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Quantum Mechanics NAME:

Homework 5b: The Free Electron Gas Model and Statistical Mechanics

022 qmult 00100 1 1 3 easy memory: simplest quantum mechanical solid model
1. The simplest quantum mechanical solid model is arguably:

a) the hydrogen atom. b) the helium atom. c) the free electron gas model.
d) the infinite periodic potential model. e) the finite periodic potential model.

SUGGESTED ANSWER: (c)

The free electron gas model of a solid was developed by Arnold Sommerfeld (1868–1951)
starting in 1927 shortly after the discovery of quantum mechanics in 1926 or so. The free electron gas
model was developed starting from Drude classical free electron gas model. Sommerfeld was getting
on in years when he developed the free electron gas models. It’s proof that older physicists/dogs
can sometimes learn new tricks.

Wrong answers:
a) A nonsense answer.

Redaction: Jeffery, 2008jan01

022 qmult 00110 1 1 1 easy memory: infinite square boundary conditions
2. For the free electron gas model of a solid, one common simple choice of boundary conditions is:

a) infinite square well boundary conditions. b) finite square well boundary conditions.
c) Gaussian well boundary conditions. d) hydrogen atom boundary conditions.
e) helium atom boundary conditions.

SUGGESTED ANSWER: (a)

Wrong answers:
b) These can be used and must be used, I imagine, in some cases. But they are not a simple

choice.

Redaction: Jeffery, 2008jan01

022 qmult 00130 1 4 4 easy deducto-memory: periodic boundary conditions
Extra keywords: mathematical physics

3. “Let’s play Jeopardy! For $100, the answer is: These quantum mechanical boundary conditions for
solids, also known a Born-von-Karman boundary conditions, are not realistic in most cases. They are
realistic in some cases. For example, for the dimension of a solid that forms a closed loop: e.g., a
solid that has donut shape can be have an angular coordinate that must be periodic by symmetry over
the range [0◦, 360◦]. But whether realistic or not, it can be shown that they lead to the same average
behavior as realistic boundary conditions for macroscopically large solid samples.

Why are these boundary conditions used at all? Well for one thing they are an ideal kind of
boundary conditions that are completely independent of what the surface behavior of solid is. Thus,
they are neutral case. For another thing they are easy to use in developments in particular when dealing
with periodic potentials in a solid.”

What are , Alex?

a) infinite square well boundary conditions b) aperiodic boundary conditions
c) Rabi-Schwinger-Baym-Sutherland boundary conditions d) periodic boundary conditions
e) relaxed boundary conditions

SUGGESTED ANSWER: (d)

Wrong answers:
a) Exactly wrong.
b) Exactly wrong.
c) I.I. Rabi (1898–1988), Julian Schwinger (1918–1994), Gordon Baym (circa 1935–), Peter

Sutherland (circa 1945–) to well me: my Ph.D. pedigree.

Redaction: Jeffery, 2008jan01
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022 qfull 00100 2 5 0 moderate thinking: free electron gas model of a solid

Extra keywords: (Ha-324:2.4)

4. The free electron gas model of a solid is arguably the simplest model of solid. The electrons are assumed
to be non-interacting fermions confined to a potential well. The background of positive ions and the
electrons’s own Coulomb force combine to create the potential well. The potential inside the well is flat.
The most obvious set of boundary conditions are infinite square well boundary conditions.

Periodic boundary conditions (AKA Born-Von-Karman boundary conditions) are also used. They
give the same macroscopic results as infinite square well boundary conditions and are better suited for
treating periodic potentials inside solids. Periodic boundary conditions actually means you imagine
space looping back on itself for opposing ends of a rectangular box. If you go out one end, you come
back in the opposing end. If we assume a 1-dimensional wave function along a box dimension (which
we actually require in our development in this problem), then we demand that that wave function be
single-valued as it loops around and around through looped space. We have no physical meaning for a
multi-valued wave function. You could at first imagine that there could be a discontinuity in the wave
function as it crosses a boundary. But the ordinary continuity conditions on a wave function at locations
of finite potential require that the wave function and its 1st derivative must be continuous across the
boundary. Thus, to loop back into itself, the wave function and its 1st derivative must have the same
values at opposing boundaries.

Let us consider a free electron gas model of a solid in 1, 2, and 3 dimensions simultaneously. Use
periodic boundary conditions in all three cases: a 1-dimensional rectangular box is a line segment, a
2-dimensional rectangular box is a rectangle, and a 3-dimensional rectangular box is what one ordinarly
means by a rectangular box. Let Li be the length of side i of the rectangular box and V =

∏

i Li be
the rectangular box volume. Let ℓ be the number of dimensions.

a) Solve the time-independent Schrödinger equation for the single-particle stationary states for all three
dimension cases. These states can be called k states since they distinguished by their wavenumbers
for the available dimensions. Normalize the solutions solutions and give their quantization rules
for wavenumber and energy. HINT: You must separate the multi-particle time-independent
Schrödinger equation.

b) Each single-particle stationay k state can be located in what is called k-space by a wavenumber

vector ~k = (k1, k2, k2), where we have used 1, 2, and 3 to label the dimensions. What is the volume
Vk in k-space of the k-space rectangular boxes that are centered on the stationary state wavenumber
vector tips and tile all k-space without gaps or overlaps and are all of the same size. The volume
Vk is the k-space volume per state. What is the average density of spatial states in k-space ρk?

c) We now make the continuum approximation which is valid for samples that are macroscopic in all
available dimensions. This means that we treat the average density of spatial states in k-space as if
it were an uniform density. Find the expression for the differential number of states dNk per unit
space volume in a spherical shell in k-space. The shell radius is k and its thickness is dk. Include
the spin degeneracy by a factor g which equals 2 for spin 1/2 electrons. But leave g unevaluated. By
leaving g unevaluated, one can track how the spin degeneracy affects dNk and expressions derived
from dNk.

d) The Pauli exclusion principle for fermions requires that each single particle k state (where the states
now thought of as distinguished by both wavenumber vector and spin state) have only one fermion
at most. This statement must be qualified. What it really means is that the product wave function
of single particle states can have each distinct single-particle state included once only. If there
are N fermions, the overall symmetrized wave function contains N ! versions of the product wave
function with the individual particle coordinate labels in all possible permuations. But we don’t
have to worry about product wave functions or symmetrized wave functions explicitly in the free
electron gas model of solids. We simply make use of the Pauli exclusion principle to say that the
single-particle states can only be used once in calculating results or to put this in common jargon
only one electron can occupy at single particle state at most.

Now in the ground state of (which is the absolute zero temperature state) in our free electron
gas model, the electrons occupy the lowest energy single-particle states consistent with the Pauli
exclusion principle. This means in k-space, the electrons occupy a sphere of radius kF where F
where stands for Fermi. Since F stands for a name, not a variable it ought to be in Roman, not
Italic, font, but convention seems to dictate Italic font (e.g., Gr-221, CT-1435). (I guess since
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Fermi was Italian . . .) The radius kF is called the Fermi wavenumber. The sphere is called the
Fermi surface. It’s not called the Fermi sphere usually since the concept of Fermi surface applies
to periodic potential cases, where in general the Fermi surface is not a sphere.

Using the results of the part (c) answer solve for kF in general and explicitly for the 3
dimensional cases. Assume the electron density (in space space) is ne = N/V .

e) Now solve for the Fermi energy EF in general and for the 3 dimensional cases.

f) What is ρE : i.e., the density of states per unit space volume per unit energy in the continuum of
states approximation. Write a general formula that is valid for all three dimension cases. HINT:
One requires the same number of states between any corresponding limits: i.e.,

dN = ρk shell dk = ρE dE ,

where ρk shell is the density of k states in the differential k space shell dk. The general expression
for ρk shell must have turned up in the part (c) answer without so labeling it.

g) Now solve for the total energy per unit space volume E of the ground state for electron density ne.
Also find Eave the average energy of the electrons. Don’t bother to expand EF using the expressions
from the part (e) answer. The formulae for this answer are long enough as it is. Just do the general
dimensional case for E , but show all the dimensional cases explicitly for Eave.

SUGGESTED ANSWER:

a) The multi-particle time-independent Schrödinger equation for the free electron gas model is

Hψ =
∑

j

Hjψ = Eψ ,

where

Hj = − h−2

2m
∇2

j

and the sum is over all particles. The equation is obviously separable. We let

ψ(~r j) =
∏

j

ψj(~rj)

and we find
∑

j

Hjψj

ψj
= E .

If we take the derivative of the last equation with respect to general xj′ where j′ is one
of the indexes j, all terms that do NOT depend on xj′ are zero explicitly and the term that
does depend on xj′ must equal zero too since everything else in the derivative is zero. The
same is true for yj and zj . We conclude that all terms in the last equation are constants with
respect to the spatial coordinates. We can obviously define the constants of separation as the
individual particle energies Ej .

The multi-particle Schrödinger equation now separates into single-particle Schrödinger
equations. Since the particles are identical, all these equations are identical aside from particle
label. These equations are

Hjψj = Ejψj .

We can separate the single-particle Schrödinger equation into single-dimension Schrödinger
equations. The procedure is the same as that given above mutatis mutandis, and we get

− h−2

2m

∂2ψ

∂x2
= Eψ ,

for the x dimension, where we have suppressed the particle label since it is no longer needed.
All the other direction have the same single-dimension Schrödinger equations aside from the
coordinate label. Thus, we only need to solve for the x dimension and the other dimension
solutions are identical aside from coordinate label.
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We rewrite the x dimension equation in the form

∂2ψ

∂x2
= κ2ψ ,

where we define

κ =

√

2m(−E)

h−2 .

The general solution for a given E 6= 0 is

ψ = Aeκx +Be−κx .

To satisfy the periodic boundary conditions, we demand that

A+B = AeκL1 +Be−κL1 and A−B = AeκL1 − Be−κL1 .

Adding and subtracting these expressions gives

A = AeκL1 and B = Be−κL1 .

If E < 0, the boundary conditions cannot be satisfied, unless A = B = 0 which is an
unnormalizable solution. So there are no physical solutions for E < 0. If E > 0, let κ = ik,
where

k =

√

2mE

h−2 .

Now the boundary conditions imply

A = AeikL1 and B = Be−ikL1 .

These can only be satified if
kL1 = 2πn ,

where n = 1, 2, 3, . . . . If E = 0, the general solution is

ψ = A+Bx .

The constant solution can match the periodic boundary solutions and is allowed, but the linear
solution cannot and is not.

We can write all allowed solutions compactly if let k be positive or negative or zero and
be quantized by

kL = 2πn or k =
2π

L
n ,

where n = 0,±1,±2,±3, . . . and

E =
h−2
k2

2m
.

The general k solution is then
ψ = Aeikx .

The general solution for a given energy E is

ψ = Aei|k|x +Be−i|k|x .

The energy solutions are doubly degenerate. In fact, the general k solution is more useful
form since it is the most elementary single-particle states that are useful in constructing or
considering the overall symmetrized state. Also the two energy degenerate states are not
degenerate for wavenumber and momentum (which are the same thing). They are different
eigen-states of the wavenumber observable and momentum observable: i.e.,

1

i

∂

∂x
and

h−
i

∂

∂x
.
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These observables are actually the same observable aside from the coefficient h−. The
eigenvalues are wavenumbers k and momenta h−k. Clearly, the states are not degenerate for
k and h−k. So particle in a mixed state can be collapsed to one of them by a measurement of
wavenumber or momentum.

Note that the periodic boundary conditions on the stationary states enforces quantization
of k and therefore of E. Note also our solutions are infinitely differentiable everywhere, and
thus everywhere satisfy the continuity conditions required of wave functions.

The normalization requirement determines A. We find

1 = |A|2
∫ L1

0

|eikx|2 dx = |A|2L1 .

In general we could chose A = eiφ/L1/2 where φ is some real number. The phase factor eiφ is
just a global phase factor. Global phase factors are physically irrelevant: wave functions that
differ by different phases are NOT physically distinct.

Thus, the general wave function for 1-dimension is

ψ =
1

L
1/2
1

eikx .

The overall single-particle wave function is

ψ(~r ) =
1√
V
e
∑

i
ikixi =

1√
V
ei~ki·~r ,

where V is the volume any number of dimensions of the rectangular box we used the subscripts
1, 2, and 3 to label the three dimensions, and ~k is the wavenumber vector of the k state. The
quantization rules for the ki and energy are, respectively,

kiLi = 2πni or ki =
2π

Li
ni

and

E =
h−2

2m
(2π)

2
∑

i

(

ni

Li

)2

,

where
ni = 0,±1,±2,±3, . . . .

b) Well

∆ki =
2π

Li
∆ni =

2π

Li

for ∆ni = 1. Thus, the volume per k state in k-space is

Vk =
(2π)ℓ

V
,

where recall V is the rectangular box volume.
The average density of the k states in k space is

ρk =
1

Vk
=

V

(2π)ℓ
.

c) The number of states in differential shell of radius k and thickness dk is

dNk =
gf

(2π)ℓ
kℓ−1 dk ,

where g = 2 is the spin degeneracy and where

f =

{

2 for ℓ = 1;
2π for ℓ = 2;
4π for ℓ = 3.



6

d) Behold:

ne =

∫ kF

0

gf

(2π)ℓ
kℓ−1 dk =

gf

(2π)ℓ

kℓ
F

ℓ
.

Inverting, we find the Fermi wavenumber to be

kF =



























































[

(2π)ℓℓ

gf

]1/ℓ

n1/ℓ
e in general;

(

2

g

)

(π

2

)

ne for ℓ = 1;

[(

2

g

)

(2π)

]1/2

n1/2
e for ℓ = 2;

[(

2

g

)

(3π2)

]1/3

n1/3
e for ℓ = 3.

e) Since

EF =
h−2
k2

F

2m
,

we find

EF =
h−2

2m



























































[

(2π)ℓℓ

gf

]1/ℓ

n2/ℓ
e in general;

[(

2

g

)

(π

2

)

]2

n2
e for ℓ = 1;

[(

2

g

)

(2π)

]

ne for ℓ = 2;

[(

2

g

)

(3π2)

]2/3

n2/3
e for ℓ = 3.

f) Well

ρE = ρk shell
dk

dE
, k =

√

2mE

h−2 ,
dk

dE
=

√

2m

h−2

1

2

1√
E
.

Thus

ρE =

(

2m

h−2

)ℓ/2
gf

(2π)ℓ

1

2
Eℓ/2−1 .

A curious point is that the density of states with respect to energy for ℓ = 1 diverges as
E → 0. But there is no divergence for the ρk shell as k → 0 for ℓ = 1 and the integral of the
density of states with respect to energy is finite. So it looks like we’ve skirted a bad event that
would be a failure of the continuum approximation. The bad event being a divergence in the
number of states integrated to finite energy.

g) Well

E =

∫ EF

0

EρE dE =

∫ EF

0

E

(

2m

h−2

)ℓ/2
gf

(2π)ℓ

1

2
Eℓ/2−1 dE

=

∫ EF

0

(

2m

h−2

)ℓ/2
gf

(2π)ℓ

1

2
Eℓ/2 dE

=

(

2m

h−2

)ℓ/2
gf

(2π)ℓ

1

2

1

ℓ/2 + 1
Eℓ/2+1 .

Now

ne =
gf

(2π)ℓ

kℓ
F

ℓ
=

gf

(2π)ℓ

1

ℓ

(

2m

h−2

)ℓ/2

E
ℓ/2
F .
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and thus

Eave =
E
ne

=











































ℓ

ℓ+ 2
EF in general;

1

3
EF for ℓ = 1;

1

2
EF for ℓ = 2;

3

5
EF for ℓ = 3.

FINAL NOTE: In the part (a) answer we ruled out solutions with E < 0.
We can offer two proofs there. We can give another proof—which is overkill—but 2nd proof

illustrate interesting aspects.
First, there is a simple proof in quantum mechanics that all eigen-energies and expectation

value energies are greater than Vmin which is the mininum potential in the system. We will only do
the proof for 1-dimensional systems with one particle since that gives the flavor, is hard enough,
and all we need in this question.

We will consider the expectation value for energy for generl state |Ψ〉 (which includes the
time dependence in general) which is defined on the range [a, b] At the endpoints continuity or
normalization requires Ψ(x, t) = 0 unless periodic boundary conditions are imposed. Behold:

〈Ψ|H |Ψ〉 =

∫ b

a

Ψ∗HΨ dx =

∫ b

a

Ψ∗TΨ dx+

∫ b

a

Ψ∗VΨ dx

≥
∫ b

a

Ψ∗TΨ dx+

∫ b

a

Ψ∗VminΨ dx

≥
∫ b

a

Ψ∗TΨ dx+ Vmin

≥
∫ b

a

Ψ∗TΨ dx+ Vmin

≥ − h−2

2m

∫ b

a

Ψ∗

(

∂2

∂x2

)

Ψ dx+ Vmin

≥ − h−2

2m

(

Ψ∗ ∂Ψ

∂x
−
∫ b

a

∂Ψ∗

∂x

∂Ψ

∂x
dx

)

+ Vmin

≥ h−2

2m

∫ b

a

∂Ψ∗

∂x

∂Ψ

∂x
dx + Vmin ,

where the boundary terms vanish either because Ψ(x, t) = 0 there or because we impose periodic
boundary conditions.

If we don’t impose periodic boundary conditions, Ψ(x, t) must have some curvature since it
must be non-zero someplace to be normalizable and zero at the boundaries. This means

∫ b

a

∂Ψ∗

∂x

∂Ψ

∂x
dx > 0

which implies
〈Ψ|H |Ψ〉 > Vmin .

Since |Ψ〉 is general, it could be a stationary state. Thus,

E > Vmin ,

where E is a general eigen-energy.
If we do impose periodic boundary conditions, then a constant Ψ(x, t) is allowed for which

∫ b

a

∂Ψ∗

∂x

∂Ψ

∂x
dx = 0 .
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So for periodic boundary conditions, we have only

〈Ψ|H |Ψ〉 ≥ Vmin .

Since |Ψ〉 is general, it could be a stationary state. Thus,

E = Vmin ,

where E is a general eigen-energy.
Periodic boundary conditions really can occur for closed ring systems. But periodic boundary

conditions are often chosen as ideal boundary conditions for large systems. A periodic system with
a flat potential can have an E = Vmin solution which is constant. A linear solution also exists for
E = Vmin from the Schrödinger equation, but it can’t meet the periodic boundary conditions, and
so is ruled out.

Redaction: Jeffery, 2001jan01

022 qfull 00110 1 3 0 easy math: free electron gas formulae and fiducial formulae
5. For a free electron gas (in 3 dimensions) at abolute zero temperature, the Fermi energy is given by

EF =
h−2

2m

[(

2

g

)

(3π2)ne

]2/3

,

where h− is Planck constant divided by 2π, m is the electron mass, g = 2 is the spin 1/2 particle
degeneracy, and

ne =
N

V

is the free electron density with N being the number of electrons and V being the sample volume. The
average energy per electron Eave is given by

Eave =
3

5
EF .

For this question, you will need the following constants,

e = 1.602176487(40)× 10−19 C ,

m = 9.10938215(45)× 10−31 kg ,

mc2 = 510998.910 eV ,

kB = 1.3806504(24)× 10−23 J/K ,

h− = 1.054571628(53)× 10−34 J, s ,

mamu = 1.660538782(83)× 10−27 kg .

a) Free electron density can be expressed in terms of ordinary density (AKA mass density) ρ by

ne =
ρ

mamu

∑

i

XiZi

Ai
,

where the sum is over all atoms in the sample, Xi is the mass fraction of atom i, Zi is the number
of free electrons per atom for atom i, and Ai is the atomic weight of atom i. Convince yourself that
this formula makes sense. Actually the formula can be simplified by introducing the mean mass
per electron µe defined by

1

µe
=
∑

i

XiZi

Ai
.

Take 1000 kg/m3 as a fiducial value for ρ (which is just like writing density in grams per cubic
centimeter). Take 50 as a fiducial value for µe: this is like an element in the atomic weight vicinity
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of iron with one valence electron delocalized. Now write ne in terms of fiducial values: i.e., find the
coefficient in the formula expression

ne = coefficient × ρ

1000 kg/m3

50

µe
,

The coefficient is a fiducial electron density.

b) Now find the formula for EF in terms of fiducial values both for joules and electronvolts: i.e., find
the coefficient in the formula

EF = coefficient ×
[(

2

g

)

ρ

1000 kg/m3

50

µe

]2/3

.

The coefficient is a fiducial Fermi energy. Are solids in human environments relativistic?

c) Now find the formula for the Fermi temperature TF = EF /kB in terms of fiducial values both
for joules and electronvolts. The coefficient is a fiducial Fermi temperature. Are solids in human
environments hot or cold in comparison to the Fermi temperature?

d) Now find the formula for the Fermi velocity vF =
√

2EF /m (which is the non-relativistic formula)
in terms of fiducial values. The coefficient is a fiducial Fermi velocity.

e) From classical thermodynamics, we know that pressure

P = −
(

∂E

∂V

)

S,N

where E is the sample internal energy, V is the sample volume, S is the sample entropy, N is the
sample particle number, and the subscript S,N indicates the partial derivative is taken with entropy
and particle number held constant. Since a free electron gas is confined by a confining potential, it
must exert a counter potential on entities that confine it. In fact, by the correspondence principle of
quantum mechanics, this counter potential can be assumed at the macroscopic level to a free electron
gas pressure. The energy of the free electron gas is identifiable with the classical internal energy.
Thus, we expect that a free electron gas exhibits a pressure derivable from the classical expression.
Observation shows that this expectation is fulfilled. The pressure is called the degeneracy pressure,
and its equation of state (i.e., pressure formula) is quite unlike that for an ideal gas. Derive the
zero-temperature free-electron-gas pressure formula as a function of ne. Then find the pressure
formula in terms of fiducial values. HINT: The total energy of a sample is NEave.

f) The bulk modulus of a material is a measure of its incompressibility or stiffness. The definition is

B = −V
(

∂P

∂V

)

X

= ρ

(

∂P

∂ρ

)

X

where one assumes a constant mass and X stands for the thermodynamic variable held constant,
either temperature or entropy (which can be held constant by adiabatic conditions). For ordinary
solids and liquids, the difference between constant temperature and constant entropy is usually
negligible. For a free electron gas at zero temperature, there is no difference.

The bulk modulus is actually a characteristic pressure for signficant volume or density change
under a change pressure as can be seen by writing formula in the differential form

−dV
V

=
dρ

ρ
=
dP

B
.

If B were a constant (which it is not in any real case), then B would be the e-folding pressure: i.e.,
the pressure change required to change volume or density by a factor of e. The bigger the bulk
modulus, the stiffer the substance.

Find the bulk modulus formula for the zero-tempature free electron gas. Then find the bulk
modulus formula in terms of fiducial values.

SUGGESTED ANSWER:
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a) Behold:

ne =
ρ

mamu

∑

i

XiZi

Ai
,

= 1.204 . . .× 1028m−3 × ρ

1000 kg/m3

50

µe
.

b) Behod—er Behold:

EF =
h−2

2m

[(

2

g

)

(3π2)ne

]2/3

= 3.06973 . . .× 10−19 J ×
[(

2

g

)

ρ

1000 kg/m3

50

µe

]2/3

= 1.91597958 . . . eV ×
[(

2

g

)

ρ

1000 kg/m3

50

µe

]2/3

.

Since
EF (fiducial)

mc2
= 3.749× 10−6 ,

we can see that ordinary solids in the human environment are very non-relativistic.

c) Behold:

TF =
h−2

2mkB

[(

2

g

)

(3π2)ne

]2/3

= 2.223 × 104 K ×
[(

2

g

)

ρ

1000 kg/m3

50

µe

]2/3

.

Human environment temperatures are very cold compared to the Fermi temperature.
This is a clue that the electrons in solids are at near absolute zero in a sense. The Maxwell-
Boltzmann distribution of classical statistical mechanics and of quantum statistical mechanics
for distinct particles suggests that excitations from a ground state should be of order kBT .
This also suggests that electrons in solids are at near absolute zero and that our T = 0 results
approximately apply to them. But to know this for sure, one would need to do corrections
finite temperature. Such corrections are small for human environment temperatures, and so
confirm our guess that ordinary solids are nearly at absolute zero in a sense.

d) Behold:

vF =

√

2EF

m

=

√

2

m

h−2

2m

[(

2

g

)

(3π2)ne

]1/3

= 8.20958 . . .× 105 m/s ×
[(

2

g

)

ρ

1000 kg/m3

50

µe

]1/3

,

Fermi velocities for ordinary solids at human environment temperatures are, in fact, of order
106 m/s. They are very high, but not relativistic since 106 m/s << c. The Fermi speed
parameter βF = vF /c ≈ 3×10−3. Relativistic corrections of order β or β2, and so we conclude
again that ordinary solids in the human environment are very non-relativistic.

e) Since ne = M/V , we have

V =
M

ne
and dV = −M

n2
e

dne .
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First note that since our electron gas formulae are all for T = 0, we can assume that any
variation in their explicit parameters are with entropy held constant. We explicitly will hold
N constant. Now

P = −
(

∂E

∂V

)

S,N

= −
(

∂NEave

∂V

)

S,N

= −3

5
N

(

∂EF

∂V

)

S,N

= −3

5
N

(

∂EF

∂ne

)

S,N

(

∂ne

∂V

)

S,N

= −3

5
N

(

2

3

EF

ne

)

(

− ne

V 2

)

=
2

5
EFne

=
h−2

2m

(

2

5

)[(

2

g

)

(3π2)

]2/3

n5/3
e

Thus, we find

P =
h−2

2m

(

2

5

)[(

2

g

)

(3π2)

]2/3

n5/3
e

= 1.47891 . . .× 109 Pa ×
(

2

g

)2/3 (
ρ

1000 kg/m3

50

µe

)5/3

.

f) Begorra:

B = ρ

(

∂P

∂ρ

)

S

= ne

(

∂P

∂ne

)

S

=
5

3
P .

Thus,

B =
h−2

2m

(

2

3

)[(

2

g

)

(3π2)

]2/3

n5/3
e

= 2.46485× 109 Pa ×
(

2

g

)2/3(
ρ

1000 kg/m3

50

µe

)5/3

.

Fortran-95 Code
pi_con=acos(-1.d0)

emks=1.602176487d-19

xmemks=9.10938215d-31

xmeev=510998.910d0

hbarmks=1.054571628d-34

amumks=1.660538782d-27

xkmks=1.3806504d-23

xmuefid=50.d0

rhofid=1000.d0

ggfid=2.d0

con=hbarmks**2/(2.d0*xmemks)

rhoefid=rhofid/(amumks*xmuefid)

efid=con*( (2.d0/ggfid)*(3.d0*pi_con**2*rhoefid) )**(2.d0/3.d0)

efidev=efid/emks

re=efidev/xmeev

tfid=efid/xkmks

vfid=sqrt(2*efid/xmemks)

pfid=.4d0*con*( (2.d0/ggfid)*(3.d0*pi_con**2) )**(2.d0/3.d0)

&

& *rhoefid**(5.d0/3.d0)

bfid=(5.d0/3.d0)*pfid

print*,’con,rhoefid,efid’

print*,con,rhoefid,efid

! 6.104263166643912E-039 1.204428358843353E+028 3.069737435446141E-019

print*,’efidev,re,tfid’

print*,efidev,re,tfid
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! 1.91597958174638 3.749478803675683E-006 22233.9951912964

print*,’vfid,pfid,bfid’

print*,vfid,pfid,bfid

! 820958.402523807 1478911528.58177 2464852547.63628

Redaction: Jeffery, 2008jan01

022 qfull 00200 2 5 0 moderate thinking: Fermi energies for free electron gas metals
Extra keywords: (Ha-324:2.3) volumes per atom 39.3, 23.0, 16.6 in A**3

6. The metals Na, Mg, and Al have, respectively 1, 2, and 3 free electrons per atom, standard atomic
masses 22.98976928, 24.3050, and 26.9815386, and, under ordinary pressure and temperature, densities
0.968 g/cm3, 1.738 g/cm3, and 2.70 g/cm3. What is the Fermi energy of these metals in electronvolts?
Recall

EF =
h−2

2m

[(

2

g

)

(3π2)ne

]2/3

= 3.06973 . . .× 10−19 J ×
[(

2

g

)

ρ

1000 kg/m3

50

µe

]2/3

= 1.91597958 . . . eV ×
[(

2

g

)

ρ

1000 kg/m3

50

µe

]2/3

,

where density is in MKS units.

SUGGESTED ANSWER:

I did this the easy way. I just plugged the numbers into a short fortran code. I used CGS units
in the code. For Na, Mg, and Al, I got respectively, 3.14 eV, 7.11 eV, and 11.7 eV.

Fortran 95 Code
print*

!

third=2.d0/3.d0

pi=acos(-1.d0)

amu=1.66053886d-24, !

Atomic mass unit.

boltzmann=1.3806505d-16, !

Boltzmann’s constant.

boltzmannev=8.617343d-5 , !

Boltzmann’s constant in eV.

echarge=1.60217653d-19, !

elementary charge in MKS.

emass=9.1093826d-28, !

Electron mass.

!

con1=planckbar**2/(2.d0*emass)*(1.d0/amu)**third2

con2=(pi**2*3.d0)**third2

cone=con1*con2

coneev=cone*(1.d0/(echarge*1.d7)) ! Fermi energy constant in ev

cont=coneev/boltzmannev ! Fermi temperature constant in eV

conp=cone*(1.d0/amu)*.4d0

conpmks=conp*(1.d-5*1.d+4) ! But density still CGS

conb=cone*(1.d0/amu)*third2

conbmks=conb*(1.d-5*1.d+4) ! But density still CGS

conw=2.d0*pi*(amu/(3.d0*pi**2))**third

write(*,*),’cone,coneev,cont,conp,conpmks’

write(*,936),cone,coneev,cont,conp,conpmks

print*,’conb,conbmks,conw’

write(*,936),conb,conbmks,conw

coneevcu=coneev*(8.94d0/(63.546d0/1.d0))**third2
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contcu=cont*(8.94d0/(63.546d0/1.d0))**third2

conpcu=conp*(8.94d0/(63.546d0/1.d0))**(5.d0/3.d0)

conbcu=conb*(8.94d0/(63.546d0/1.d0))**(5.d0/3.d0)

conwcu=conw*((63.546d0/1.d0)/8.94d0)**third

print*,’For copper’

print*,’coneevcu,contcu,conpcu,conbcu,conwcu’

write(*,936),coneevcu,contcu,conpcu,conbcu,conwcu

! For Na,Mg,Al

ena=coneev*(0.968d0/(22.98976928d0/1.d0))**third2

emg=coneev*(1.738d0/(24.3050/2.d0))**third2

eal=coneev*(2.70d0/(26.9815386/3.d0))**third2

print*,’ena,emg,eal’

write(*,936) ena,emg,eal

936 format(5e15.6)

Redaction: Jeffery, 2001jan01

022 qfull 00210 1 3 0 easy math: free electron gas pressure
7. The pressure of a free electron gas (in three dimensions) is given by

P =
2

3
E =

h−2

2m

[

3π2

(

2

g

)]2/3
2

5

(

ρ

µemamu

)5/3

,

where E is the energy per unit volume and g = 2 for electron spin degeneracy. This result can be derived
by using the classical 1st law of thermodynamics for T = 0 to relate P and E interpreted as the classical
internal energy per unit volume. But it can also be derived from kinematics argument.

First note that a standing wave free electron eigenstate for one dimension of a infinite square well
of length ℓ and wave number k

ψ =

√

2

ℓ
sin(kx)

can be written as a superposition of oppositely traveling traveling wave states

ψ =
1√
2

(

√

1

ℓ
eikx −

√

1

ℓ
e−ikx

)

,

where have used the complex number definition of the sine function and dropped the global phase factor
1/i since it is physically irrelevant. Following the paradigm of quantum mechanics, it seems plausible
to treat the standing wave state as literally a superposition of traveling wave states. One can generalize
this idea to three dimensions. The traveling wave states can be thought of as continuously bouncing
elastically off the walls of a 3-dimensional infinite square well and having their momentum component
normal to wall inverted in the bounce. During the bounce, some kinetic energy becomes potential
energy for a brief time. Perhaps, in real metals wave packets that are strongly peaked about stationary
state ~k values are actually doing this. Textbooks grow coy on this point. But in any case, a classical
interpretation of the traveling waves as particles bouncing off the walls of 3-dimensional infinite square
well potential leads to the correct pressure result. One just says that the energy density of states per
unit volume for E ≤ EF

ρE =

(

2m

h−2

)3/2
g

2

1

4π2
E−1/2

is the density of classical particles in energy space per unit volume up to EF and uses that density to
calculate the pressure the particles exert.

Let’s do the calculation.

a) If a (classical) particle of momentum magnitude p bounces elastically off a wall at an angel θ relative
to the normal to the wall, what momentum is transferred to the wall in the normal direction? at
angle

b) If you have a density of particles per unit (kinetic) energy per unit volume of ρE and the particle
distribution in angle is isotropic, what is the density of particles per unit energy per unit volume
per unit solid angle?
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c) What is the flux of particles in per unit energy per unit area per unit solid angle?

d) What is the momemtum flux normal to the wall per unit area per unit energy per unit solid angle on
the wall? Remember for a beam of particles coming in at angle to the wall of θ that cross-sectional
area for the beam is cos θ dA, where dA is the area of wall the beam impinges on. For example, the
cross-sectional area is θ = π/2 is zero. A diagram might help you understand this cross-sectional
area result.

e) Integrate the result from the part (d) answer over 2π solid angle about the normal to the wall
and over all energy up the Fermi energy EF to get the formula for the free electron gas pressure.
Express the formula in terms of E .

SUGGESTED ANSWER:

a) Well 2p cos θ.

b) Well ρE/(4π).

c) Well vρE/(4π), where v is the particle velocity.

d) Well

2p cos(θ)v
ρE

4π
cos θ = 4E cos2

ρE

4π
.

e) Behold:

P = 2π

∫ π/2

0

∫ EF

0

4E cos2
ρE

4π
dE sin θ dθ = 2

∫ 1

0

µ2 dµ

∫ EF

0

EρE dE

=
2

3
E ,

where we have used the transformation µ = cos θ. We find

P =
2

3
E

which is exactly the pressure result we found using the 1st law of thermodynamics.

Redaction: Jeffery, 2008jan01

023 qfull 00140 1 3 0 easy math: the MB FD BE distributions derived
8. Consider a system consisting of quantized single-particle states and fixed total number of particles N

and fixed total energy E. We make the approximation that particles can occupy only one single-particle
state at time: i.e., they are not in superpositions of single-particle states. The overall microscopic state
of the system is set by specifying arrangement of the particles in the single-particle states. Note that
exchanging distinct particles changes the microscopic state and exchanging identical particles does not.

The set of single-particle states of the same energy Ei can be called an energy level—a term which
is used in different ways in different contexts. The number of single-particle states in an energy level i
is the energy level degeneracy gi. A configuration is the set of occupation numbers {Ni} for the energy
levels of the system. The statistical weight W of a configuration is the number of distinct microscopic
states that correspond to that configuration.

The fundamental axiom of statistical mechanics is that in thermodynamic equilibrium all the
microscopic states are equally probable. Thermodynamic equilibrium for a system occurs when the
system is not changing thermodynamically with time at the macroscopic level. In thermodynamic
equilibrium, the initial conditions of the system no longer determine its macroscopic behavior and their
signature in the system has been effectively erased.

The fundamental axiom implies that probability distribution for the configuration is just the
normalized statistical weights and the most probable configuration is the one with the largest statistical
weight. It turns out the probability distribution given by the statistical weights is extremely peaked
around the most probable configuration for systems of macroscopically large numbers of particles. The
macroscopic thermodynamic equilibrium state is essentially this most probable configuration. The
natural logarithm the statistical weight times Boltzmann’s constant k identified with the classical entropy
which maximizes for thermodynamic equilibrium. Thus we have

S = k ln(W ) .
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a) The statistical weight for the configuration for a system with distinct particles is

W = N !
∏

i

gNi

i

Ni!
.

Solve for the set of Ni that maximize the statistical weight subject to the constraints

N =
∑

i

Ni , E =
∑

i

NiEi , Ni ≥ 0 .

For conventional reasons, the Lagrange multiplier for the particle number constraint should be label
α and that for the energy constraint β. Use appropriate approximations to get a simple analytic
formula for a maximizing Ni in which the degeneracy gi occurs only as a leading coefficient. What
is the function with the degeneracy factor suppressed and what is it called?

b) The statistical weight for the configuration for a system with identical fermions is

W =
∏

i

(

gi

Ni

)

.

Repeat the requirements from part (a) for this statistical weight.

c) The statistical weight for the configuration for a system with identical bosons is

W =
∏

i

(

gi − 1 +Ni

Ni

)

.

Repeat the requirements from part (a) for this statistical weight.

d) The lagrange multiplier function has an uncontrained stationary point at the maximizing values of
Ni. This fact along with the 1st law of classical thermodynamics

dE = T dS − µdN

for the case of fixed volume but variable entropy and particle number (T being temperature and µ
being the chemical potential) and the identificiation of entropy allows α and β to be determined in
terms of classical thermodynamics variables. Make the determinations.

SUGGESTED ANSWER:

a) It is better and conventional to find maximizing Ni for the natural logarithm of W (i.e., for
the entropy) rather than W itself. We define

h = ln(W ) + α

(

∑

i

Ni −N

)

+ β

(

∑

i

NiEi − E

)

,

where α and β are Lagrange multipliers used handle the equality constraints. The inequality
constraint cannot be built into the solution procedure, but can only be used to test the
consistency of the result and help eliminate unphysical results. We make the approximation
that the Ni are continuous variables in making use of Lagrange multipliers.

Stationary points of h with respect to Nj in the range [Nj , Nj−1] determined by the
requirement

0 = h(Nj) − h(Nj − 1) .

In fact, we find only one finite, non-zero Nj value satisfying this requirement, and so all
stationary points lie in the range. Since the Ni are actually integers there can be only one
real stationary point in the range [Nj , Nj−1], and there is no reason to believe the continuum
approximation generates others. Even if there are multiple stationary points in the continuum
approximation, they are all the same value to within our error. Our best estimate of the
maximizing value in the continuum approximation is

Nj −
1

2
.
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However the actual maximizing value must be an integer, and we judge our best estimate to
be

int(Nj) ,

where int is the function that truncates a real number to the next lowest integer or the real
number itself if it is an integer. Our Nj value turns out to be positive, and so the int function
builds in the constraint that Ni ≥ 0.

We prefer the just outlined procedure for finding the stationary point to using Stirling’s
approximation for the factorial functions since that approximation fails for factorial function
arguments less than about 2. It’s also simpler I think.

Now

0 = h(Nj) − h(Nj − 1) = 0 + ln(gj) − ln(Nj) + α+ βEj

Nj = gje
α+βEj

Nj,stationary = int(gje
α+βEj) .

The formula for maximizing occupation numbers just displayed is useful in showing the good
approximation when gje

α+βEj is a small number of order a few or less. But the int function is
analytically intractable and the improvement it gives is not needed for large gje

α+βEj values
which turn out to be the overwhelmingly important cases in most cases. Thus, the most useful
formula for the maximizing occupation numbers is

Ni = gie
α+βE ,

where for simplicity we use the index i and make no explicit indication that the Ni are the
maximizing values: context tells us when they are maximizing.

If one suppresses the degeneracy factors which are system dependent and the index i which
can implicit for discrete states and is unneeded in the continuous states approximation, one
obtains

f = eα+βEi

which is called the Maxwell-Boltzmann distribution.

b) We do everything that we did in the part (a) answer, mutatis mutandis. Now

0 = h(Nj) − h(Nj − 1) = 0 − {ln[(gj −Nj)!] − ln[(gj − (Nj − 1))!]}
− {ln(Nj !) − ln[(Nj − 1)!]} + α+ βEj

0 = ln(gj −Nj + 1) − ln(Nj) + α+ βEj

ln

(

Nj

gj −Nj + 1

)

= α+ βEj

Nj

gj −Nj + 1
= eα+βEj

Nj =
gj + 1

e−(α+βEj) + 1

Nj,stationary = int

(

gj + 1

e−(α+βEj) + 1

)

.

The formula for maximizing occupation numbers just displayed is useful in showing the good
approximation when gj/[e

−(α+βEj) + 1] is a small number of order a few or less. But the
int function is analytically intractable and the improvement it gives is not needed for large
gj/[e

−(α+βEj) + 1] values which turn out to be the overwhelmingly important cases in most
cases. Thus, the most useful formula for the maximizing occupation numbers is

Ni =
gi

e−(α+βEi) + 1
,

where for simplicity we use the index i and make no explicit indication that the Ni are the
maximizing values: context tells us when they are maximizing.
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If one suppresses the degeneracy factors which are system dependent and the index i which
can implicit for discrete states and is unneeded in the continuous states approximation, one
obtains

f =
gi

e−(α+βE) + 1

which is called the Fermi-Dirac distribution. We note that in the limit that e−(α+βEi) >> 1
the Fermi-Dirac distribution approaches the Maxwell-Boltzmann distribution.

c) We do everything that we did in the part (a) answer, mutatis mutandis. Now

0 = h(Nj) − h(Nj − 1) = {ln[(gj − 1 +Nj)!] − ln[(gj − 1 + (Nj − 1))!]}
− {ln(Nj!) − ln[(Nj − 1)!]} + α+ βEj

0 = ln(gj − 1 +Nj) − ln(Nj) + α+ βEj

ln

(

Nj

gj − 1 +Nj

)

= α+ βEj

Nj

gj − 1 +Nj
= eα+βEj

Nj =
gj − 1

e−(α+βEj) − 1

Nj,stationary = int

(

gj − 1

e−(α+βEj) − 1

)

.

The formula for maximizing occupation numbers just displayed is useful in showing the good
approximation when gj/[e

−(α+βEj) − 1] is a small number of order a few or less. But the
int function is analytically intractable and the improvement it gives is not needed for large
gj/[e

−(α+βEj) − 1] values which turn out to be the overwhelmingly important cases in most
cases. Thus, the most useful formula for the maximizing occupation numbers is

Ni =
gi

e−(α+βEi) − 1
,

where for simplicity we use the index i and make no explicit indication that the Ni are the
maximizing values: context tells us when they are maximizing.

If one suppresses the degeneracy factors which are system dependent and the index i which
can implicit for discrete states and is unneeded in the continuous states approximation, one
obtains

f =
gi

e−(α+βE) − 1

which is called the Bose-Einstein distribution. We note that in the limit that e−(α+βEi) >> 1
the Bose-Einstein distribution approaches the Maxwell-Boltzmann distribution.

d) On general path in the space of the occupation numbers N(t) (where t is a path parameter)
through the constrained stationary point for ln(W ), the h function has an uncontrained
statationary point. Therefore,

0 =
dh

dt
=
d ln(W )

dt
+ α

dN

dt
+ β

dE

dt
,

where for notational convenienceN and E are now the unconstrained values of the total particle
number and energy. The constrained total particle number Ncon and Econ are constants and
vanish in the differentiation with respect to t. By a usual convention of thermodynamics, we
suppress the dt and write the last expression as a differential expression with it being implicit
that the differentials stand for derivatives with respect to the path parameter of the general
path. Thus, we have

0 = d ln(W ) + αdN + β dE .

Using the entropy identification, this last expression becomes

0 = dS + kα dN + kβ dE
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which rearranges to

dE = − 1

kβ
dS − α

β
dN .

From the classical 1st law of thermodynamics, we now see that

T = − 1

kβ
and µ = kTα ,

and thus that

β = − 1

kT
and α =

µ

kT
.

Redaction: Jeffery, 2008jan01

023 qfull 00440 1 3 0 easy math: photon gas the full story
9. Photons in thermodynamic equilibrium with some container or with some gas of massive particles can be

thought as a photon gas obeying Bose-Einstein statistics. Photons are extreme relativistic particles, but
nevertheless the simple formalism for the statistical mechanics of non-relativistic systems still applies
with some modifications:

1) The energies of quantized single-particle states are related to the momentum, frequency, wavelength,
and wavenumber of the state by

E = pc = hν =
hc

λ
= h−ck .

Note that above expression embodies the de Broglie formula p = h/λ which de Broglie took from
photons and applied to massive particles—but with the difference that massive particles in the
non-relativistic limit relate kinetic energy to momentum by E = p2/(2m).

2) Photons are spin-1 bosons, but for some reason only the m = ±1 states are allowed. Thus, the each
spatial quantized single state has a degeneracy of g = 2.

3) The number of photons is not conserved. The unspecified processes that transform one overall
microscopic quantum state to another can create and destroy photons. Thus, photon gas will relax
to a maximum entropy state with no constraint on total photon number. This means that the
Lagrange multiplier α = µ/kT is zero.

a) Given that periodic boundary conditions for a 3-dimensional infinite well rectangular box and ℓ for
the length of a general dimension, the wavenumber of single-particle states for this dimension is
quantized according to the rule

kℓ = 2πn , where n = 0,±1,±2,±3, . . . .

What is the density of states in phase space which is the product of k-space and space space? Do
not forget the internal degeneracy factor g.

b) Given the Bose-Einstein distribution

f =
1

e(E−µ)/(kT ) − 1

(where E is single-particle state energy, µ is chemical potential, and T is temperature), find the
formula for the energy density per unit frequency Eν for the thermodynamic equilibrium photon
gas. Note energy density per unit frequency, NOT photon number density per unit frequency.

c) In radiative transfer it is customary to work with specific intensity Bν rather than Eν . The specific
intensity is the energy flux (energy per unit area perpendicular to the direction of motion per unit
time) per unit frequency per unit solid angle. Find the formula for Bν .

d) Find the frequency integrated formula for Bν : i.e., find B. Note that the factorial function is

z! =

∫ ∞

0

tze−t dt =











z(z − 1)! for general complex z, except for z a negative integer;
±∞ for z a negative integer;
n! for n an integer with n ≥ 0;√
π for z = −1/2
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(Ar-453), that the Riemann zeta function defined as an infinite sum (convergent for Re(z) > 1) is

ζ(z) =

∞
∑

ℓ=1

1

ℓz
=































π2

6
for z = 2;

π4

90
for z = 4;

π8

945
for z = 6,

(Ar-282, 285) and that the Stefan-Boltzmann constant is

σ =
2π5

15

k4

h3c2
= 5.670400(40)× 10−8 W m−2 K−4 .

Also find the total energy per unit volume. Note that the radiation constant

a =
4σ

c
= 7.5657 × 10−16 J m−3 K−4 .

e) The energy flux from a surface emitting like an exact blackbody is given by

F =

∫

2π

B cos θ dΩ ,

where the integral is over 2π solid angle and we have assumed the z direction is the outward normal
direction from the surface. The cos θ factor decrease in area perpendicular to a beam through an
opening in the surface. For example, if θ = π/2, there would be no emission through the opening.
Evaluate the formula for F .

f) What is the formula for Bλ: i.e., the specific intensity as a function of wavelength rather than µ.
Note

Bλ dλ = Bν dν .

g) The Wein approximation (derived 1896) is the approximate formula for Bλ in the limit of small
wavelength. The Rayleigh-Jeans law (derived 1900–1905) is the approximate formula for Bλ in the
limit of large wavelength. Derive these two approximate formulae from the exact formula for Bλ

found in the part (f) answer.

h) What is an iteration formula for the maximizing point of functions of the form

f(x) =
xp

ex − 1
,

where p > 1? What is a good initial value x0 for the iteration and is the iteration guaranteed to
converge?

i) Find the formulae for the maximizing ν and λ values for, respectively, Bν and Bλ. You only need
to find the coefficients of formulae approximately, but if you are ambitious a small computer code
will allow you do find the coefficients to machine accuracy. Then give Wien’s law (AKA Wien’s
displacement law).

SUGGESTED ANSWER:

a) Well in k-space, the separation between state locations is

∆k =
2π

ℓ

Thus, the k-space cell volume surrounding each state is

Vk =
(2π)3

V
,
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where V is the space space volume of the rectangular box. This cell size result is actually true
for any shape of container for large k, but the proof is suavely omitted by textbooks. The
density of states in phase space is

ρk =
g

VkV
=

g

(2π)3
,

where g = 2 is the spin degeneracy factor.

b) Note for photons that

E = hν , µ = 0 , g = 2 , k =
2πν

c
, dk =

2π dν

c
.

Now

Eν dν = E

(

1

e(E−µ)/(kT ) − 1

)

g

(2π)3
4πk2 dk

= hν

(

1

ehν/(kT ) − 1

)

2

(2π)3
4π

(

2π

c

)3

ν2 dν

=
2(4π)hν3

c3
1

ehν/(kT ) − 1
dν ,

and thus

Eν =
2(4π)hν3

c3
1

ehν/(kT ) − 1
.

c) Well the energy per unit frequency per unit volume moving in a direction per unit solid angle
is

Eν

4π

assuming isotropic distribution of directional motions. To convert the last quantity into a flux,
we multiply by the speed of the particle which in the case of photons is c. Thus, we find.

Bν =
2hν3

c2
1

ehν/(kT ) − 1
.

d) Behold:

B =

∫ ∞

0

Bν dν =

∫ ∞

0

2hν3

c2
1

ehν/(kT ) − 1
ν2 dν

=
2

h3c2
(kT )4

∫ ∞

0

x3

ex − 1
dx =

2

h3c2
(kT )4

∫ ∞

0

x3e−x
∞
∑

ℓ=0

e−ℓx dx

=
2

h3c2
(kT )4

∞
∑

ℓ=0

∫ ∞

0

x3e−(ℓ+1)x dx =
2

h3c2
(kT )4

∞
∑

ℓ=1

∫ ∞

0

x3e−ℓx dx

=
2

h3c2
(kT )4

∞
∑

ℓ=1

1

ℓ

4

(3!) =
2

h3c2
(kT )4

π4

90
(3!)

=
2π4

15

k4

h3c2
T 4

=
σT 4

π
,

where we have the geometric series expansion

1

1 − r
=

∞
∑

ℓ=0

rℓ ,
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convergent for |r| < 1, (Ar-238) and the property of uniform convergence for infinite series in
order to interchange summation and integration (Ar-258). Thus,

B =
σT 4

π
and E =

4π

c
B =

4σ

c
T 4 = aT 4 ,

where we have found E by converting from a flux in a direction to a density.

e) Behold:

F =

∫

2π

B dΩ = 2π

∫ 1

0

Bµdµ = πB = σT 4 ,

where we have used the transformation µ = cos θ. We can see now why the awkward π is
conventionally left in the expression for B. So there is no awkward π in the expression for F .

f) Behold:

Bλ = Bν
dν

dλ
= Bν

c

λ2
=

2hc2

λ5

1

ehc/(λkT ) − 1
,

where we have suppressed the minus sign since it just indicates a reversal in the limits for
integration.

g) Behold:

Bλ =































2hc2

λ5

1

ehc/(λkT ) − 1
the exact Planck law;

2hc2

λ5
e−hc/(λkT ) the small wavelength Wien approximation;

2ckT

λ4
the large wavelength Rayleigh-Jeans law.

For the Wien approximation, we have assumed ehc/(λkT ) >> 1. For the Rayleigh-Jean’s law,
we expanded ehc/(λkT ) to 1st order in hc/(λkT ).

Wien’s own version of his formula must have looked a little different since in 1896 there
was no Planck’s constant. Perhaps he had a fitted parameter.

The Rayleigh-Jeans law was derived finally fully derived in 1905 which was already 5
years after Planck’s law was derived. Since Planck’s law gave an exact fit within error to the
blackbody spectra and gives the Rayleigh-Jeans law as the large wavelength limit, we may
wonder why the Rayleigh-Jeans law has any special status. Well it’s hard to know without an
exact history of the developments, but I think it was a case of Planck’s derivation (which is
quite unlike modern textbook ones) was complicated and not fully accepted and perhaps not
yet well known in 1905. The Rayleigh-Jeans derivation was purely classical—or at least seemed
to be—and had no Planck’s constant. As we see above, Planck’s constant cancels out in the
derivation. The Rayleigh-Jeans law had a problem though. Though it fits the long-wavelength
part of a blackbody spectrum well, it diverges to infinity as λ→ 0—which is not observed. This
problem was called the ultraviolet catastrophe by Ehrenfest in 1911—Catwoman would have
called it a Cat-astrophe. Of course, the solution was already available in Planck’s law although
getting the modern derivation may have taken some more time. The necessary symmetrization
principle and Bose-Einstein statistics not being found until the 1920s.

h) First note that

f(x) =
xp

ex − 1
=
{

0 for x→ ∞;
xp−1 for x << 1.

where p > 1. This shows that f(x) goes to zero at x = 0 and x = ∞. Since f(x) ≥ 0 for the
range [0,∞], it is clear that it must have at least one maximum in this range. Now

df

dx
=
pxp−1

ex − 1
− xpex

(ex − 1)2
=

xp−1ex

(ex − 1)2
[p(1 − e−x) − x] .

If we set this expression equal to zero, we obtain the stationary point iteration formula

x = p(1 − e−x) .
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We can say a few things about the iteration formula. First, an obvious exact solution is
x = 0. But this is not a maximum since we know f(0) = 0. In fact, this point is a minimum
for our case with p > 1. There is no other analytic solution.

Second, the function g = p(1−e−x) has slope p > 1 at x = 0 and then goes asymptotically
to p as x → ∞. Thus, there is clearly at least one intersection of g and the line y = x. In
fact, there can be only one intersction since dg/dx = pe−x decreases monotonically with x. So
there is only one stationary point for f(x) between x = 0 and x = ∞. It must be a maximum
since at x = 0 and x = ∞, f(x) is zero.

Third, the exact solution for x must be less than p as we see from g = p(1 − e−x) itself.
On the other hand, as p goes to infinity, it is diagramatically clear that the exact solution must
go p asymptotically. Thus, it seems plausible to begin the iteration for x with initial x0 = p.

Fourth, is convergence to the exact solution guaranteed starting from x0? Well if xi−1

is too large, e−xi−1 is too small and xi = p(1 − e−xi) will be too large. So if one starts the
iteration with x0 = p > x (where x is the exact solution), then all the iterates will be too
large for a finite number of iterations. Now the slope of g = p(1 − e−x) is less than 1 at the
intersection with y = x (since it is the the intersection) and for all larger values of x. Thus,
an iteration starting from x0 = p is always in the region where the slope of g = p(1 − e−x) is
less than 1, but greater than zero. The function g increases strictly in this region. This means
that xi = g(xi−1) < xi−1. Draw a diagram to see this clearly. Formally exact convergence
only happens as the number of iterations goes to infinity, but after a finite number the iterates
are unchanging to within machine accruacy. So the iteration is guaranteed to convege starting
the iteration from x0 = p. However, the convergence might be slow. It seems very likely that
the convergence rate increases with p since the exact solution goes to p asymptotically in the
limit that p goes to infinity.

i) For the maximizing points, we set

∂Bν

∂dν
=
∂Bν

∂dx

∂x

∂dν
= 0 and

∂Bλ

∂dλ
=
∂Bλ

∂dx

∂x

∂dλ
= 0

which clearly lead to iteration formulae for the maximizing point

x = 3(1 − e−x) and x = 5(1 − e−x) ,

respectively.
Solving for the maximizing x values we should start the iteration with x0 = p as argued

in the part (h) answer. For our two cases then we should start, respectively, with x0 = 3 and
x0 = 5. It seems likely that the converged x solutions should be, respectively, of order 3 and
5. An actual iteration to machine accuracy convergence gives, respectively, 2.82143937212208
and 4.96511423174428.

The formulae for the maximizing ν and λ values are, respectively,

νmax = xmax
kT

h
= 2.821439372122 . . .× kT

h
and λmax =

hc

xmaxkT
=

hc

4.965114231744 . . .× kT
.

From the latter expression, we find Wien’s law (AKA Wien’s displacement law)

λmax =
0.28977684 cmK

T
=

2897.7684µmK

T
.

Fortran-95 Code
print*

p=3.d0

x=p

do

xold=x

x=p*(1.d0-exp(-x))

print*,xold,x

if(x .eq. xold) exit

end do
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print*,’x for p=3 is ’,x

! x for p=3 is 2.82143937212208

print*

p=5.d0

x=p

do

xold=x

x=p*(1.d0-exp(-x))

print*,xold,x

if(x .eq. xold) exit

end do

print*,’x for p=5 is ’,x

! x for p=5 is 4.96511423174428

print*,’planck,clight,boltzmann’

print*,planck,clight,boltzmann

! 6.626069300000000E-027 29979245800.0000 1.380650500000000E-016 in CGS

wein=(planck*clight/boltzmann)/x

print*,’x,wein’

print*,x,wein

! 4.96511423174428 0.289776843518791

Redaction: Jeffery, 2008jan01



Appendix 2 Quantum Mechanics Equation Sheet

Note: This equation sheet is intended for students writing tests or reviewing material. Therefore it neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things.

1 Constants not to High Accuracy

Constant Name Symbol Derived from CODATA 1998

Bohr radius aBohr =
λCompton

2πα
= 0.529 Å

Boltzmann’s constant k = 0.8617× 10−6 eV K−1

= 1.381× 10−16 erg K−1

Compton wavelength λCompton =
h

mec
= 0.0246 Å

Electron rest energy mec
2 = 5.11 × 105 eV

Elementary charge squared e2 = 14.40 eV Å

Fine Structure constant α =
e2

h−c
= 1/137.036

Kinetic energy coefficient
h−2

2me
= 3.81 eV Å2

h−2

me
= 7.62 eV Å2

Planck’s constant h = 4.15 × 10−15 eV
Planck’s h-bar h− = 6.58 × 10−16 eV

hc = 12398.42 eVÅ
h−c = 1973.27 eVÅ

Rydberg Energy ERyd =
1

2
mec

2α2 = 13.606 eV

2 Some Useful Formulae

Leibniz’s formula
dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k

Normalized Gaussian P =
1

σ
√

2π
exp

[

− (x− 〈x〉)2
2σ2

]

3 Schrödinger’s Equation

HΨ(x, t) =

[

p2

2m
+ V (x)

]

Ψ(x, t) = ih−∂Ψ(x, t)

∂t

Hψ(x) =

[

p2

2m
+ V (x)

]

ψ(x) = Eψ(x)

HΨ(~r , t) =

[

p2

2m
+ V (~r )

]

Ψ(~r , t) = ih−∂Ψ(~r , t)

∂t
H |Ψ〉 = ih− ∂

∂t
|Ψ〉

Hψ(~r ) =

[

p2

2m
+ V (~r )

]

ψ(~r ) = Eψ(~r ) H |ψ〉 = E|ψ〉
24
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4 Some Operators

p =
h−
i

∂

∂x
p2 = −h−2 ∂2

∂x2

H =
p2

2m
+ V (x) = − h−2

2m

∂2

∂x2
+ V (x)

p =
h−
i
∇ p2 = −h−2∇2

H =
p2

2m
+ V (~r ) = − h−2

2m
∇2 + V (~r )

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ θ̂

1

r sin θ

∂

∂θ

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

5 Kronecker Delta and Levi-Civita Symbol

δij =

{

1, i = j;
0, otherwise

εijk =

{

1, ijk cyclic;
−1, ijk anticyclic;
0, if two indices the same.

εijkεiℓm = δjℓδkm − δjmδkℓ (Einstein summation on i)

6 Time Evolution Formulae

General
d〈A〉
dt

=

〈

∂A

∂t

〉

+
1

h−
〈i[H(t), A]〉

Ehrenfest’s Theorem
d〈~r 〉
dt

=
1

m
〈~p 〉 and

d〈~p 〉
dt

= −〈∇V (~r )〉

|Ψ(t)〉 =
∑

j

cj(0)e−iEjt/h−|φj〉

7 Simple Harmonic Oscillator (SHO) Formulae

V (x) =
1

2
mω2x2

(

− h−2

2m

∂2

∂x2
+

1

2
mω2x2

)

ψ = Eψ

β =

√

mω

h−
ψn(x) =

β1/2

π1/4

1√
2nn!

Hn(βx)e−β2x2/2 En =

(

n+
1

2

)

h−ω

H0(βx) = H0(ξ) = 1 H1(βx) = H1(ξ) = 2ξ
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H2(βx) = H2(ξ) = 4ξ2 − 2 H3(βx) = H3(ξ) = 8ξ3 − 12ξ

8 Position, Momentum, and Wavenumber Representations

p = h−k Ekinetic = ET =
h−2
k2

2m

|Ψ(p, t)|2 dp = |Ψ(k, t)|2 dk Ψ(p, t) =
Ψ(k, t)√

h−

xop = x pop =
h−
i

∂

∂x
Q

(

x,
h−
i

∂

∂x
, t

)

position representation

xop = − h−
i

∂

∂p
pop = p Q

(

− h−
i

∂

∂p
, p, t

)

momentum representation

δ(x) =

∫ ∞

−∞

eipx/h−

2πh−
dp δ(x) =

∫ ∞

−∞

eikx

2π
dk

Ψ(x, t) =

∫ ∞

−∞

Ψ(p, t)
eipx/h−

(2πh−)1/2
dp Ψ(x, t) =

∫ ∞

−∞

Ψ(k, t)
eikx

(2π)1/2
dk

Ψ(p, t) =

∫ ∞

−∞

Ψ(x, t)
e−ipx/h−

(2πh−)1/2
dx Ψ(k, t) =

∫ ∞

−∞

Ψ(x, t)
e−ikx

(2π)1/2
dx

Ψ(~r , t) =

∫

all space

Ψ(~p , t)
ei~p·~r/h−

(2πh−)3/2
d3p Ψ(~r , t) =

∫

all space

Ψ(~k , t)
ei~k·~r

(2π)3/2
d3k

Ψ(~p , t) =

∫

all space

Ψ(~r , t)
e−i~p·~r/h−

(2πh−)3/2
d3r Ψ(~k , t) =

∫

all space

Ψ(~r , t)
e−i~k·~r

(2π)3/2
d3r

9 Commutator Formulae

[A,BC] = [A,B]C +B[A,C]





∑

i

aiAi,
∑

j

bjBj



 =
∑

i,j

aibj [Ai, bj]

if [B, [A,B]] = 0 then [A,F (B)] = [A,B]F ′(B)

[x, p] = ih− [x, f(p)] = ih−f ′(p) [p, g(x)] = −ih−g′(x)

[a, a†] = 1 [N, a] = −a [N, a†] = a†

10 Uncertainty Relations and Inequalities
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σxσp = ∆x∆p ≥ h−
2

σQσQ = ∆Q∆R ≥ 1

2
|〈i[Q,R]〉|

σH∆tscale time = ∆E∆tscale time ≥
h−
2

11 Probability Amplitudes and Probabilities

Ψ(x, t) = 〈x|Ψ(t)〉 P (dx) = |Ψ(x, t)|2 dx ci(t) = 〈φi|Ψ(t)〉 P (i) = |ci(t)|2

12 Spherical Harmonics

Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .
s p d f g h i . . .

13 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
α =

e2

h−c

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)

Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity
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En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
= −13.606

Z2

n2

mreduced

me
eV

14 General Angular Momentum Formulae

[Ji, Jj ] = ih−εijkJk (Einstein summation on k) [J2, ~J ] = 0

J2|jm〉 = j(j + 1)h−2|jm〉 Jz |jm〉 = mh−|jm〉

J± = Jx ± iJy J±|jm〉 = h−
√

j(j + 1) −m(m± 1)|jm± 1〉

J{x

y} =

{

1
2
1
2i

}

(J+ ± J−) J†
±J± = J∓J± = J2 − Jz(Jz ± h−)

[Jfi, Jgj ] = δfgih−εijkJk
~J = ~J1 + ~J2 J2 = J2

1 + J2
2 + J1+J2− + J1−J2+ + 2J1zJ2z

J± = J1± + J2± |j1j2jm〉 =
∑

m1m2,m=m1+m2

|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉j1j2jm〉

|j1 − j2| ≤ j ≤ j1 + j2

j1+j2
∑

|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1)

15 Spin 1/2 Formulae

Sx =
h−
2

(

0 1
1 0

)

Sy =
h−
2

(

0 −i
i 0

)

Sz =
h−
2

(

1 0
0 −1

)

|±〉x =
1√
2

(|+〉 ± |−〉) |±〉y =
1√
2

(|+〉 ± i|−〉) |±〉z = |±〉

| + +〉 = |1,+〉|2,+〉 | + −〉 =
1√
2

(|1,+〉|2,−〉± |1,−〉|2,+〉) | − −〉 = |1,−〉|2,−〉

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

σiσj = δij + iεijkσk [σi, σj ] = 2iεijkσk {σi, σj} = 2δij

( ~A · ~σ)( ~B · ~σ) = ~A · ~B + i( ~A× ~B) · ~σ

d(~S · n̂)

dα
= − i

h−
[~S · α̂, ~S · n̂] ~S · n̂ = e−i~S·~α~S · n̂0e

i~S·~α |n̂±〉 = e−i~S·~α|ẑ±〉
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eixA = 1 cos(x) + iA sin(x) if A2 = 1 e−i~σ·~α/2 = 1 cos(x) − i~σ · α̂ sin(x)

σif(σj) = f(σj)σiδij + f(−σj)σi(1 − δij)

µBohr =
eh−
2m

= 0.927400915(23)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

g = 2
(

1 +
α

2π
+ . . .

)

= 2.0023193043622(15)

~µorbital = −µBohr

~L

h−
~µspin = −gµBohr

~S

h−
~µtotal = ~µorbital + ~µspin = −µBohr

(~L + g~S)

h−

Hµ = −~µ · ~B Hµ = µBohrBz
(Lz + gSz)

h−

16 Time-Independent Approximation Methods

H = H(0) + λH(1) |ψ〉 = N(λ)
∞
∑

k=0

λk|ψ(k)
n 〉

H(1)|ψ(m−1)
n 〉(1 − δm,0) +H(0)|ψ(m)

n 〉 =
m
∑

ℓ=0

E(m−ℓ)|ψ(ℓ)
n 〉 |ψ(ℓ>0)

n 〉 =
∞
∑

m=0, m 6=n

anm|ψ(0)
n 〉

|ψ1st
n 〉 = |ψ(0)

n 〉 + λ
∑

all k, k 6=n

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉

E
(0)
n − E

(0)
k

|ψ(0)
k 〉

E1st
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

E2nd
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

+ λ2
∑

all k, k 6=n

∣

∣

∣

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉∣

∣

∣

2

E
(0)
n − E

(0)
k

E(φ) =
〈φ|H |φ〉
〈φ|φ〉 δE(φ) = 0

Hkj = 〈φk|H |φj〉 H~c = E~c

17 Time-Dependent Perturbation Theory

π =

∫ ∞

−∞

sin2(x)

x2
dx
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Γ0→n =
2π

h−
|〈n|Hperturbation|0〉|2δ(En − E0)

18 Interaction of Radiation and Matter

~Eop = −1

c

∂ ~Aop

∂t
~Bop = ∇× ~Aop

19 Box Quantization

kL = 2πn, n = 0,±1,±2, . . . k =
2πn

L
∆kcell =

2π

L
∆k3

cell =
(2π)3

V

dNstates = g
k2 dk dΩ

(2π)3/V

20 Identical Particles

|a, b〉 =
1√
2

(|1, a; 2, b〉 ± |1, b; 2, a〉)

ψ(~r1, ~r 2) =
1√
2

(ψa(~r 1)ψb(~r 2) ± ψb(~r 1)ψa(~r 2))

21 Second Quantization

[ai, a
†
j ] = δij [ai, aj ] = 0 [a†i , a

†
j ] = 0 |N1, . . . , Nn〉 =

(a†n)Nn

√
Nn!

. . .
(a†1)

N1

√
N1!

|0〉

{ai, a
†
j} = δij {ai, aj} = 0 {a†i , a

†
j} = 0 |N1, . . . , Nn〉 = (a†n)Nn . . . (a†1)

N1 |0〉

Ψs(~r )† =
∑

~p

e−i~p·~r

√
V

a†~ps Ψs(~r ) =
∑

~p

ei~p·~r

√
V
a~ps

[Ψs(~r ),Ψs′(~r ′)]∓ = 0 [Ψs(~r )†,Ψs′(~r ′)†]∓ = 0 [Ψs(~r ),Ψs′(~r ′)†]∓ = δ(~r − ~r ′)δss′

|~r1s1, . . . , ~rnsn〉 =
1√
n!

Ψsn
(~r n)† . . .Ψsn

(~r n)†|0〉

Ψs(~r )†|~r1s1, . . . , ~rnsn〉
√
n+ 1|~r1s1, . . . , ~rnsn, ~rs〉

|Φ〉 =

∫

d~r1 . . . d~rn Φ(~r1, . . . , ~rn)|~r1s1, . . . , ~rnsn〉

1n =
∑

s1...sn

∫

d~r1 . . . d~rn |~r1s1, . . . , ~rnsn〉〈~r1s1, . . . , ~rnsn| 1 = |0〉〈0| +
∞
∑

n=1

1n
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N =
∑

~ps

a†~psa~ps T =
∑

~ps

p2

2m
a†~psa~ps

ρs(~r ) = Ψs(~r )†Ψs(~r ) N =
∑

s

∫

d~r ρs(~r ) T =
1

2m

∑

s

∫

d~r∇Ψs(~r )† · ∇Ψs(~r )

~js(~r ) =
1

2im

[

Ψs(~r )†∇Ψs(~r ) − Ψs(~r )∇Ψs(~r )†
]

Gs(~r − ~r ′) =
3n

2

sin(x) − x cos(x)

x3
gss′(~r − ~r ′) = 1 − δss′

Gs(~r − ~r ′)2

(n/2)2

v2nd =
1

2

∑

ss′

∫

d~rd~r ′ v(~r − ~r ′)Ψs(~r )†Ψs′(~r ′)†Ψs′(~r ′)Ψs(~r )

v2nd =
1

2V

∑

pp′qq′

∑

ss′

v~p−~p ′δ~p+~q,~p′+~q′a†~psa
†
~qs′a~q ′s′a~p ′s v~p−~p ′ =

∫

d~r e−i(~p−~p ′)·~rv(~r )

22 Klein-Gordon Equation

E =
√

p2c2 +m2c4
1

c2

(

ih− ∂

∂t

)2

Ψ(~r, t) =

[

(

h−
i
∇
)2

+m2c2

]

Ψ(~r, t)

[

1

c2
∂2

∂t2
−∇2 +

(

mc

h−

)2
]

Ψ(~r, t) = 0

ρ =
ih−

2mc2

(

Ψ∗ ∂Ψ

∂t
− Ψ

∂Ψ∗

∂t

)

~j =
h−

2im
(Ψ∗∇Ψ − Ψ∇Ψ∗)

1

c2

(

ih− ∂

∂t
− eΦ

)2

Ψ(~r, t) =

[

(

h−
i
∇− e

c
~A

)2

+m2c2

]

Ψ(~r, t)

Ψ+(~p,E) = ei(~p·~r−Et)/h− Ψ−(~p,E) = e−i(~p·~r−Et)/h−


