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Quantum Mechanics NAME:

Homework 5b: The Free Electron Gas Model and Statistical Mechanics

1. The simplest quantum mechanical solid model is arguably:

a) the hydrogen atom. b) the helium atom. c) the free electron gas model.
d) the infinite periodic potential model. e) the finite periodic potential model.

2. For the free electron gas model of a solid, one common simple choice of boundary conditions is:

a) infinite square well boundary conditions. b) finite square well boundary conditions.
c) Gaussian well boundary conditions. d) hydrogen atom boundary conditions.
e) helium atom boundary conditions.

3. “Let’s play Jeopardy! For $100, the answer is: These quantum mechanical boundary conditions for
solids, also known a Born-von-Karman boundary conditions, are not realistic in most cases. They are
realistic in some cases. For example, for the dimension of a solid that forms a closed loop: e.g., a
solid that has donut shape can be have an angular coordinate that must be periodic by symmetry over
the range [0◦, 360◦]. But whether realistic or not, it can be shown that they lead to the same average
behavior as realistic boundary conditions for macroscopically large solid samples.

Why are these boundary conditions used at all? Well for one thing they are an ideal kind of
boundary conditions that are completely independent of what the surface behavior of solid is. Thus,
they are neutral case. For another thing they are easy to use in developments in particular when dealing
with periodic potentials in a solid.”

What are , Alex?

a) infinite square well boundary conditions b) aperiodic boundary conditions
c) Rabi-Schwinger-Baym-Sutherland boundary conditions d) periodic boundary conditions
e) relaxed boundary conditions

4. The free electron gas model of a solid is arguably the simplest model of solid. The electrons are assumed
to be non-interacting fermions confined to a potential well. The background of positive ions and the
electrons’s own Coulomb force combine to create the potential well. The potential inside the well is flat.
The most obvious set of boundary conditions are infinite square well boundary conditions.

Periodic boundary conditions (AKA Born-Von-Karman boundary conditions) are also used. They
give the same macroscopic results as infinite square well boundary conditions and are better suited for
treating periodic potentials inside solids. Periodic boundary conditions actually means you imagine
space looping back on itself for opposing ends of a rectangular box. If you go out one end, you come
back in the opposing end. If we assume a 1-dimensional wave function along a box dimension (which
we actually require in our development in this problem), then we demand that that wave function be
single-valued as it loops around and around through looped space. We have no physical meaning for a
multi-valued wave function. You could at first imagine that there could be a discontinuity in the wave
function as it crosses a boundary. But the ordinary continuity conditions on a wave function at locations
of finite potential require that the wave function and its 1st derivative must be continuous across the
boundary. Thus, to loop back into itself, the wave function and its 1st derivative must have the same
values at opposing boundaries.

Let us consider a free electron gas model of a solid in 1, 2, and 3 dimensions simultaneously. Use
periodic boundary conditions in all three cases: a 1-dimensional rectangular box is a line segment, a
2-dimensional rectangular box is a rectangle, and a 3-dimensional rectangular box is what one ordinarly
means by a rectangular box. Let Li be the length of side i of the rectangular box and V =

∏

i Li be
the rectangular box volume. Let ℓ be the number of dimensions.

a) Solve the time-independent Schrödinger equation for the single-particle stationary states for all three
dimension cases. These states can be called k states since they distinguished by their wavenumbers
for the available dimensions. Normalize the solutions solutions and give their quantization rules
for wavenumber and energy. HINT: You must separate the multi-particle time-independent
Schrödinger equation.

b) Each single-particle stationay k state can be located in what is called k-space by a wavenumber

vector ~k = (k1, k2, k2), where we have used 1, 2, and 3 to label the dimensions. What is the volume
Vk in k-space of the k-space rectangular boxes that are centered on the stationary state wavenumber
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vector tips and tile all k-space without gaps or overlaps and are all of the same size. The volume
Vk is the k-space volume per state. What is the average density of spatial states in k-space ρk?

c) We now make the continuum approximation which is valid for samples that are macroscopic in all
available dimensions. This means that we treat the average density of spatial states in k-space as if
it were an uniform density. Find the expression for the differential number of states dNk per unit
space volume in a spherical shell in k-space. The shell radius is k and its thickness is dk. Include
the spin degeneracy by a factor g which equals 2 for spin 1/2 electrons. But leave g unevaluated. By
leaving g unevaluated, one can track how the spin degeneracy affects dNk and expressions derived
from dNk.

d) The Pauli exclusion principle for fermions requires that each single particle k state (where the states
now thought of as distinguished by both wavenumber vector and spin state) have only one fermion
at most. This statement must be qualified. What it really means is that the product wave function
of single particle states can have each distinct single-particle state included once only. If there
are N fermions, the overall symmetrized wave function contains N ! versions of the product wave
function with the individual particle coordinate labels in all possible permuations. But we don’t
have to worry about product wave functions or symmetrized wave functions explicitly in the free
electron gas model of solids. We simply make use of the Pauli exclusion principle to say that the
single-particle states can only be used once in calculating results or to put this in common jargon
only one electron can occupy at single particle state at most.

Now in the ground state of (which is the absolute zero temperature state) in our free electron
gas model, the electrons occupy the lowest energy single-particle states consistent with the Pauli
exclusion principle. This means in k-space, the electrons occupy a sphere of radius kF where F
where stands for Fermi. Since F stands for a name, not a variable it ought to be in Roman, not
Italic, font, but convention seems to dictate Italic font (e.g., Gr-221, CT-1435). (I guess since
Fermi was Italian . . .) The radius kF is called the Fermi wavenumber. The sphere is called the
Fermi surface. It’s not called the Fermi sphere usually since the concept of Fermi surface applies
to periodic potential cases, where in general the Fermi surface is not a sphere.

Using the results of the part (c) answer solve for kF in general and explicitly for the 3
dimensional cases. Assume the electron density (in space space) is ne = N/V .

e) Now solve for the Fermi energy EF in general and for the 3 dimensional cases.

f) What is ρE : i.e., the density of states per unit space volume per unit energy in the continuum of
states approximation. Write a general formula that is valid for all three dimension cases. HINT:
One requires the same number of states between any corresponding limits: i.e.,

dN = ρk shell dk = ρE dE ,

where ρk shell is the density of k states in the differential k space shell dk. The general expression
for ρk shell must have turned up in the part (c) answer without so labeling it.

g) Now solve for the total energy per unit space volume E of the ground state for electron density ne.
Also find Eave the average energy of the electrons. Don’t bother to expand EF using the expressions
from the part (e) answer. The formulae for this answer are long enough as it is. Just do the general
dimensional case for E , but show all the dimensional cases explicitly for Eave.

5. For a free electron gas (in 3 dimensions) at abolute zero temperature, the Fermi energy is given by

EF =
h−2

2m

[(

2

g

)

(3π2)ne

]2/3

,

where h− is Planck constant divided by 2π, m is the electron mass, g = 2 is the spin 1/2 particle
degeneracy, and

ne =
N

V

is the free electron density with N being the number of electrons and V being the sample volume. The
average energy per electron Eave is given by

Eave =
3

5
EF .
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For this question, you will need the following constants,

e = 1.602176487(40)× 10−19 C ,

m = 9.10938215(45)× 10−31 kg ,

mc2 = 510998.910 eV ,

kB = 1.3806504(24)× 10−23 J/K ,

h− = 1.054571628(53)× 10−34 J, s ,

mamu = 1.660538782(83)× 10−27 kg .

a) Free electron density can be expressed in terms of ordinary density (AKA mass density) ρ by

ne =
ρ

mamu

∑

i

XiZi

Ai
,

where the sum is over all atoms in the sample, Xi is the mass fraction of atom i, Zi is the number
of free electrons per atom for atom i, and Ai is the atomic weight of atom i. Convince yourself that
this formula makes sense. Actually the formula can be simplified by introducing the mean mass
per electron µe defined by

1

µe
=
∑

i

XiZi

Ai
.

Take 1000 kg/m3 as a fiducial value for ρ (which is just like writing density in grams per cubic
centimeter). Take 50 as a fiducial value for µe: this is like an element in the atomic weight vicinity
of iron with one valence electron delocalized. Now write ne in terms of fiducial values: i.e., find the
coefficient in the formula expression

ne = coefficient × ρ

1000 kg/m3

50

µe
,

The coefficient is a fiducial electron density.

b) Now find the formula for EF in terms of fiducial values both for joules and electronvolts: i.e., find
the coefficient in the formula

EF = coefficient ×
[(

2

g

)

ρ

1000 kg/m3

50

µe

]2/3

.

The coefficient is a fiducial Fermi energy. Are solids in human environments relativistic?

c) Now find the formula for the Fermi temperature TF = EF /kB in terms of fiducial values both
for joules and electronvolts. The coefficient is a fiducial Fermi temperature. Are solids in human
environments hot or cold in comparison to the Fermi temperature?

d) Now find the formula for the Fermi velocity vF =
√

2EF /m (which is the non-relativistic formula)
in terms of fiducial values. The coefficient is a fiducial Fermi velocity.

e) From classical thermodynamics, we know that pressure

P = −
(

∂E

∂V

)

S,N

where E is the sample internal energy, V is the sample volume, S is the sample entropy, N is the
sample particle number, and the subscript S,N indicates the partial derivative is taken with entropy
and particle number held constant. Since a free electron gas is confined by a confining potential, it
must exert a counter potential on entities that confine it. In fact, by the correspondence principle of
quantum mechanics, this counter potential can be assumed at the macroscopic level to a free electron
gas pressure. The energy of the free electron gas is identifiable with the classical internal energy.
Thus, we expect that a free electron gas exhibits a pressure derivable from the classical expression.
Observation shows that this expectation is fulfilled. The pressure is called the degeneracy pressure,
and its equation of state (i.e., pressure formula) is quite unlike that for an ideal gas. Derive the
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zero-temperature free-electron-gas pressure formula as a function of ne. Then find the pressure
formula in terms of fiducial values. HINT: The total energy of a sample is NEave.

f) The bulk modulus of a material is a measure of its incompressibility or stiffness. The definition is

B = −V
(

∂P

∂V

)

X

= ρ

(

∂P

∂ρ

)

X

where one assumes a constant mass and X stands for the thermodynamic variable held constant,
either temperature or entropy (which can be held constant by adiabatic conditions). For ordinary
solids and liquids, the difference between constant temperature and constant entropy is usually
negligible. For a free electron gas at zero temperature, there is no difference.

The bulk modulus is actually a characteristic pressure for signficant volume or density change
under a change pressure as can be seen by writing formula in the differential form

−dV
V

=
dρ

ρ
=
dP

B
.

If B were a constant (which it is not in any real case), then B would be the e-folding pressure: i.e.,
the pressure change required to change volume or density by a factor of e. The bigger the bulk
modulus, the stiffer the substance.

Find the bulk modulus formula for the zero-tempature free electron gas. Then find the bulk
modulus formula in terms of fiducial values.

6. The metals Na, Mg, and Al have, respectively 1, 2, and 3 free electrons per atom, standard atomic
masses 22.98976928, 24.3050, and 26.9815386, and, under ordinary pressure and temperature, densities
0.968 g/cm3, 1.738 g/cm3, and 2.70 g/cm3. What is the Fermi energy of these metals in electronvolts?
Recall

EF =
h−2

2m

[(

2

g

)

(3π2)ne

]2/3

= 3.06973 . . .× 10−19 J ×
[(

2

g

)

ρ

1000 kg/m3

50

µe

]2/3

= 1.91597958 . . . eV ×
[(

2

g

)

ρ

1000 kg/m3

50

µe

]2/3

,

where density is in MKS units.

7. The pressure of a free electron gas (in three dimensions) is given by

P =
2

3
E =

h−2

2m

[

3π2

(

2

g

)]2/3
2

5

(

ρ

µemamu

)5/3

,

where E is the energy per unit volume and g = 2 for electron spin degeneracy. This result can be derived
by using the classical 1st law of thermodynamics for T = 0 to relate P and E interpreted as the classical
internal energy per unit volume. But it can also be derived from kinematics argument.

First note that a standing wave free electron eigenstate for one dimension of a infinite square well
of length ℓ and wave number k

ψ =

√

2

ℓ
sin(kx)

can be written as a superposition of oppositely traveling traveling wave states

ψ =
1√
2

(

√

1

ℓ
eikx −

√

1

ℓ
e−ikx

)

,

where have used the complex number definition of the sine function and dropped the global phase factor
1/i since it is physically irrelevant. Following the paradigm of quantum mechanics, it seems plausible
to treat the standing wave state as literally a superposition of traveling wave states. One can generalize
this idea to three dimensions. The traveling wave states can be thought of as continuously bouncing
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elastically off the walls of a 3-dimensional infinite square well and having their momentum component
normal to wall inverted in the bounce. During the bounce, some kinetic energy becomes potential
energy for a brief time. Perhaps, in real metals wave packets that are strongly peaked about stationary
state ~k values are actually doing this. Textbooks grow coy on this point. But in any case, a classical
interpretation of the traveling waves as particles bouncing off the walls of 3-dimensional infinite square
well potential leads to the correct pressure result. One just says that the energy density of states per
unit volume for E ≤ EF

ρE =

(

2m

h−2

)3/2
g

2

1

4π2
E−1/2

is the density of classical particles in energy space per unit volume up to EF and uses that density to
calculate the pressure the particles exert.

Let’s do the calculation.

a) If a (classical) particle of momentum magnitude p bounces elastically off a wall at an angel θ relative
to the normal to the wall, what momentum is transferred to the wall in the normal direction? at
angle

b) If you have a density of particles per unit (kinetic) energy per unit volume of ρE and the particle
distribution in angle is isotropic, what is the density of particles per unit energy per unit volume
per unit solid angle?

c) What is the flux of particles in per unit energy per unit area per unit solid angle?

d) What is the momemtum flux normal to the wall per unit area per unit energy per unit solid angle on
the wall? Remember for a beam of particles coming in at angle to the wall of θ that cross-sectional
area for the beam is cos θ dA, where dA is the area of wall the beam impinges on. For example, the
cross-sectional area is θ = π/2 is zero. A diagram might help you understand this cross-sectional
area result.

e) Integrate the result from the part (d) answer over 2π solid angle about the normal to the wall
and over all energy up the Fermi energy EF to get the formula for the free electron gas pressure.
Express the formula in terms of E .

8. Consider a system consisting of quantized single-particle states and fixed total number of particles N
and fixed total energy E. We make the approximation that particles can occupy only one single-particle
state at time: i.e., they are not in superpositions of single-particle states. The overall microscopic state
of the system is set by specifying arrangement of the particles in the single-particle states. Note that
exchanging distinct particles changes the microscopic state and exchanging identical particles does not.

The set of single-particle states of the same energy Ei can be called an energy level—a term which
is used in different ways in different contexts. The number of single-particle states in an energy level i
is the energy level degeneracy gi. A configuration is the set of occupation numbers {Ni} for the energy
levels of the system. The statistical weight W of a configuration is the number of distinct microscopic
states that correspond to that configuration.

The fundamental axiom of statistical mechanics is that in thermodynamic equilibrium all the
microscopic states are equally probable. Thermodynamic equilibrium for a system occurs when the
system is not changing thermodynamically with time at the macroscopic level. In thermodynamic
equilibrium, the initial conditions of the system no longer determine its macroscopic behavior and their
signature in the system has been effectively erased.

The fundamental axiom implies that probability distribution for the configuration is just the
normalized statistical weights and the most probable configuration is the one with the largest statistical
weight. It turns out the probability distribution given by the statistical weights is extremely peaked
around the most probable configuration for systems of macroscopically large numbers of particles. The
macroscopic thermodynamic equilibrium state is essentially this most probable configuration. The
natural logarithm the statistical weight times Boltzmann’s constant k identified with the classical entropy
which maximizes for thermodynamic equilibrium. Thus we have

S = k ln(W ) .

a) The statistical weight for the configuration for a system with distinct particles is

W = N !
∏

i

gNi

i

Ni!
.
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Solve for the set of Ni that maximize the statistical weight subject to the constraints

N =
∑

i

Ni , E =
∑

i

NiEi , Ni ≥ 0 .

For conventional reasons, the Lagrange multiplier for the particle number constraint should be label
α and that for the energy constraint β. Use appropriate approximations to get a simple analytic
formula for a maximizing Ni in which the degeneracy gi occurs only as a leading coefficient. What
is the function with the degeneracy factor suppressed and what is it called?

b) The statistical weight for the configuration for a system with identical fermions is

W =
∏

i

(

gi

Ni

)

.

Repeat the requirements from part (a) for this statistical weight.

c) The statistical weight for the configuration for a system with identical bosons is

W =
∏

i

(

gi − 1 +Ni

Ni

)

.

Repeat the requirements from part (a) for this statistical weight.

d) The lagrange multiplier function has an uncontrained stationary point at the maximizing values of
Ni. This fact along with the 1st law of classical thermodynamics

dE = T dS − µdN

for the case of fixed volume but variable entropy and particle number (T being temperature and µ
being the chemical potential) and the identificiation of entropy allows α and β to be determined in
terms of classical thermodynamics variables. Make the determinations.

9. Photons in thermodynamic equilibrium with some container or with some gas of massive particles can be
thought as a photon gas obeying Bose-Einstein statistics. Photons are extreme relativistic particles, but
nevertheless the simple formalism for the statistical mechanics of non-relativistic systems still applies
with some modifications:

1) The energies of quantized single-particle states are related to the momentum, frequency, wavelength,
and wavenumber of the state by

E = pc = hν =
hc

λ
= h−ck .

Note that above expression embodies the de Broglie formula p = h/λ which de Broglie took from
photons and applied to massive particles—but with the difference that massive particles in the
non-relativistic limit relate kinetic energy to momentum by E = p2/(2m).

2) Photons are spin-1 bosons, but for some reason only the m = ±1 states are allowed. Thus, the each
spatial quantized single state has a degeneracy of g = 2.

3) The number of photons is not conserved. The unspecified processes that transform one overall
microscopic quantum state to another can create and destroy photons. Thus, photon gas will relax
to a maximum entropy state with no constraint on total photon number. This means that the
Lagrange multiplier α = µ/kT is zero.

a) Given that periodic boundary conditions for a 3-dimensional infinite well rectangular box and ℓ for
the length of a general dimension, the wavenumber of single-particle states for this dimension is
quantized according to the rule

kℓ = 2πn , where n = 0,±1,±2,±3, . . . .

What is the density of states in phase space which is the product of k-space and space space? Do
not forget the internal degeneracy factor g.
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b) Given the Bose-Einstein distribution

f =
1

e(E−µ)/(kT ) − 1

(where E is single-particle state energy, µ is chemical potential, and T is temperature), find the
formula for the energy density per unit frequency Eν for the thermodynamic equilibrium photon
gas. Note energy density per unit frequency, NOT photon number density per unit frequency.

c) In radiative transfer it is customary to work with specific intensity Bν rather than Eν . The specific
intensity is the energy flux (energy per unit area perpendicular to the direction of motion per unit
time) per unit frequency per unit solid angle. Find the formula for Bν .

d) Find the frequency integrated formula for Bν : i.e., find B. Note that the factorial function is

z! =

∫ ∞

0

tze−t dt =











z(z − 1)! for general complex z, except for z a negative integer;
±∞ for z a negative integer;
n! for n an integer with n ≥ 0;√
π for z = −1/2

(Ar-453), that the Riemann zeta function defined as an infinite sum (convergent for Re(z) > 1) is

ζ(z) =

∞
∑

ℓ=1

1

ℓz
=































π2

6
for z = 2;

π4

90
for z = 4;

π8

945
for z = 6,

(Ar-282, 285) and that the Stefan-Boltzmann constant is

σ =
2π5

15

k4

h3c2
= 5.670400(40)× 10−8 W m−2 K−4 .

Also find the total energy per unit volume. Note that the radiation constant

a =
4σ

c
= 7.5657 × 10−16 J m−3 K−4 .

e) The energy flux from a surface emitting like an exact blackbody is given by

F =

∫

2π

B cos θ dΩ ,

where the integral is over 2π solid angle and we have assumed the z direction is the outward normal
direction from the surface. The cos θ factor decrease in area perpendicular to a beam through an
opening in the surface. For example, if θ = π/2, there would be no emission through the opening.
Evaluate the formula for F .

f) What is the formula for Bλ: i.e., the specific intensity as a function of wavelength rather than µ.
Note

Bλ dλ = Bν dν .

g) The Wein approximation (derived 1896) is the approximate formula for Bλ in the limit of small
wavelength. The Rayleigh-Jeans law (derived 1900–1905) is the approximate formula for Bλ in the
limit of large wavelength. Derive these two approximate formulae from the exact formula for Bλ

found in the part (f) answer.

h) What is an iteration formula for the maximizing point of functions of the form

f(x) =
xp

ex − 1
,

where p > 1? What is a good initial value x0 for the iteration and is the iteration guaranteed to
converge?

i) Find the formulae for the maximizing ν and λ values for, respectively, Bν and Bλ. You only need
to find the coefficients of formulae approximately, but if you are ambitious a small computer code
will allow you do find the coefficients to machine accuracy. Then give Wien’s law (AKA Wien’s
displacement law).



Appendix 2 Quantum Mechanics Equation Sheet

Note: This equation sheet is intended for students writing tests or reviewing material. Therefore it neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things.

1 Constants not to High Accuracy

Constant Name Symbol Derived from CODATA 1998

Bohr radius aBohr =
λCompton

2πα
= 0.529 Å

Boltzmann’s constant k = 0.8617× 10−6 eV K−1

= 1.381× 10−16 erg K−1

Compton wavelength λCompton =
h

mec
= 0.0246 Å

Electron rest energy mec
2 = 5.11 × 105 eV

Elementary charge squared e2 = 14.40 eV Å

Fine Structure constant α =
e2

h−c
= 1/137.036

Kinetic energy coefficient
h−2

2me
= 3.81 eV Å2

h−2

me
= 7.62 eV Å2

Planck’s constant h = 4.15 × 10−15 eV
Planck’s h-bar h− = 6.58 × 10−16 eV

hc = 12398.42 eVÅ
h−c = 1973.27 eVÅ

Rydberg Energy ERyd =
1

2
mec

2α2 = 13.606 eV

2 Some Useful Formulae

Leibniz’s formula
dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k

Normalized Gaussian P =
1

σ
√

2π
exp

[

− (x− 〈x〉)2
2σ2

]

3 Schrödinger’s Equation

HΨ(x, t) =

[

p2

2m
+ V (x)

]

Ψ(x, t) = ih−∂Ψ(x, t)

∂t

Hψ(x) =

[

p2

2m
+ V (x)

]

ψ(x) = Eψ(x)

HΨ(~r , t) =

[

p2

2m
+ V (~r )

]

Ψ(~r , t) = ih−∂Ψ(~r , t)

∂t
H |Ψ〉 = ih− ∂

∂t
|Ψ〉

Hψ(~r ) =

[

p2

2m
+ V (~r )

]

ψ(~r ) = Eψ(~r ) H |ψ〉 = E|ψ〉
8
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4 Some Operators

p =
h−
i

∂

∂x
p2 = −h−2 ∂2

∂x2

H =
p2

2m
+ V (x) = − h−2

2m

∂2

∂x2
+ V (x)

p =
h−
i
∇ p2 = −h−2∇2

H =
p2

2m
+ V (~r ) = − h−2

2m
∇2 + V (~r )

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ θ̂

1

r sin θ

∂

∂θ

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

5 Kronecker Delta and Levi-Civita Symbol

δij =

{

1, i = j;
0, otherwise

εijk =

{

1, ijk cyclic;
−1, ijk anticyclic;
0, if two indices the same.

εijkεiℓm = δjℓδkm − δjmδkℓ (Einstein summation on i)

6 Time Evolution Formulae

General
d〈A〉
dt

=

〈

∂A

∂t

〉

+
1

h−
〈i[H(t), A]〉

Ehrenfest’s Theorem
d〈~r 〉
dt

=
1

m
〈~p 〉 and

d〈~p 〉
dt

= −〈∇V (~r )〉

|Ψ(t)〉 =
∑

j

cj(0)e−iEjt/h−|φj〉

7 Simple Harmonic Oscillator (SHO) Formulae

V (x) =
1

2
mω2x2

(

− h−2

2m

∂2

∂x2
+

1

2
mω2x2

)

ψ = Eψ

β =

√

mω

h−
ψn(x) =

β1/2

π1/4

1√
2nn!

Hn(βx)e−β2x2/2 En =

(

n+
1

2

)

h−ω

H0(βx) = H0(ξ) = 1 H1(βx) = H1(ξ) = 2ξ



10

H2(βx) = H2(ξ) = 4ξ2 − 2 H3(βx) = H3(ξ) = 8ξ3 − 12ξ

8 Position, Momentum, and Wavenumber Representations

p = h−k Ekinetic = ET =
h−2
k2

2m

|Ψ(p, t)|2 dp = |Ψ(k, t)|2 dk Ψ(p, t) =
Ψ(k, t)√

h−

xop = x pop =
h−
i

∂

∂x
Q

(

x,
h−
i

∂

∂x
, t

)

position representation

xop = − h−
i

∂

∂p
pop = p Q

(

− h−
i

∂

∂p
, p, t

)

momentum representation

δ(x) =

∫ ∞

−∞

eipx/h−

2πh−
dp δ(x) =

∫ ∞

−∞

eikx

2π
dk

Ψ(x, t) =

∫ ∞

−∞

Ψ(p, t)
eipx/h−

(2πh−)1/2
dp Ψ(x, t) =

∫ ∞

−∞

Ψ(k, t)
eikx

(2π)1/2
dk

Ψ(p, t) =

∫ ∞

−∞

Ψ(x, t)
e−ipx/h−

(2πh−)1/2
dx Ψ(k, t) =

∫ ∞

−∞

Ψ(x, t)
e−ikx

(2π)1/2
dx

Ψ(~r , t) =

∫

all space

Ψ(~p , t)
ei~p·~r/h−

(2πh−)3/2
d3p Ψ(~r , t) =

∫

all space

Ψ(~k , t)
ei~k·~r

(2π)3/2
d3k

Ψ(~p , t) =

∫

all space

Ψ(~r , t)
e−i~p·~r/h−

(2πh−)3/2
d3r Ψ(~k , t) =

∫

all space

Ψ(~r , t)
e−i~k·~r

(2π)3/2
d3r

9 Commutator Formulae

[A,BC] = [A,B]C +B[A,C]





∑

i

aiAi,
∑

j

bjBj



 =
∑

i,j

aibj [Ai, bj]

if [B, [A,B]] = 0 then [A,F (B)] = [A,B]F ′(B)

[x, p] = ih− [x, f(p)] = ih−f ′(p) [p, g(x)] = −ih−g′(x)

[a, a†] = 1 [N, a] = −a [N, a†] = a†

10 Uncertainty Relations and Inequalities
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σxσp = ∆x∆p ≥ h−
2

σQσQ = ∆Q∆R ≥ 1

2
|〈i[Q,R]〉|

σH∆tscale time = ∆E∆tscale time ≥
h−
2

11 Probability Amplitudes and Probabilities

Ψ(x, t) = 〈x|Ψ(t)〉 P (dx) = |Ψ(x, t)|2 dx ci(t) = 〈φi|Ψ(t)〉 P (i) = |ci(t)|2

12 Spherical Harmonics

Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .
s p d f g h i . . .

13 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
α =

e2

h−c

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)

Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity
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En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
= −13.606

Z2

n2

mreduced

me
eV

14 General Angular Momentum Formulae

[Ji, Jj ] = ih−εijkJk (Einstein summation on k) [J2, ~J ] = 0

J2|jm〉 = j(j + 1)h−2|jm〉 Jz |jm〉 = mh−|jm〉

J± = Jx ± iJy J±|jm〉 = h−
√

j(j + 1) −m(m± 1)|jm± 1〉

J{x

y} =

{

1
2
1
2i

}

(J+ ± J−) J†
±J± = J∓J± = J2 − Jz(Jz ± h−)

[Jfi, Jgj ] = δfgih−εijkJk
~J = ~J1 + ~J2 J2 = J2

1 + J2
2 + J1+J2− + J1−J2+ + 2J1zJ2z

J± = J1± + J2± |j1j2jm〉 =
∑

m1m2,m=m1+m2

|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉j1j2jm〉

|j1 − j2| ≤ j ≤ j1 + j2

j1+j2
∑

|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1)

15 Spin 1/2 Formulae

Sx =
h−
2

(

0 1
1 0

)

Sy =
h−
2

(

0 −i
i 0

)

Sz =
h−
2

(

1 0
0 −1

)

|±〉x =
1√
2

(|+〉 ± |−〉) |±〉y =
1√
2

(|+〉 ± i|−〉) |±〉z = |±〉

| + +〉 = |1,+〉|2,+〉 | + −〉 =
1√
2

(|1,+〉|2,−〉± |1,−〉|2,+〉) | − −〉 = |1,−〉|2,−〉

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

σiσj = δij + iεijkσk [σi, σj ] = 2iεijkσk {σi, σj} = 2δij

( ~A · ~σ)( ~B · ~σ) = ~A · ~B + i( ~A× ~B) · ~σ

d(~S · n̂)

dα
= − i

h−
[~S · α̂, ~S · n̂] ~S · n̂ = e−i~S·~α~S · n̂0e

i~S·~α |n̂±〉 = e−i~S·~α|ẑ±〉
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eixA = 1 cos(x) + iA sin(x) if A2 = 1 e−i~σ·~α/2 = 1 cos(x) − i~σ · α̂ sin(x)

σif(σj) = f(σj)σiδij + f(−σj)σi(1 − δij)

µBohr =
eh−
2m

= 0.927400915(23)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

g = 2
(

1 +
α

2π
+ . . .

)

= 2.0023193043622(15)

~µorbital = −µBohr

~L

h−
~µspin = −gµBohr

~S

h−
~µtotal = ~µorbital + ~µspin = −µBohr

(~L + g~S)

h−

Hµ = −~µ · ~B Hµ = µBohrBz
(Lz + gSz)

h−

16 Time-Independent Approximation Methods

H = H(0) + λH(1) |ψ〉 = N(λ)
∞
∑

k=0

λk|ψ(k)
n 〉

H(1)|ψ(m−1)
n 〉(1 − δm,0) +H(0)|ψ(m)

n 〉 =
m
∑

ℓ=0

E(m−ℓ)|ψ(ℓ)
n 〉 |ψ(ℓ>0)

n 〉 =
∞
∑

m=0, m 6=n

anm|ψ(0)
n 〉

|ψ1st
n 〉 = |ψ(0)

n 〉 + λ
∑

all k, k 6=n

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉

E
(0)
n − E

(0)
k

|ψ(0)
k 〉

E1st
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

E2nd
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

+ λ2
∑

all k, k 6=n

∣

∣

∣

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉∣

∣

∣

2

E
(0)
n − E

(0)
k

E(φ) =
〈φ|H |φ〉
〈φ|φ〉 δE(φ) = 0

Hkj = 〈φk|H |φj〉 H~c = E~c

17 Time-Dependent Perturbation Theory

π =

∫ ∞

−∞

sin2(x)

x2
dx
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Γ0→n =
2π

h−
|〈n|Hperturbation|0〉|2δ(En − E0)

18 Interaction of Radiation and Matter

~Eop = −1

c

∂ ~Aop

∂t
~Bop = ∇× ~Aop

19 Box Quantization

kL = 2πn, n = 0,±1,±2, . . . k =
2πn

L
∆kcell =

2π

L
∆k3

cell =
(2π)3

V

dNstates = g
k2 dk dΩ

(2π)3/V

20 Identical Particles

|a, b〉 =
1√
2

(|1, a; 2, b〉 ± |1, b; 2, a〉)

ψ(~r1, ~r 2) =
1√
2

(ψa(~r 1)ψb(~r 2) ± ψb(~r 1)ψa(~r 2))

21 Second Quantization

[ai, a
†
j ] = δij [ai, aj ] = 0 [a†i , a

†
j ] = 0 |N1, . . . , Nn〉 =

(a†n)Nn

√
Nn!

. . .
(a†1)

N1

√
N1!

|0〉

{ai, a
†
j} = δij {ai, aj} = 0 {a†i , a

†
j} = 0 |N1, . . . , Nn〉 = (a†n)Nn . . . (a†1)

N1 |0〉

Ψs(~r )† =
∑

~p

e−i~p·~r

√
V

a†~ps Ψs(~r ) =
∑

~p

ei~p·~r

√
V
a~ps

[Ψs(~r ),Ψs′(~r ′)]∓ = 0 [Ψs(~r )†,Ψs′(~r ′)†]∓ = 0 [Ψs(~r ),Ψs′(~r ′)†]∓ = δ(~r − ~r ′)δss′

|~r1s1, . . . , ~rnsn〉 =
1√
n!

Ψsn
(~r n)† . . .Ψsn

(~r n)†|0〉

Ψs(~r )†|~r1s1, . . . , ~rnsn〉
√
n+ 1|~r1s1, . . . , ~rnsn, ~rs〉

|Φ〉 =

∫

d~r1 . . . d~rn Φ(~r1, . . . , ~rn)|~r1s1, . . . , ~rnsn〉

1n =
∑

s1...sn

∫

d~r1 . . . d~rn |~r1s1, . . . , ~rnsn〉〈~r1s1, . . . , ~rnsn| 1 = |0〉〈0| +
∞
∑

n=1

1n
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N =
∑

~ps

a†~psa~ps T =
∑

~ps

p2

2m
a†~psa~ps

ρs(~r ) = Ψs(~r )†Ψs(~r ) N =
∑

s

∫

d~r ρs(~r ) T =
1

2m

∑

s

∫

d~r∇Ψs(~r )† · ∇Ψs(~r )

~js(~r ) =
1

2im

[

Ψs(~r )†∇Ψs(~r ) − Ψs(~r )∇Ψs(~r )†
]

Gs(~r − ~r ′) =
3n

2

sin(x) − x cos(x)

x3
gss′(~r − ~r ′) = 1 − δss′

Gs(~r − ~r ′)2

(n/2)2

v2nd =
1

2

∑

ss′

∫

d~rd~r ′ v(~r − ~r ′)Ψs(~r )†Ψs′(~r ′)†Ψs′(~r ′)Ψs(~r )

v2nd =
1

2V

∑

pp′qq′

∑

ss′

v~p−~p ′δ~p+~q,~p′+~q′a†~psa
†
~qs′a~q ′s′a~p ′s v~p−~p ′ =

∫

d~r e−i(~p−~p ′)·~rv(~r )

22 Klein-Gordon Equation

E =
√

p2c2 +m2c4
1

c2

(

ih− ∂

∂t

)2

Ψ(~r, t) =

[

(

h−
i
∇
)2

+m2c2

]

Ψ(~r, t)

[

1

c2
∂2

∂t2
−∇2 +

(

mc

h−

)2
]

Ψ(~r, t) = 0

ρ =
ih−

2mc2

(

Ψ∗ ∂Ψ

∂t
− Ψ

∂Ψ∗

∂t

)

~j =
h−

2im
(Ψ∗∇Ψ − Ψ∇Ψ∗)

1

c2

(

ih− ∂

∂t
− eΦ

)2

Ψ(~r, t) =

[

(

h−
i
∇− e

c
~A

)2

+m2c2

]

Ψ(~r, t)

Ψ+(~p,E) = ei(~p·~r−Et)/h− Ψ−(~p,E) = e−i(~p·~r−Et)/h−


