized states. What kind of states are these in spin description?

e) Two of the states constructed in the part (d) answer are neither triplet nor singlet states. But you
can construct by linear combination a triplet state and singlet state from these two. Do so. Then
you have full triplet-singlet set of symmetrized states comprising the two unused states from the
part (d) answer and the two newly constructed states.

f) Discuss when you would expect the four symmetrizied states of the part (d) answer to be stationary
states and when the you would expect the triplet-singlet set of symmetrized states to the stationary
states.

SUGGESTED ANSWER:

a) Well the Pauli exclusion principle means that we have no replacement in the choice: we can’t
put two identical particles into the same state. The order of selection of a pair does not result
in a distinct product state. The right counting procedure is to use the binomial coefficient rule:

(

n

k

)

=

(

4

2

)

=
4!

2!2!
= 6 .

The possible product states are

ψa(~r 1)χ+,1ψa(~r 2)χ−,2 , ψa(~r 1)χ+,1ψb(~r 2)χ+,2 , ψa(~r 1)χ+,1ψb(~r 2)χ−,2 ,

ψa(~r 1)χ−,1ψb(~r 2)χ+,2 , ψa(~r 1)χ−,1ψb(~r 2)χ−,2 , ψb(~r 1)χ+,1ψb(~r 2)χ−,2 .

The product states are obviously normalized: e.g.,

∫

|ψa(~r 1)χ+,1ψa(~r 2)χ−,2|2 d~r1 d~r2 =

∫

|ψa(~r 1)|2 d~r1 ×
∫

|ψa(~r 2)|2 d~r2 × χ†
+,1χ+,1 × χ†

−,2χ−,2

= 1 × 1 × 1 × 1 = 1 .

Are the product states orthogonal? Since there are the distinct product states of orthogonal
single-particle states, the answer is yes. Any two product states must have different be single-
particle states for at least one particle in order to be distinct product states. Those different
single-particle states will lead to a zero for the inner product of the states.

If the particles were distinct, exchanging the labels would create different two-particle
product states. From another perspective order would matter in the counting of states: for
example, the first chosen state would be given to particle 1 and the second to particle 2. One
would count the states by

n!

k!
=

4!

2!
= 12 .

Thus, there are 12 product states for distinct particles.
One constructs a symmetrized state from a product state by forming a sum of all

permuntations of the particle labels with odd permutations getting a negative sign. Since there
are 6 distinct product states for identical particles, there are 6 distinct linearly-independent
symmetrized states too. Obviously, one can create infinitely many linear combinations of these
states.

b) The answer is yes. Let’s consider normalization first. Consider a symmetrized state in which
constructed from products of single-particle states. For N particles, the normalization factor
of the symmetrized state is 1/

√
N !. When the symmetrized state is inner-producted with itself



21

there are (N !)2 terms to be fully integrated/summed over. The direct terms each give 1 for
N ! which is canceled by the normalization factor squared, and so one gets 1 overall. The cross
terms are all zero since for at least one particle label, there must be two distinct orthogonal
single-particle states being inner-producted with each other and the single-particle states are
all orthogonal by assumption. The construction of the symmetrized state guarantees this. The
construction is a bit trickier conceptually for bosons than for fermions since there is no Pauli
exclusion principle to forbid the multiple occupation of single-particle states.

What of orthogonality? Well different symmetrized states, must differ in at least 1 single-
particle state that went into their construction. Thus, in every term in the inner product of
one symmetrized state with another, there must be at least one single-particle inner product
of orthogonal states. Thus every term is zero and the overall inner product is zero.

c) Behold:

1√
2

det

∣

∣

∣

∣

ψa(~r 1)χ+,1 ψa(~r 1)χ−,1

ψa(~r 2)χ+,2 ψa(~r 2)χ−,2

∣

∣

∣

∣

= ψa(~r 1)ψa(~r 2)
1√
2
[χ+,1χ−,2 − χ+,2)χ−,1]

and

1√
2

det

∣

∣

∣

∣

ψb(~r 1)χ+,1 ψb(~r 1)χ−,1

ψb(~r 2)χ+,2 ψb(~r 2)χ−,2

∣

∣

∣

∣

= ψb(~r 1)ψb(~r 2)
1√
2
[χ+,1χ−,2 − χ+,2)χ−,1] .

Both of these states are spin 1/2 singlet states. Since the single-particle spatial states are the
same the space part of the state is symmetric, and so the spin part must be antisymmetric in
order for the overall state to be antisymmetric. Thus, only singlet spin states are possible.

d) Well this is tedious. Behold:

1√
2

det

∣

∣

∣

∣

ψa(~r 1)χ+,1 ψb(~r 1)χ+,1

ψa(~r 2)χ+,2 ψb(~r 2)χ+,2

∣

∣

∣

∣

=
1√
2
[ψa(~r 1)ψb(~r 2) − ψa(~r 2)ψb(~r 1)]χ+,1χ+,2 ,

1√
2

det

∣

∣

∣

∣

ψa(~r 1)χ+,1 ψb(~r 1)χ−,1

ψa(~r 2)χ+,2 ψb(~r 2)χ−,2

∣

∣

∣

∣

=
1√
2
[ψa(~r 1)χ+,1ψb(~r 2)χ−,2 − ψa(~r 2)χ+,2ψb(~r 1)χ−,1]

=
1√
2
[ψa(~r 1)ψb(~r 2)χ+,1χ−,2 − ψa(~r 2)ψb(~r 1)χ+,2χ−,1]

1√
2

det

∣

∣

∣

∣

ψa(~r 1)χ−,1 ψb(~r 1)χ+,1

ψa(~r 2)χ−,2 ψb(~r 2)χ+,2

∣

∣

∣

∣

=
1√
2
[ψa(~r 1)χ−,1ψb(~r 2)χ+,2 − ψa(~r 2)χ−,2ψb(~r 1)χ+,1]

=
1√
2
[ψa(~r 1)ψb(~r 2)χ−,1χ+,2 − ψa(~r 2)ψb(~r 1)χ−,2χ+,1]

1√
2

det

∣

∣

∣

∣

ψa(~r 1)χ−,1 ψb(~r 1)χ−,1

ψa(~r 2)χ−,2 ψb(~r 2)χ−,2

∣

∣

∣

∣

=
1√
2
[ψa(~r 1)ψb(~r 2) − ψa(~r 2)ψb(~r 1)]χ−,1χ−,2 ,

The middle two symmetrized states may look the same at first glance, but they are distinct.
The first has the ψa and χ+ states together for one particle label and the ψb and χ− states
together for other particle label. The second has the ψa and χ− states together for one particle
label and the ψb and χ+ states together for other particle label.

The first and last symmetrized states are m = 1 and m = −1 states of the spin triplet.
The middle two symmetrized states are not triplet or singlet states and have not special name
known to yours truly.

e) Ennui, ennui. OK, let’s add/subtract the middle two symmetrized states from the part (d)
answer with another normalization factor of 1/

√
2 to get

ψ± =
1

2
{[ψa(~r 1)ψb(~r 2)χ+,1χ−,2 − ψa(~r 2)ψb(~r 1)χ+,2χ−,1] ± [ψa(~r 1)ψb(~r 2)χ−,1χ+,2 − ψa(~r 2)ψb(~r 1)χ−,2χ+,1]}

=
1

2
{ψa(~r 1)ψb(~r 2)[χ+,1χ−,2 ± χ−,1χ+,2] − ψa(~r 2)ψb(~r 1)[χ−,1χ+,2 ± χ−,2χ+,1]}

=
1

2
{ψa(~r 1)ψb(~r 2)[χ+,1χ−,2 ± χ−,1χ+,2] − ψa(~r 2)ψb(~r 1)[χ−,1χ+,2 ± χ+,1χ−,2]}

=
1

2
[ψa(~r 1)ψb(~r 2) ∓ ψa(~r 2)ψb(~r 1)][χ+,1χ−,2 ± χ−,1χ+,2]

=
1√
2
[ψa(~r 1)ψb(~r 2) ∓ ψa(~r 2)ψb(~r 1)]

1√
2
[χ+,1χ−,2 ± χ−,1χ+,2] .
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The upper case solution is spatially antisymmetric and spin symmetric, and thus is a triplet
state with s = 1 and m = 0. The lower case solution is spatially symmetric and spin
antisymmetric, and thus is a singlet state with s = 0 and m = 0.

The first and last symmetrized states from the part (d) answer and the two symmetrized
states constructed in this answer constitute a full triplet-singlet set of states.

e) Well the part (d) set would be the stationary states if single particle states had a strong spatial-
spin coupling and there was no spin-spin coupling at all (i.e., no interaction between the spins
of the particles). For example, in this case the energies of

ψa(~r )χ+ and ψa(~r )χ−

would be different because strong spatial-spin coupling.

On the other hand, if there were no spatial-spin coupling, but a there was a spin-spin
interaction, then the triplet (parallel spins) and singlet (anti-parallel spins) would have different
eigen-energies. If there were an external force which acted on the spins, the degeneracy of the
triplet states would be broken and they would have different eigen-energies.

Now what the devil you ask if there were no spatial-spin coupling and no spin-spin
coupling? In this case, spin has no affect on energy. Well first off this is unlikely if the
particles are actually close enough together to require symmetrized states. But as an idealized
limit, what does one expect? Well both sets of states are equivalent stationary states then and
they would all be degenerate since the single-particle state occupation number is 1 for each
single-particle state. You would probably, then find the system in some mixed state relative
to both sets of stationary states and this mixed state was set by past history.

Actually, the most likely case is that you have both spatial-spin coupling and spin-spin
coupling to some degree or other. This is actually the most likely case. It’s true for real atoms.
Then to be exact neither set of states are likely to be stationary states. If one or other of
the couplings is dominant, then the corresponding set of stationary states are probably a good
approximation. If neither is dominant, then you’d have to solve for the stationary states. How
would this be done? Well there are ways. The most usual one is to assemble a complete set of
states for the system (not just the 4 states in the two sets we’ve considered) and diagonalize
the true Hamiltonian matrix assembled from the complete set. This would be usually be a
very large computation that would be done on a computer.

Redaction: Jeffery, 2001jan01

019 qfull 02200 3 5 0 tough thinking: 2-particle infinite square well

Extra keywords: (Gr-182:5.4)

15. The set of individual eigen states for a 1-dimensional, infinite square well confined to [0, a] can be written
|n〉 where n = 1, 2, 3, . . . The energies of the states are given by

E(n) =
h−2

2m

(π

a

)2

n2

(e.g., Gr-26). For convenience Ered(n) = n2 can be called the reduced energy of state n.

a) Say we have two non-interacting particles a and b in the well. Write write down the Hamiltonian
for this case. The particles have the same mass m, but are not necessarily identical.

b) The reduced energy of a 2-particle state that satisfy the Schrödinger equation of part (a) can be
written

Ered(n1, n2) = n2
1 + n2

2 .

Write a small computer code to exhaustively calculate the possible reduced energy levels up to
and including Ered = 50 and the n1 and n2 combinations that yield these energies. The code
should also calculate the degeneracy of each energy for the cases of non-identical particles, bosons,
and fermions. I’ll left you off easily, accidental degeneracies can be idendified by eye. (Note: An
accidental degeneracy is when a distinct pair of n values (i.e., a pair not counting order) gives the
same reduced energy.)
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c) Write down the normalized vector expressions for all the 2-particle states up to the 4th allowed
energy level for the cases of non-identical particles, identical bosons, and identical fermions. Just
to get you started the non-identical particle ground state is

|a1, b1〉 = |a1〉|b1〉 with Ered = 2 .

SUGGESTED ANSWER:

a) The 2-particle Schrödinger equation for the infinite square well confined to [0, a] is

− h−2

2m

(

∂2

∂x2
a

+
∂2

∂x2
b

)

ψ = Eψ ,

where indexes a and b label the particles. It’s poor choice to use a and b since a is also the
infinite well width.

b) The code is given further below. The table of energy levels follows here.

Table of Energy Levels

Level No. n1 n2 n2
1 n2

2 Ered Non-Identical Particle Identical Boson Identical Fermions
Degeneracy Degeneracy Degeneracy

1 1 1 1 1 2 1 1 0
2 1 2 1 4 5 2 1 1
3 2 2 4 4 8 1 1 0
4 1 3 1 9 10 2 1 1
5 2 3 4 9 13 2 1 1
6 1 4 1 16 17 2 1 1
7 3 3 9 9 18 1 1 0
8 2 4 4 16 20 2 1 1
9 3 4 9 16 25 2 1 1

10 1 5 1 25 26 2 1 1
11 2 5 4 25 29 2 1 1
12 4 4 16 16 32 1 1 0
13 3 5 9 25 34 2 1 1
14 1 6 1 36 37 2 1 1
15 2 6 4 36 40 2 1 1
16 4 5 16 25 41 2 1 1
17 3 6 9 36 45 2 1 1
18 1 7 1 49 50 2 1 1
19 5 5 25 25 50 1 1 0

Note—For non-identical particles interchanging the distinct values of n1 and n2 creates a
different state, but it’s too tedious to write those out explicitly. We merely note that those
cases exist and the energy level has a degeneracy of 2 as indicated in the table. For identical
particles interchanging the values of n1 and n2 does not create a different state. Thus for bosons
the degeneracy is always 1 for each energy level. For fermions, if n1 = n2 no state is allowed by
the Pauli exclusion principle and the degeneracy is zero. Note that there are two energy levels
counted with reduced energy 50. Of course, there is actually only one energy level of reduced
energy 50. This is the lowest energy example of can be called an accidental degeneracy. For
each case one should just add the degeneracies: i.e., 3 for non-identical particles, 2 for identical
bosons, and 1 for identical fermions. Computationally it’s tricky to explicitly handle accidental
degeneracies, and so we haven’t done so.

c) For non-identical particles,

|a1, b1〉 = |a1〉|b1〉 Ered = 2 ,

|a1, b2〉 = |a1〉|b2〉 Ered = 5 ,

|a2, b1〉 = |a2〉|b1〉 Ered = 5 ,

|a2, b2〉 = |a2〉|b2〉 Ered = 8 ,

|a1, b3〉 = |a1〉|b3〉 Ered = 10 ,

|a3, b1〉 = |a3〉|b1〉 Ered = 10 .
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For bosons,

|1, 1〉 = |a1〉|b1〉 Ered = 2 ,

|1, 2〉 =
1√
2

(|a1〉|b2〉 + |b1〉|a2〉) Ered = 5 ,

|2, 2〉 = |2〉|2〉 Ered = 8 ,

|1, 3〉 =
1√
2

(|a1〉|b3〉 + |b1〉|a3〉) Ered = 10 .

For fermions,

|1, 2〉 =
1√
2

(|a1〉|b2〉 − |b1〉|a2〉) Ered = 5 ,

|1, 3〉 =
1√
2

(|a1〉|b3〉 − |b1〉|a3〉) Ered = 10 ,

|2, 3〉 =
1√
2

(|a2〉|b3〉 − |b2〉|a3〉) Ered = 13 ,

|1, 4〉 =
1√
2

(|a1〉|b4〉 − |b1〉|a4〉) Ered = 17 .

Fortran Code
print*

print*,’Cute, but I don’’t see any simple ’,

& ’generalization to n-tuples.’

print*

nsqmax=50

ilevel=0

do nsq=1,nsqmax

do n1=1,nsq ! Just a high enough upper limit.

if(n1**2 .gt. nsq/2) go to 110 ! No need to see duplications.

* Note if n1**2 .gt. nsq/2, then since n1**2 is integer, n1**2 must

* be greater than nsq/2+1/2 for nsq non-integer.

idif=nsq-n1**2

n2a=int(sqrt(real(idif)))

n2b=n2a+1 ! Might have been a round down.

n2=0

if(n2a**2 .eq. idif) n2=n2a

if(n2b**2 .eq. idif) n2=n2b

if(n2**2 .eq. idif) then

ilevel=ilevel+1

if(n1 .ne. n2) then

ndeg=2

ndegf=1

else

ndeg=1

ndegf=0

end if

print920,ilevel,n1,n2,n1**2,n2**2,nsq,ndeg,1,ndegf

920 format(1x,i5,2x,8(’&’,i5,2x),’ \\cr’)

end if

end do

110 continue

end do

Redaction: Jeffery, 2001jan01

019 qfull 02300 3 5 0 tough thinking: exchange force
Extra keywords: (Gr-182)
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16. Say we have orthonormal single-particle states |a〉 and |b〉. If we have distinct particles 1 and 2 in,
respectively, |a〉 and |b〉, the net state is

|a1, b2〉 = |a1〉|b2〉 .

Of course, each of particles 1 and 2 could be in linear combinations of the two states if the states
physically allowed the distinct particles to be in either one. In that case the linear combined state
would be a four term state. But we have no interest in pursuing that digression at the moment.

Now two identical particles in states |a〉 and |b〉 have no choice, but to be in a symmetrized state
by the symmetry postulate:

|1, 2〉 =
1

√

2(1 + δab)
(|a1, b2〉 ± |a2, b1〉) ,

where the upper case is for identical bosons and the lower case for identical fermions. If the two states
are actually the same state |a〉, then the state for bosons reduces to

|1, 2〉 = |a1, a2〉

and for fermions the state reduces to the null state |0〉 which is not a physical state, and thus the Pauli
exclusion principle is incorporated in the state expression.

Note products of kets are actually tensor products (CT-154). In taking scalar products, the bras
with index i (e.g., 1 or 2 above) act on the kets of index i. For example, for the state |1a, 2b〉 = |a1〉|a2〉
the norm squared is

〈a1, b2|a1, b2〉 = 〈a1|a1〉〈a2|a2〉 .
The fact that identical particles must be in symmetrized states means that their wave functions

will be more or less clumped depending on whether they are bosons or fermions than if they could be
fitted into simple product states like distinct particles. We are not bothering with the complication of
spin for this problem. We will assume that all the particles are in the same spin state: e.g., they are all
in the spin up state.

The clumping/declumping effect is called the EXCHANGE FORCE. Obviously, it is not really
a force, but rather a result of the symmetrization principle requirements on physical states for identical
particles. Still for some practical purposes one can certainly consider it as force. In this problem, we
investigate the effect of the EXCHANGE FORCE.

a) Expand 〈∆x2〉 = 〈(x1 − x2)
2〉 into three terms that can be evaluated individually.

b) For the given two-particle state for DISTINCT PARTICLES |a1, b2〉 = |a1〉|b2〉, formally show that

〈∆x2〉 = 〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b ,

where the particle labels can be dropped from the single-particle state expectation values, but these
values must be identified by the single-particle state that they are for: i.e., for states |a〉 and |b〉. What
happens in the case that |a〉 = |b〉? HINT: Remember that variance is defined by

σ2 = 〈x2〉 − 〈x〉2 .

c) There is an identity that is needed for part (d) and is useful in many other contexts. Say |α〉 and |β〉
are general states (e.g., they could be one-particle or two-particle states). Say that

|Ψ〉 = cα|α〉 + cβ |β〉

and we have general observable Q. We have the identity

〈Ψ|Ψ〉 = |cα|2〈α|α〉 + |cβ |2〈β|β〉 + 2Re(c∗αcβ〈α|Q|β〉) .

Prove the identity.

d) For the given two-particle state for IDENTICAL PARTICLES

|1, 2〉 =
1

√

2(1 + δab)
(|a1, b2〉 ± |a2, b1〉) ,
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determine 〈∆x2〉 for identical bosons and fermions. What happens in the case that |a〉 = |b〉? HINT:
Recall that

〈a|b〉 = δab ,

since the states are orthonormal.

SUGGESTED ANSWER:

a) Behold:

〈∆x2〉 = 〈(x1 − x2)
2〉 = 〈x2

1〉 + 〈x2
2〉 − 2〈x1x2〉 .

b) For distinct particles,

〈x2
1〉 = 〈a1, b2|x2

1|a1, b2〉 = 〈a1|x2
1|a1〉〈b2|b2〉 = 〈x2〉a ,

〈x2
2〉 = 〈a1, b2|x2

2|a1, b2〉 = 〈a1|a1〉〈b2|x2
2|b2〉 = 〈x2〉b ,

〈x1x2〉 = 〈a1, b2|x1x2|a1, b2〉 = 〈a1|x1|a1〉〈b2|x2|b2〉 = 〈x〉a〈x〉b ,

where the particle labels 1 and 2 are irrelevant to the single-particle state expectation values,
and so we have dropped them. Thus,

〈∆x2〉 = 〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b ,

In the case that |a〉 = |b〉,

〈∆x2〉 = 2〈x2〉a − 2〈x〉2a = 2σ2
a .

So the relative variance is just twice the absolute variance of a single particle in this case.

c) Begorra:

〈Ψ|Q|Ψ〉 = |cα|2〈α|Q|α〉 + |cβ|2〈β|Q|β〉 + c∗αcβ〈α|Q|β〉 + cαc
∗
β〈β|Q|α〉

= |cα|2〈α|α〉 + |cβ |2〈β|β〉 + 2Re(c∗αcβ〈α|Q|β〉) ,

where we have used the definition of the Hermitian conjugate and the Hermiticity of Q: i.e.,
we have used

〈β|Q|α〉 = 〈α|Q†|β〉∗ = 〈α|Q|β〉∗ .

Thus, we have proven the identity

〈Ψ|Ψ〉 = |cα|2〈α|α〉 + |cβ |2〈β|β〉 + 2Re(c∗αcβ〈α|Q|β〉) .

d) For identical particles and making use of the identity, we find

〈x2
1〉 =

1

2(1 + δab)
[〈a1|x2

1|a1〉〈b2|b2〉+ 〈a2|a2〉〈b1|x2
1|b1〉 ± 2Re(〈a1|x2

1|b1〉〈b2|a2〉)]

=
1

2(1 + δab)
(〈x2〉a + 〈x2〉b ± 2〈x2〉aδab)

〈x2
2〉 =

1

2(1 + δab)
[〈a1|a1〉〈b2|x2

2|b2〉 + 〈a2|x2
2|a2〉〈b1|b1〉 ± 2Re(〈a1|b1〉〈b2|x2

2|a2〉)]

=
1

2(1 + δab)
(〈x2〉a + 〈x2〉b ± 2〈x2〉aδab)

〈x1x2〉 =
1

2(1 + δab)
[〈a1|x1|a1〉〈b2|x2|b2〉 + 〈a2|x2|a2〉〈b1|x1|b1〉 ± 2Re(〈a1|x1|b1〉〈b2|x2|a2〉)]

=
1

2(1 + δab)
(2〈x〉a〈x〉b ± 2|〈x〉ab|2)

=
1

(1 + δab)
(〈x〉a〈x〉b ± |〈x〉ab|2) .
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Thus,

〈∆x2〉 =
1

(1 + δab)
(〈x2〉a + 〈x2〉b ± 2〈x2〉aδab − 2〈x〉a〈x〉b ∓ 2|〈x〉ab|2) .

In the case of |a〉 6= |b〉, we get

〈∆x2〉 = 〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b ∓ 2|〈x〉ab|2 .

Note for bosons the relative variance is smaller than for distinct particles by the term −2|〈x〉ab|2
and for fermions it is larger by the term 2|〈x〉ab|2. Thus symmetrization clumps identical bosons
more and identical fermions less that for the counterpart distinct particle case. This amounts
to the exchange force.

If the |a〉 and |b〉 states don’t spatially overlap, then 〈b|x|a〉 = 0 and the identical-particle
result is the same as distinct particle result.

In the case of |a〉 = |b〉, we get

〈∆x2〉 = 〈x2〉a ± 〈x2〉a − 〈x〉2a ∓ 〈x〉2a .

For bosons, we have
〈∆x2〉 = 2〈x2〉a − 2〈x〉2a = 2σ2

a

which is the same result as for distinct particles obtained in the part (b) answer. For fermions,
we have

〈∆x2〉 = 0

which is what you would expect for a null state.

Redaction: Jeffery, 2001jan01

019 qfull 02400 2 5 0 moderate thinking: exchange force and infsq well
Extra keywords: (Gr-185:5.5) and the infinite square well

17. Imagine two non-interacting particles in an infinite square in the range [0, a]. Recall the eigen-functions
for this case are

ψn =

√

2

a
sin
(nπ

a
x
)

for n = 1, 2, 3, . . .. Recall also the results of the Gr-182 and Gr-29:2.5 questions.

a) Say the particles are distinguishable and are in states n and m. What is 〈∆x2〉 = 〈(x1 − x2)
2〉 for

this case? What is it if n = m?

b) Say the particles are identical bosons/fermions and are in the only allowed combination of states n
and m. What is 〈∆x2〉 = 〈(x1 − x2)

2〉 for this case? What is it if n = m?

SUGGESTED ANSWER:

a) Using the results from the early questions we find

〈∆x2〉 = 〈x2〉n + 〈x2〉m − 2〈x〉n〈x〉m = a2

[

1

6
− 1

2π2

(

1

n2
+

1

m2

)]

.

If n = m, then

〈∆x2〉 = a2

(

1

6
− 1

n2π2

)

.

b) For this result we will have to work out a new matrix element 〈x〉nm for n 6= m. Behold:

〈x〉nm =

∫ a

0

ψ∗
nxψm dx

=
2

a

∫ a

0

x sin
(nπ

a
x
)

sin
(mπ

a
x
)

dx
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=
2a

π2

∫ π

0

y sin(ny) sin(my) dy

=
2a

π2

{

y

[

sin(n−m)y

2(n−m)
− sin(n+m)y

2(n+m)

] ∣

∣

∣

∣

π

0

−
∫ π

0

[

sin(n−m)y

2(n−m)
− sin(n+m)y

2(n+m)

]

dy

}

=
2a

π2

[

cos(n−m)y

2(n−m)2
− cos(n+m)y

2(n+m)2

] ∣

∣

∣

∣

π

0

=
2a

π2

[

− 1

(n−m)2
+

1

(n+m)2

] [

1 − (−1)n−m

2

]

= −8a

π2

nm

(n2 −m2)2

[

1 − (−1)n−m

2

]

,

where we have used a table integral (e.g., MAT) and included the factor

[

1 − (−1)n−m

2

]

which sets the matrix element to zero if n − m (and thus n + m) is even. Using the above
result and the part (a) answer we find for n 6= m

〈∆x2〉 = a2

{

1

6
− 1

2π2

(

1

n2
+

1

m2

)

± 128

π4

n2m2

(n2 −m2)4

[

1 − (−1)n−m

2

]}

,

where the upper case is for bosons and the lower case for fermions. If n = m, then for bosons
just

〈∆x2〉 = a2

(

1

6
− 1

n2π2

)

again. If n = m, then for fermions there is no allowed state or 6 ∆x2〉 result.

Redaction: Jeffery, 2001jan01

019 qfull 02500 2 3 0 mod math: coupled simple harmonic oscillator, coupled SHOs
Extra keywords: On tests going to part f might be sufficient

18. There are two particles subject to separate simple harmonic oscillator (SHO) potentials. They are also
coupled by a SHO interaction. The full Hamiltonian is:

H =
p2
1

2m1
+

p2
2

2m2
+

1

2
m1ω

2x2
1 +

1

2
m2ω

2x2
2 +

1

2
k(x1 − x2)

2 ,

where k > 0 which in this context means the interaction is attractive. The problem is 1-dimensional: it
is in the x dimension only.

a) Write down the formulae for the center-of-mass (CM) and relative (REL) coordinate and their
inverses (i.e., CM coordinate X and relative x expressed in terms of x1 and x2).

b) Transform the Hamiltonian to the center-of-mass-relative (CM-REL) coordinates (showing all the
steps).

c) Now show that the time-independent Schrödinger equation for the Hamiltonian separates into CM
and REL time-independent Schrödinger equations. Define

ω̃ =

√

ω2 +
k

µ
= ω

√

1 +
k

µω2

in order to simplify the REL equation. Does the overall time-independent Schrödinger equation
have an exact solution?

d) Write down the general expression for the eigen-energies of the total stationary states in terms of
the SHO quantum numbers nCM and nREL for the respective CM and REL parts.
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e) Next write the expression for the eigen-energies in the case that k = 0. Define a new quantum
number n that alone gives the eigen-energy and the degeneracy of the eigen-energy. What is the
degeneracy of an eigen-energy of quantum number n?

f) Now assume that k > 0, but that k/(µω2) << 1. Write down a first order correct expression for
the energy in terms of n and nREL. Give a schematic energy-level diagram.

g) Now assume that k/(µω2) >> 1. Give a schematic energy-level diagram in this case.

h) Now assume that the two particles are identical spin-0 bosons. Note that identical means they now
have the same mass. Given the symmetry requirement for boson states, which solutions (specified
by the nCM and nREL quantum numbers) are not physically allowed?

i) Now assume that the two particles are identical spin-1/2 fermions. Note again that identical
means they now have the same mass. But also note they arn’t electrons. Their interactions
are determined by the given Hamiltonian only. Because the particles are spin-1/2 fermions, the
stationary state wave functions for system must be multiplied by appropriate eigen-spinors to specify
the full stationary state. Given the antisymmetry requirement for fermion states, what restrictions
are put on the wave function and spinor quantum numbers of an eigenstate?

SUGGESTED ANSWER:

a) For the sake of generality, let’s work in three dimensions for awhile even though the problem
is 1-dimensional. We can specialize when we need to to the 1-dimensional case.

Define the relative radius
~r = ~r2 − ~r1 ,

the total mass
M = m1 +m2

and the CM radius

R =
m1~r1 +m2~r2

M
.

For the inverses, we substitute for ~r2 in the formula for ~R using expression ~r2 = ~r + ~r1 which
gives

~R =
m1~r1 +m2~r2

M
=
m1~r1 +m2(~r + ~r1)

M
= ~r1 +

m2

M
~r = ~r1 +

m2

M
~r .

Thus, we find

~r1 = ~R− m2

M
~r

and

~r2 = ~r + ~r1 = ~r + ~R− m2

M
~r = ~R+

(

1 − m2

M

)

~r = ~R +
m1

M
~r .

The specializations to the 1-dimensional case are obvious.

b) First, we need to transform kinetic energy observables. We find

∂

∂xi
=

∂x

∂xi

∂

∂x
+
∂X

∂xi

∂

∂X
= ∓ ∂

∂x
+
mi

M

∂

∂X
,

where i = 1 for the upper case and i = 2 for the lower case. Next we find

∂2

∂x2
i

=
∂2

∂x2
+
(mi

M

)2 ∂2

∂X2
∓ 2

mi

M

∂2

∂x∂X
.

Exactly analogous expressions hold for y and z coordinates. Thus, we find that

1

m1
∇2

1 +
1

m2
∇2

2 =
(m1 +m2)

M2
∇2

CM +

(

1

m1
+

1

m2

)

∇2 =
1

M
∇2

CM +
1

µ
∇2 ,

where for simplicity here and below we only distinguish the operators with a subscripts CM
and REL when needed and where we define the reduced mass by

1

µ
=

1

m1
+

1

m2
or µ =

m1m2

M
.
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Second, we need to find the conversion relations needed for the potential terms. We find

1

2
m1ω

2r21 +
1

2
m2ω

2r22 =
1

2
ω
[

m1

(

~R− m2

M
~r
)

·
(

~R− m2

M
~r
)

+m2

(

~R+
m1

M
~r
)

·
(

~R+
m1

M
~r
)]

=
1

2
ω

[

(m1 +m2)R
2 +

(m1m
2
2 +m2m

2
1)

M2
r2 − 2

m1m2

M
~R · ~r + 2

m1m2

M
~R · ~r

]

=
1

2
MωR2 +

1

2
µωr2 .

The corresponding relations for any component are analogous. Note that the nice separation
into a center-of-mass SHO potential and relative SHO potential would not have been possible
if the angular frequencies had been different.

In the present case, the Hamiltonian is confined to the x dimension only. We see this
Hamiltonian in CM-REL coordinates must be

H =
P 2

2M
+
p2

2µ
+

1

2
Mω2X2 +

1

2
µω2x2 +

1

2
kx2 .

c) With the transformed Hamiltonian, the time-independent Schrödinger equation becomes

HΨ(X,x) = HCMΨ(X,x) +HRELΨ(X,x) = EΨ(X,x) ,

where we have specialized our transformations to the 1-dimensional case.
If we separate the wave function

Ψ(X,x) = Ψ(X)Ψ(x)

and divide the Schrödinger equation, we obtain

HCMΨ(X)

Ψ(X)
+
HRELΨ(x)

Ψ(x)
= E .

Since we can vary X and x independently, it is clear that both terms on the right-hand side
equal constants which we identify as ECM and EREL. Thus, we have separate Schrödinger
equations:

HCMΨ(X) =

(

P 2

2M
+

1

2
Mω2X2

)

Ψ(X) = ECMΨ(X)

HRELΨ(x) =

(

p2

2µ
+

1

2
µω̃2x2

)

Ψ(x) = ECMΨ(x) ,

where, as suggested, we haved defined

ω̃ =

√

ω2 +
k

µ
= ω

√

1 +
k

µω2
.

Both the CM and REL parts are SHOs, and thus have exact solutions. Ergo the total
Schrödinger equation also has an exact solution.

d) The eigen-energies of the total solution are given by

E = ECM + EREL =

(

nCM +
1

2

)

h−ω +

(

nREL +
1

2

)

h−ω̃ ,

where both the nCM and nREL quantum numbers run 0, 1, 2, 3, . . . .

e) If k = 0, then

E = (nCM + nREL + 1) h−ω .



31

We can define a new quantum number

n = nCM + nREL

which labels the distinct energy levels and runs 0, 1, 2, 3, . . . . Thus,

E = (n+ 1)h−ω .

The degenerate states can be labeled by

nREL

which runs only 0, 1, 2, 3, . . . , n. The degeneracy is n + 1. Only the ground state is not
degenerate.

If one made a square array states with nCM and nREL labeling, respectively, infinite rows
and columns, then n runs along the vertical axis labeling diagonals made of degenerate states
and nREL runs along the diagonal labeling the degenerate states for each n.

f) If k/(µω2) << 1, then

ω̃ ≈ ω

(

1 +
k

2µω2

)

to 1st order. We now see that

E = ECM + EREL =

(

nCM +
1

2

)

h−ω +

(

nREL +
1

2

)

h−ω̃

≈
(

nCM +
1

2

)

h−ω +

(

nREL +
1

2

)

h−ω +

(

nREL +
1

2

)

h−ω
(

k

2µω2

)

= (n+ 1)h−ω +

(

nREL +
1

2

)

h−ω
(

k

2µω2

)

to 1st order. The k term is now a perturbation which splits the degeneracy. The n quantum
number now labels a group of closely spaced levels and nREL levels in a group. The energy-level
diagram, I leave to your imagination.

g) If k/(µω2) >> 1, then the n quantum number is not useful. In this case one can only use the
original quantum numbers nCM and nREL and let them run over 0, 1, 2, 3, . . . . However, since
nREL accounts for large energy steps it makes sense to define orders of energy levels by their
nREL quantum number. Thus given nREL, the zeroth level of the nREL order has nCM = 0, the
1st level has nCM = 1, the 2nd nCM = 2, and so on. Each order nREL will be overlapped by
the high levels of all lower orders. In general the levels of different orders will not be coincident
however: they will be scattered about higgedly-piggedly.

If we do, however, equate to energy levels from different orders

(

nCM +
1

2

)

h−ω +

(

nREL +
1

2

)

h−ω̃ =

(

n′
CM +

1

2

)

h−ω +

(

n′
REL +

1

2

)

h−ω̃

and rearrange to get

n′
CM − nCM = (nREL − n′

REL)
ω̃

ω
,

then we only get an acceptable integral solution for n′
CM − nCM for any nREL − n′

REL if
ω̃/ω is an integer. For definiteness, let’s say that the primes indicate the lower order. Thus
nREL−n′

REL ≥ 0 and n′
CM−nCM ≥ 0. This means that any solution of order nREL is degenerate

with an energy solution of each of lower orders n′
REL. Thus the degeneracy of any energy level

is nREL + 1 counting orders 0 through nREL itself.

h) The symmetry requirement for spin-0 boson states is that on the interchange of any pair of
particle coordinates, the state function stay the same. In this case the state function in terms
of the individual coordinates is

ΨnCM

(

m1x1 +m2x2

M

)

ΨnREL
(x2 − x1) ,
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where each component state function is a one-dimensional SHO wave function. The CM
component is, in fact, already symmetric on pair interchange, and so imposes no new
restrictions. Since SHO wave functions are even for even quantum number and odd for odd, the
REL component is symmetric for nREL even and antisymmetric for nREL odd. No combination
of antisymmetric functions can ever be symmetric, so we in must exclude all odd nREL solutions:
they arn’t physically realizable for spin-0 bosons. Note the remaining solutions still constitute
a complete set, but only for spin-0 bosons.

i) The standard eigen spinors for a 2 spin-1/2 fermion system are

χ1,1 = α(1)α(2)

χ1,0 =
1√
2
[α(1)β(2) + β(1)α(2)]

χ1,−1 = β(1)β(2)

and

χ0,0 =
1√
2
[α(1)β(2) − β(1)α(2)] ,

where the first three spinors constitute the symmetric triplet state and the last one the
antisymmetric singlet state and where

α =

(

1
0

)

and β =

(

0
1

)

(e.g., Morrison et al. 1991, p. 188). Since the overall eigenstate must be antisymmetric, the
singlet state requires nREL even and the triplet state requires nREL odd. This is the only
restriction.

Redaction: Jeffery, 2001jan01

019 qfull 02600 1 5 0 easy thinking: symmetrization, Slater determinant
Extra keywords: (Gr-187:5.7)

19. Say that you solve a Schrödinger equation for N identical particles to get the normalized wave function
ψ(~r1, ~r2, ~r3, . . . , ~r N ). How would you symmetrize the wave function for bosons? Then how would
you symmetrize for fermions all in the spin-up state so that you don’t have spinors to complicate the
question? How would you normalize the wave function?

SUGGESTED ANSWER:

To symmetrize for bosons, one would just construct a Slater determinant with all the minus
signs dropped. One could use position for the row coordinates and permute the variable indices or
vice versa. For fermions (all in spin-up state) you would leave in the negative signs for the anticyclic
permutations. To normalize the symmetrized wave function one would multiply by 1/

√
N given the

condition that the wave function were completely unsymmetrized initially and all the permutations
led to orthogonal wave functions. Although typically one has that condition, it certainly isn’t
always true. Say one had N = 2 and ψ(~r1, ~r2) and the wave function was already, unbeknownst to
you, symmetric/antisymmetric. In this case

∫

ψ(~r1, ~r2)
∗ψ(~r2, ~r1) dV 6= 0

and the correct normalization for a redundant symmetrization would not be 1/
√

2, but 1/2. One
hopes in specific cases that one would know the symmetries of the Schródinger equation. I imagine
that symmetrization is easier said than done in general.

Redaction: Jeffery, 2001jan01

019 qfull 02700 1 5 0 easy thinking: doubly excite He decay
Extra keywords: (Gr188.58a)

20. Say you put two electrons into the n = 2 principle quantum number shell of a neutral helium atom
and immediately one electron is ejected and the other decays to the ground of the He+ ion. What
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approximately is the kinetic energy of the ejected electron. NOTE: Without a detailed specification
of the doubly-excited helium atom we cannot know exactly what the energies of the excited electrons
are. There are two simple approximate choices for their energies: 1) assume that the energy levels of
the singly-excited helium atom apply (see, e.g., Gr-189); 2) assume that the Z = 2 hydrogenic energy
levels apply. The first choice is probably most in error because it assumes too much electron-electron
interaction: the electrons may further apart in the actual doubly-excited state; but, in fact, where they
are depends on exactly what doubly excited state they are in. The 2nd choice is certainly wrong by
assuming zero electron-electron interaction.

SUGGESTED ANSWER:

If we make the first choice, the n = 2 shell is ∼ 4 eV below the continuum of the atom and
∼ 50 eV above the ground state of the He+ ion. From energy conservation

Eeject + Egrd = 2En=2

or
Eeject = 2En=2 − Egrd = −8 + 50 = 42 eV .

The second choice (i.e., pure hydrogenic levels) gives

Eeject = 2En=2 − Egrd = 2
−ZEryd

n2
− (−ZEryd) = −Eryd + 2Eryd = Eryd = 13.6 eV ,

where n = 2, Z = 2, and Zryd is the Rydberg energy, of course.

Which choice is better? The hydrogenic choice is more definite: one isn’t left in a quandary
about what values to use. But it isn’t more accurate a priori. The only way to know the best
choice is to do the more detailed calculation which requires specifying the initial state precisely
and finding out exactly what it’s energy is.

Redaction: Jeffery, 2001jan01

019 qfull 02900 2 5 0 moderate thinking: helium with bosons
Extra keywords: (Gr-188:5.9)

21. Describe qualitatively how the helium atom energy level diagram would plausibly change under the
following conditions.

a) Say the electrons were spin zero bosons.

b) Say the electrons were spin 1/2 bosons—a contradiction in postulates, but for the sake of argument
have it so.

c) Say the electrons were spin 1/2 fermions, but were quantum mechanically distinguishable particles.
HINT: In this case the answer is going to be pretty much indefinite.

SUGGESTED ANSWER:

a) In this case there would be no spin state to discuss. The total state would have to be the wave
function and it would have to symmetric. The energy level diagram would probably resemble
the singlet state branch of the actual helium energy level diagram. Recall the singlet branch
is spatially symmetric and spin antisymmetric.

b) In this case one would still have the singlet and triplet branches of the actual helium atom.
Other since the overall state would have to be symmetric, the singlet branch would correspond
to the antisymmetric wave function case and the triplet branch to the symmetric wave function
case. Since antisymmetric wave functions keep the electrons physically further apart, they give
the lower energy branch. Thus in this case the singlet branch levels would tend to have lower
energies than their triplet branch counterparts—this is the opposite of actual helium atom
of course. Note the ground state single-particle wave function is non-degenerate. Thus the
ground state must be a triplet spin state in when the electrons are spin 1/2 bosons so that
overall state is symmetric. In the actual helium atom the ground spin state is a singlet to make
the overall ground state antisymmetric.
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c) If the electrons are distinguishable, then there is no requirement for the states to have definite
symmetry. The ground spatial state must be symmetric since the single-particle ground wave
functions out of which it is approximately contructed are non-degenerate. However, both
singlet and triplet spin states are allowed, and so the overall symmetry of the ground state
could be either. Some of excited states may be spatially symmetric and antisymmetric states
both with spin singlet and triplet forms. But there can be other states without definite spatial
symmetry. Off hand I don’t no if the overall spin state can be sans definite symmetry: i.e., the
electron spins not taking a “parallel” or “antiparallel” relation. In any case the energy level
diagram would be quite different I think than that of the actual helium atom. Oddly enough
something somewhat like this system could be built from a helium nucleus with an electron
and muon. The muon is 207.77 times the mass of the electron, and so would tend to be much
deeper in the potential well of the nucleus: radius going as 1/m (see, e.g., Gr-137). I don’t
know if muonic helium has ever been studied: probably yes.

Redaction: Jeffery, 2001jan01

019 qfull 03000 2 5 0 moderate thinking: Bose-Einstein counting
Extra keywords: See Po-13 and Po-47

22. In statistical mechanics, the symmetrization requirement on identical bosons enters in the way that
probabilities are assigned to the global states they can form. We will investigate how symmetrization
manifests itself in this case.

a) Say you had g single-particle states and n distinct particles. How many distinct global states can
you form? What is the probability of each global state assuming that each has equal probability?

b) Now a trickier case. Say you had g single-particle states and n identical particles. The probability
pi that a particle goes into single-particle state i is INDEPENDENT of what the other particles
do: note

∑g
i=1 pi = 1, of course. You can construct all possible global states by inserting one

particle at a time into the system—can you imagine a global state that cannot be so constructed?
Say you do insert the n particles one at a time to the system. The probability of an n-particle
global state formed by the insertion sequence ijk . . . ℓ is pipjpk . . . pℓ which has n factors, of course.
But because the particles are identical, each (distinct) global state can be constructed in general by
multiple insertion sequences. How many distinct insertion sequences for n particles correspond to a
single global state with occupation number set {ni}? If all the pi are equal, what is the probability
of a global state with occupation number set {ni} formed by random insertion of particles?

The sum of the probabilities for all insertion sequences is 1. Why must this be so on general
grounds? Now prove more explicitly that the sum of all inserttion sequence probabilities is 1.
HINT: Consider

1 =

(

g
∑

i=1

pi

)n

and a proof by induction.

c) Now in the part (b) answer, we didn’t find out how many distinct global states there were. To find
this out you need a different counting procedure. Let’s consider finding all possible global states
given the following conditions. Imagine that all n particles were distinct and that the order in
which you choose the single-particle states to slot them into also matters. To start with you must
select a state: you can’t put a particle in a non-state. Then proceed selecting a particle for the
current state or a new state until you are out of particles and states. Now did the order of the
states matter or the order of the choice of particles?

d) Now for classical, non-interacting particles randomly slotted into single-particle states, the
probability of each global state is as determined in part (b). Quantum mechanical non-interacting
bosons do not act like classical particles. Because of the symmetrization principle—in a way
the instructor has never found out—each distinct global state has equal probability. What is
this probability for n bosons in g single-particle states? Say that we have all n bosons in one
single-particle state. What is the classical probability of this global state? Which is larger the
classical probability or the boson probability? What does the last result suggest about the random
distributions of bosons relative to classical random distributions?
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e) Consider two identical coins—say quarters. How many distinct global physical states can be made
given that the single-coin states are head and tail? Now toss them up together in a completely
randomizing way 36 times. Count the number of distinct global states of each kind that you get?
Do the probabilities of each distinct global state appear to be classically random or boson random?

SUGGESTED ANSWER:

a) As a mental procedure for finding all the possible global states, we can imagine slotting the
particles into single-particle states one at a time. All possible global states can be constructed
this way: could you imagine one that couldn’t? Consider inserting in the first particle. There
are g single-particle states, and so one can form g global particle states by inserting the first
particle. Then assume that for n − 1 particles added, one can construct gn−1 distinct global
states. Now to each of these global states you can add the nth particle in g ways; thus for
each there are g n-particle global states. These new global states are all distinct, because
the nth particle is distinct from all the particles added before. Thus for n particles there are
gn−1 × g = gn distinct global states. The probability of each state is just 1/gn assuming the
states have equal probability.

b) Well there n! ways of arranging the n insertions of sequence, but distinct sequences arn’t formed
by rearrangements among particles going into the same single-particle states. Let N be the
number of distinct sequences. For sequences resulting in global states with the occupation
number set {ni}, we must have

n! = N

g
∏

i=1

ni! ,

and thus

N =
n!

∏g
i=1 ni!

.

If all the pi are equal, then pi = 1/g and the probability of any insertion sequence is 1/gn since
there are n pi factors in the probability of a sequence. The probability of any global state of
occupation number set {ni} formed by random insertion must be

p({ni}) =
n!

∏g
i=1 ni

1

gn
.

The sum of the probabilities of all insertion sequences must 1. When you insert n particles
in a sequence you always get a global state at the end. Thus probability for getting any global
state is 1. Thus the sum of probabilities for all sequences must be 1.

Now for a more explicit proof using induction. The first step is to prove that sum of all
probabilities for sequences of n = 1 is 1. Well we are given that

∑g
i=1 pi = 1 and clearly the

pi are the probabilies of the sequences of n = 1. Thus, we have proven

1 =

(

g
∑

i=1

pi

)1

.

The second step is to assume that all n− 1 sequence probabilities occur in the expansion
of

1 =

(

g
∑

i=1

pi

)n−1

.

The third step is to insert the nth particle to any of the global states formed by a sequence
of n− 1 particle insertations. For each sequence of n− 1, there are n possible sequences of n.
The probability of sequences of n where the final insertion is into state i is just the probability
of the sequence of n− 1 times pi. It follows that

(

g
∑

i=1

pi

)n−1( g
∑

i=1

pi

)

=

(

g
∑

i=1

pi

)n
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is the sum of the probabilities of all sequences of n. Since
∑g

i=1 pi = 1, we find

1 =

(

g
∑

i=1

pi

)n

.

Thus the sum of all sequence of n probabilities is 1.

c) Well there are g choices for the first state. Then there are g−1+n choices for the second event
which may be inserting a particle into the first state or choosing a new state. For the next there
g− 1 +n− 1 choices and so on down to 1 choice. Thus we can construct g(g− 1+n)! factorial
states according to our rule. But the order of choosing states can’t matter in constructing a
global state and the order of choosing particles can’t matter either since they are identical.
Thus the number of distinct states M must satisfy

g(g − 1 + n)! = Mg!n! ,

where g! accounts for all possible rearrangements of the choice of states without any other
changes and n! for all possible rearrangements of the particle insertation order without any
other changes. Therefore,

M =
(g − 1 + n)!

(g − 1)!n!
.

The above counting procedure is isomorphic to the distinct orderings of (g − 1) identical
partitions and n identical particles on a line. I still don’t know what is the best word argument
to motivate the simple mathematical steps.

d) The probability of each distinct global state of bosons is

p =
1

M
=

(g − 1)!n!

(g − 1 + n)!

since all distinct global states have equal probability. Now if all particles are in one single-
particle state the boson probability for the global state is just as above, but the classical
probability is

pcl =
1

gn

from the part (b) answer. To see which probability is larger consider that

p =
1

M
=

(g − 1)!n!

(g − 1 + n)!
=

n!

(g − 1 + n)(g − 2 + n) . . . g
=

n(n− 1) . . . 1

(g − 1 + n)[g − 1 + (n− 1)] . . . (g − 1 + 1)
.

Now clearly if i/(g − 1 + i) ≥ 1/g where i ∈ [1, n], then p ≥ pcl. Let’s assume that
i/(g − 1 + i) ≥ 1/g and show under what condition that that leads to no contradiction.
Consider the sequence of statements where the preceding implies the following:

i

g − 1 + i
≥ 1

g
,

i ≥ i− 1

g
+ 1 ,

i− 1 ≥ i− 1

g
.

The last statement is always true for allowed i and g: i.e., both integers greater than zero.
The equality holds only for g = 1 and/or i = 1. Thus p ≥ pcl in allowed cases. The equality
only holds for g = 1 (i.e., there is only one single-particle state and it has probability p1 = 1
and only one global state and it has probability 1 too) and/or n = 1 (i.e., there is only one
particle).

The fact that p ≥ pcl for the case of all the particles in one single-particle state suggests
that in general the boson probabilities favor clumping particles into single-particle states more
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strongly than classical probabilities. This suggestion is, in fact, true although I don’t know
a general way to prove it. I suppose one could define f = ln(p/pcl) and approximate f
using Stirling’s approximation (Ar-464) and then try to show that its minimum subject to the
constraint of

∑g
i=1 ni = n is greater than 1. One could use Lagrange undetermined multipliers

to impose the constraint (Ar-790). Just musing here: I don’t know if this would work.

e) Of course, any one run of 36 will only give one sample of the infinite distribution of runs of
36. But 36 is long enough that the unless one is unlucky it will approximate the mean run of
36 which is what infinite runs will give you.

When I did the experiment I got 18 head-tails, 11 heads, and 7 tails. This sample is closest
to classical distribution of 1/2 for the head-tail state, 1/4 for all heads, and 1/4 for all tails:

p(head-tail) =
2!

1!1!

1

22
=

1

2
, p(heads) =

2!

2!0!

1

22
=

1

4
, and p(tails) =

2!

2!0!

1

22
=

1

4
.

The boson distribution is of course probability (2 − 1)!2!/(2 − 1 + 2)! = 1/3 for each distinct
state. I certainly expect the classical distribution to hold since macroscopically each coin toss
is independent of the other. There is no funny symmetrization requirement on macroscopic
states.

Redaction: Jeffery, 2001jan01

020 qmult 00100 1 1 1 easy memory: atom defined
23. An atom is a stable bound system of electrons and:

a) a single nucleus. b) two nuclei. c) three nuclei. d) a single quark. e) two quarks.

SUGGESTED ANSWER: (a)

Wrong Answers:
b) This is a diatomic molecule.

Redaction: Jeffery, 2001jan01

020 qmult 01000 1 4 1 easy deducto-memory: central potential
24. “Let’s play Jeopardy! For $100, the answer is: A favored approximation in the simpler solutions for the

electronic structure of atoms in quantum mechanics.”

What is the , Alex?

a) central potential approximation b) non-central potential approximation
c) grand central approximation d) atom-approximated-as-molecule method
e) electrons-as-bosons approximation

SUGGESTED ANSWER: (a)

Wrong answers:
d) Doesn’t seem to likely to work.
e) Off hand I can’t think of a poorer approximation.

Redaction: Jeffery, 2001jan01

020 qfull 00200 1 3 0 easy math: electronic configurations to Ca
25. Write down the ground state electronic configurations of the atoms from hydrogen to calcium.

SUGGESTED ANSWER:

Ground State Electronic Configurations of Atoms from H to Ca

Atom Electronic Configuration

H1 (1s)
He2 (1s)2

Li3 (He(2s)
Be4 (He(2s)2
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B5 (He(2s)2(2p)
C6 (He(2s)2(2p)2

N7 (He(2s)2(2p)3

O8 (He(2s)2(2p)4

F9 (He(2s)2(2p)5

Ne10 (He(2s)2(2p)6

Na11 (Ne)(3s)
Mg12 (Ne)(3s)2

Al13 (Ne)(3s)2(3p)
Si14 (Ne)(3s)2(3p)2

P15 (Ne)(3s)2(3p)3

S16 (Ne)(3s)2(3p)4

Cl17 (Ne)(3s)2(3p)5

Ar18 (Ne)(3s)2(3p)6

K19 (Ar)(4s)
Ca20 (Ar)(4s)2

Redaction: Jeffery, 2008jan01



Appendix 2 Quantum Mechanics Equation Sheet

Note: This equation sheet is intended for students writing tests or reviewing material. Therefore
it neither intended to be complete nor completely explicit. There are fewer symbols than variables,
and so some symbols must be used for different things.

1 Constants not to High Accuracy

Constant Name Symbol Derived from CODATA 1998

Bohr radius aBohr =
λCompton

2πα
= 0.529 Å

Boltzmann’s constant k = 0.8617× 10−6 eV K−1

= 1.381× 10−16 erg K−1

Compton wavelength λCompton =
h

mec
= 0.0246 Å

Electron rest energy mec
2 = 5.11 × 105 eV

Elementary charge squared e2 = 14.40 eV Å

Fine Structure constant α =
e2

h−c
= 1/137.036

Kinetic energy coefficient
h−2

2me
= 3.81 eV Å2

h−2

me
= 7.62 eV Å2

Planck’s constant h = 4.15 × 10−15 eV
Planck’s h-bar h− = 6.58 × 10−16 eV

hc = 12398.42 eVÅ
h−c = 1973.27 eVÅ

Rydberg Energy ERyd =
1

2
mec

2α2 = 13.606 eV

2 Some Useful Formulae

Leibniz’s formula
dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k

Normalized Gaussian P =
1

σ
√

2π
exp

[

− (x− 〈x〉)2
2σ2

]

3 Schrödinger’s Equation

HΨ(x, t) =

[

p2

2m
+ V (x)

]

Ψ(x, t) = ih−∂Ψ(x, t)

∂t

Hψ(x) =

[

p2

2m
+ V (x)

]

ψ(x) = Eψ(x)

HΨ(~r , t) =

[

p2

2m
+ V (~r )

]

Ψ(~r , t) = ih−∂Ψ(~r , t)

∂t
H |Ψ〉 = ih− ∂

∂t
|Ψ〉

Hψ(~r ) =

[

p2

2m
+ V (~r )

]

ψ(~r ) = Eψ(~r ) H |ψ〉 = E|ψ〉
39
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4 Some Operators

p =
h−
i

∂

∂x
p2 = −h−2 ∂2

∂x2

H =
p2

2m
+ V (x) = − h−2

2m

∂2

∂x2
+ V (x)

p =
h−
i
∇ p2 = −h−2∇2

H =
p2

2m
+ V (~r ) = − h−2

2m
∇2 + V (~r )

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ θ̂

1

r sin θ

∂

∂θ

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

5 Kronecker Delta and Levi-Civita Symbol

δij =

{

1, i = j;
0, otherwise

εijk =

{

1, ijk cyclic;
−1, ijk anticyclic;
0, if two indices the same.

εijkεiℓm = δjℓδkm − δjmδkℓ (Einstein summation on i)

6 Time Evolution Formulae

General
d〈A〉
dt

=

〈

∂A

∂t

〉

+
1

h−
〈i[H(t), A]〉

Ehrenfest’s Theorem
d〈~r 〉
dt

=
1

m
〈~p 〉 and

d〈~p 〉
dt

= −〈∇V (~r )〉

|Ψ(t)〉 =
∑

j

cj(0)e−iEjt/h−|φj〉

7 Simple Harmonic Oscillator (SHO) Formulae

V (x) =
1

2
mω2x2

(

− h−2

2m

∂2

∂x2
+

1

2
mω2x2

)

ψ = Eψ

β =

√

mω

h−
ψn(x) =

β1/2

π1/4

1√
2nn!

Hn(βx)e−β2x2/2 En =

(

n+
1

2

)

h−ω
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H0(βx) = H0(ξ) = 1 H1(βx) = H1(ξ) = 2ξ

H2(βx) = H2(ξ) = 4ξ2 − 2 H3(βx) = H3(ξ) = 8ξ3 − 12ξ

8 Position, Momentum, and Wavenumber Representations

p = h−k Ekinetic = ET =
h−2
k2

2m

|Ψ(p, t)|2 dp = |Ψ(k, t)|2 dk Ψ(p, t) =
Ψ(k, t)√

h−

xop = x pop =
h−
i

∂

∂x
Q

(

x,
h−
i

∂

∂x
, t

)

position representation

xop = − h−
i

∂

∂p
pop = p Q

(

− h−
i

∂

∂p
, p, t

)

momentum representation

δ(x) =

∫ ∞

−∞

eipx/h−

2πh−
dp δ(x) =

∫ ∞

−∞

eikx

2π
dk

Ψ(x, t) =

∫ ∞

−∞

Ψ(p, t)
eipx/h−

(2πh−)1/2
dp Ψ(x, t) =

∫ ∞

−∞

Ψ(k, t)
eikx

(2π)1/2
dk

Ψ(p, t) =

∫ ∞

−∞

Ψ(x, t)
e−ipx/h−

(2πh−)1/2
dx Ψ(k, t) =

∫ ∞

−∞

Ψ(x, t)
e−ikx

(2π)1/2
dx

Ψ(~r , t) =

∫

all space

Ψ(~p , t)
ei~p·~r/h−

(2πh−)3/2
d3p Ψ(~r , t) =

∫

all space

Ψ(~k , t)
ei~k·~r

(2π)3/2
d3k

Ψ(~p , t) =

∫

all space

Ψ(~r , t)
e−i~p·~r/h−

(2πh−)3/2
d3r Ψ(~k , t) =

∫

all space

Ψ(~r , t)
e−i~k·~r

(2π)3/2
d3r

9 Commutator Formulae

[A,BC] = [A,B]C +B[A,C]





∑

i

aiAi,
∑

j

bjBj



 =
∑

i,j

aibj [Ai, bj]

if [B, [A,B]] = 0 then [A,F (B)] = [A,B]F ′(B)

[x, p] = ih− [x, f(p)] = ih−f ′(p) [p, g(x)] = −ih−g′(x)
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[a, a†] = 1 [N, a] = −a [N, a†] = a†

10 Uncertainty Relations and Inequalities

σxσp = ∆x∆p ≥ h−
2

σQσQ = ∆Q∆R ≥ 1

2
|〈i[Q,R]〉|

σH∆tscale time = ∆E∆tscale time ≥
h−
2

11 Probability Amplitudes and Probabilities

Ψ(x, t) = 〈x|Ψ(t)〉 P (dx) = |Ψ(x, t)|2 dx ci(t) = 〈φi|Ψ(t)〉 P (i) = |ci(t)|2

12 Spherical Harmonics

Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .
s p d f g h i . . .

13 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
α =

e2

h−c

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)

Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials



43

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity

En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
= −13.606

Z2

n2

mreduced

me
eV

14 General Angular Momentum Formulae

[Ji, Jj ] = ih−εijkJk (Einstein summation on k) [J2, ~J ] = 0

J2|jm〉 = j(j + 1)h−2|jm〉 Jz |jm〉 = mh−|jm〉

J± = Jx ± iJy J±|jm〉 = h−
√

j(j + 1) −m(m± 1)|jm± 1〉

J{x

y} =

{

1
2
1
2i

}

(J+ ± J−) J†
±J± = J∓J± = J2 − Jz(Jz ± h−)

[Jfi, Jgj ] = δfgih−εijkJk
~J = ~J1 + ~J2 J2 = J2

1 + J2
2 + J1+J2− + J1−J2+ + 2J1zJ2z

J± = J1± + J2± |j1j2jm〉 =
∑

m1m2,m=m1+m2

|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉j1j2jm〉

|j1 − j2| ≤ j ≤ j1 + j2

j1+j2
∑

|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1)

15 Spin 1/2 Formulae

Sx =
h−
2

(

0 1
1 0

)

Sy =
h−
2

(

0 −i
i 0

)

Sz =
h−
2

(

1 0
0 −1

)

|±〉x =
1√
2

(|+〉 ± |−〉) |±〉y =
1√
2

(|+〉 ± i|−〉) |±〉z = |±〉

| + +〉 = |1,+〉|2,+〉 | + −〉 =
1√
2

(|1,+〉|2,−〉± |1,−〉|2,+〉) | − −〉 = |1,−〉|2,−〉

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)
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σiσj = δij + iεijkσk [σi, σj ] = 2iεijkσk {σi, σj} = 2δij

( ~A · ~σ)( ~B · ~σ) = ~A · ~B + i( ~A× ~B) · ~σ

d(~S · n̂)

dα
= − i

h−
[~S · α̂, ~S · n̂] ~S · n̂ = e−i~S·~α~S · n̂0e

i~S·~α |n̂±〉 = e−i~S·~α|ẑ±〉

eixA = 1 cos(x) + iA sin(x) if A2 = 1 e−i~σ·~α/2 = 1 cos(x) − i~σ · α̂ sin(x)

σif(σj) = f(σj)σiδij + f(−σj)σi(1 − δij)

µBohr =
eh−
2m

= 0.927400915(23)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

g = 2
(

1 +
α

2π
+ . . .

)

= 2.0023193043622(15)

~µorbital = −µBohr

~L

h−
~µspin = −gµBohr

~S

h−
~µtotal = ~µorbital + ~µspin = −µBohr

(~L + g~S)

h−

Hµ = −~µ · ~B Hµ = µBohrBz
(Lz + gSz)

h−

16 Time-Independent Approximation Methods

H = H(0) + λH(1) |ψ〉 = N(λ)
∞
∑

k=0

λk|ψ(k)
n 〉

H(1)|ψ(m−1)
n 〉(1 − δm,0) +H(0)|ψ(m)

n 〉 =
m
∑

ℓ=0

E(m−ℓ)|ψ(ℓ)
n 〉 |ψ(ℓ>0)

n 〉 =
∞
∑

m=0, m 6=n

anm|ψ(0)
n 〉

|ψ1st
n 〉 = |ψ(0)

n 〉 + λ
∑

all k, k 6=n

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉

E
(0)
n − E

(0)
k

|ψ(0)
k 〉

E1st
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

E2nd
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

+ λ2
∑

all k, k 6=n

∣

∣

∣

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉
∣

∣

∣

2

E
(0)
n − E

(0)
k

E(φ) =
〈φ|H |φ〉
〈φ|φ〉 δE(φ) = 0
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Hkj = 〈φk|H |φj〉 H~c = E~c

17 Time-Dependent Perturbation Theory

π =

∫ ∞

−∞

sin2(x)

x2
dx

Γ0→n =
2π

h−
|〈n|Hperturbation|0〉|2δ(En − E0)

18 Interaction of Radiation and Matter

~Eop = −1

c

∂ ~Aop

∂t
~Bop = ∇× ~Aop

19 Box Quantization

kL = 2πn, n = 0,±1,±2, . . . k =
2πn

L
∆kcell =

2π

L
∆k3

cell =
(2π)3

V

dNstates = g
k2 dk dΩ

(2π)3/V

20 Identical Particles

|a, b〉 =
1√
2

(|1, a; 2, b〉 ± |1, b; 2, a〉)

ψ(~r1, ~r 2) =
1√
2

(ψa(~r 1)ψb(~r 2) ± ψb(~r 1)ψa(~r 2))

21 Second Quantization

[ai, a
†
j ] = δij [ai, aj ] = 0 [a†i , a

†
j ] = 0 |N1, . . . , Nn〉 =

(a†n)Nn

√
Nn!

. . .
(a†1)

N1

√
N1!

|0〉

{ai, a
†
j} = δij {ai, aj} = 0 {a†i , a

†
j} = 0 |N1, . . . , Nn〉 = (a†n)Nn . . . (a†1)

N1 |0〉

Ψs(~r )† =
∑

~p

e−i~p·~r

√
V

a†~ps Ψs(~r ) =
∑

~p

ei~p·~r

√
V
a~ps

[Ψs(~r ),Ψs′(~r ′)]∓ = 0 [Ψs(~r )†,Ψs′(~r ′)†]∓ = 0 [Ψs(~r ),Ψs′(~r ′)†]∓ = δ(~r − ~r ′)δss′
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|~r1s1, . . . , ~rnsn〉 =
1√
n!

Ψsn
(~r n)† . . .Ψsn

(~r n)†|0〉

Ψs(~r )†|~r1s1, . . . , ~rnsn〉
√
n+ 1|~r1s1, . . . , ~rnsn, ~rs〉

|Φ〉 =

∫

d~r1 . . . d~rn Φ(~r1, . . . , ~rn)|~r1s1, . . . , ~rnsn〉

1n =
∑

s1...sn

∫

d~r1 . . . d~rn |~r1s1, . . . , ~rnsn〉〈~r1s1, . . . , ~rnsn| 1 = |0〉〈0| +
∞
∑

n=1

1n

N =
∑

~ps

a†~psa~ps T =
∑

~ps

p2

2m
a†~psa~ps

ρs(~r ) = Ψs(~r )†Ψs(~r ) N =
∑

s

∫

d~r ρs(~r ) T =
1

2m

∑

s

∫

d~r∇Ψs(~r )† · ∇Ψs(~r )

~js(~r ) =
1

2im

[

Ψs(~r )†∇Ψs(~r ) − Ψs(~r )∇Ψs(~r )†
]

Gs(~r − ~r ′) =
3n

2

sin(x) − x cos(x)

x3
gss′(~r − ~r ′) = 1 − δss′

Gs(~r − ~r ′)2

(n/2)2

v2nd =
1

2

∑

ss′

∫

d~rd~r ′ v(~r − ~r ′)Ψs(~r )†Ψs′(~r ′)†Ψs′(~r ′)Ψs(~r )

v2nd =
1

2V

∑

pp′qq′

∑

ss′

v~p−~p ′δ~p+~q,~p′+~q′a†~psa
†
~qs′a~q ′s′a~p ′s v~p−~p ′ =

∫

d~r e−i(~p−~p ′)·~rv(~r )

22 Klein-Gordon Equation

E =
√

p2c2 +m2c4
1

c2

(

ih− ∂

∂t

)2

Ψ(~r, t) =

[

(

h−
i
∇
)2

+m2c2

]

Ψ(~r, t)

[

1

c2
∂2

∂t2
−∇2 +

(

mc

h−

)2
]

Ψ(~r, t) = 0

ρ =
ih−

2mc2

(

Ψ∗ ∂Ψ

∂t
− Ψ

∂Ψ∗

∂t

)

~j =
h−

2im
(Ψ∗∇Ψ − Ψ∇Ψ∗)

1

c2

(

ih− ∂

∂t
− eΦ

)2

Ψ(~r, t) =

[

(

h−
i
∇− e

c
~A

)2

+m2c2

]

Ψ(~r, t)

Ψ+(~p,E) = ei(~p·~r−Et)/h− Ψ−(~p,E) = e−i(~p·~r−Et)/h−


